1
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
2
|
Colombo É, Désilets A, Hassanzadeh M, Lemieux G, Marois I, Cliche D, Delbrouck JA, Murza A, Jean F, Marsault E, Richter MV, Leduc R, Boudreault PL. Optimization of Ketobenzothiazole-Based Type II Transmembrane Serine Protease Inhibitors to Block H1N1 Influenza Virus Replication. ChemMedChem 2024; 19:e202300458. [PMID: 37864572 DOI: 10.1002/cmdc.202300458] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from μM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.
Collapse
Affiliation(s)
- Éloïc Colombo
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Isabelle Marois
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
- Current address: Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1 Québec, Canada
| | - Dominic Cliche
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Julien A Delbrouck
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Current address: Xenon Pharmaceuticals Inc., Burnaby, V5G 4W8, British Columbia, Canada
| | - Alexandre Murza
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - François Jean
- Department of Microbiology and Immunology, Faculty of Science, Life Sciences Institute, University of British Columbia, V6T 1Z3, British Columbia, Canada
| | - Eric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Martin V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
3
|
Roe K. Eight influenza virus cellular manipulations which can boost concurrent SARS-CoV-2 infections to severe outcomes. Hum Cell 2023; 36:1581-1592. [PMID: 37306884 DOI: 10.1007/s13577-023-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Viral pathogens in the lungs can cause severe outcomes, including acute lung injury and acute respiratory distress syndrome. Dangerous respiratory pathogens include some influenza A and B viruses, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Unfortunately, concurrent infections of influenza virus and SARS-CoV-2 increase severe outcome probabilities. Influenza viruses have eight cellular manipulations which can assist concurrent SARS-CoV-2 viral infections. The eight cellular manipulations include: (1) viral protein binding with cellular sensors to block antiviral transcription factors and cytokine expressions, (2) viral protein binding with cell proteins to impair cellular pre-messenger ribonucleic acid splicing, (3) increased ribonucleic acid virus replication through the phosphatidylinositol 3-kinase/Akt (protein kinase B) pathway, (4) regulatory ribonucleic acids to manipulate cellular sensors and pathways to suppress antiviral defenses, (5) exosomes to transmit influenza virus to uninfected cells to weaken cellular defenses before SARS-CoV-2 infection, (6) increased cellular cholesterol and lipids to improve virion synthesis stability, quality and virion infectivity, (7) increased cellular autophagy, benefiting influenza virus and SARS-CoV-2 replications and (8) adrenal gland stimulation to produce glucocorticoids, which suppress immune cells, including reduced synthesis of cytokines, chemokines and adhesion molecules. Concurrent infections by one of the influenza viruses and SARS-CoV-2 will increase the probability of severe outcomes, and with sufficient synergy potentially enable the recurrence of tragic pandemics.
Collapse
|
4
|
Lu D, Li Z, Zhu P, Yang Z, Yang H, Li Z, Li H, Li Z. Whole-transcriptome analyses of sheep embryonic testicular cells infected with the bluetongue virus. Front Immunol 2022; 13:1053059. [PMID: 36532076 PMCID: PMC9751015 DOI: 10.3389/fimmu.2022.1053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction bluetongue virus (BTV) infection triggers dramatic and complex changes in the host's transcriptional profile to favor its own survival and reproduction. However, there is no whole-transcriptome study of susceptible animal cells with BTV infection, which impedes the in-depth and systematical understanding of the comprehensive characterization of BTV-host interactome, as well as BTV infection and pathogenic mechanisms. Methods to systematically understand these changes, we performed whole-transcriptome sequencing in BTV serotype 1 (BTV-1)-infected and mock-infected sheep embryonic testicular cells, and subsequently conducted bioinformatics differential analyses. Results there were 1504 differentially expressed mRNAs, 78 differentially expressed microRNAs, 872 differentially expressed long non-coding RNAs, and 59 differentially expressed circular RNAs identified in total. Annotation from the Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of competing endogenous RNA networks revealed differentially expressed RNAs primarily related to virus-sensing and signaling transduction pathways, antiviral and immune responses, inflammation, and development and metabolism related pathways. Furthermore, a protein-protein interaction network analysis found that BTV may contribute to abnormal spermatogenesis by reducing steroid biosynthesis. Finally, real-time quantitative PCR and western blotting results showed that the expression trends of differentially expressed RNAs were consistent with the whole-transcriptome sequencing data. Discussion this study provides more insights of comprehensive characterization of BTV-host interactome, and BTV infection and pathogenic mechanisms.
Collapse
Affiliation(s)
- Danfeng Lu
- School of Medicine, Kunming University, Kunming, Yunnan, China
| | - Zhuoyue Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
5
|
Loveday EK, Sanchez HS, Thomas MM, Chang CB. Single-Cell Infection of Influenza A Virus Using Drop-Based Microfluidics. Microbiol Spectr 2022; 10:e0099322. [PMID: 36125315 PMCID: PMC9603537 DOI: 10.1128/spectrum.00993-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022] Open
Abstract
Drop-based microfluidics has revolutionized single-cell studies and can be applied toward analyzing tens of thousands to millions of single cells and their products contained within picoliter-sized drops. Drop-based microfluidics can shed insight into single-cell virology, enabling higher-resolution analysis of cellular and viral heterogeneity during viral infection. In this work, individual A549, MDCK, and siat7e cells were infected with influenza A virus (IAV) and encapsulated into 100-μm-size drops. Initial studies of uninfected cells encapsulated in drops demonstrated high cell viability and drop stability. Cell viability of uninfected cells in the drops remained above 75%, and the average drop radii changed by less than 3% following cell encapsulation and incubation over 24 h. Infection parameters were analyzed over 24 h from individually infected cells in drops. The number of IAV viral genomes and infectious viruses released from A549 and MDCK cells in drops was not significantly different from bulk infection as measured by reverse transcriptase quantitative PCR (RT-qPCR) and plaque assay. The application of drop-based microfluidics in this work expands the capacity to propagate IAV viruses and perform high-throughput analyses of individually infected cells. IMPORTANCE Drop-based microfluidics is a cutting-edge tool in single-cell research. Here, we used drop-based microfluidics to encapsulate thousands of individual cells infected with influenza A virus within picoliter-sized drops. Drop stability, cell loading, and cell viability were quantified from three different cell lines that support influenza A virus propagation. Similar levels of viral progeny as determined by RT-qPCR and plaque assay were observed from encapsulated cells in drops compared to bulk culture. This approach enables the ability to propagate influenza A virus from encapsulated cells, allowing for future high-throughput analysis of single host cell interactions in isolated microenvironments over the course of the viral life cycle.
Collapse
Affiliation(s)
- Emma Kate Loveday
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Humberto S. Sanchez
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Mallory M. Thomas
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Connie B. Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
7
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. MicroRNAs affect GPCR and Ion channel genes needed for influenza replication. J Gen Virol 2021; 102:001691. [PMID: 34787540 PMCID: PMC8742985 DOI: 10.1099/jgv.0.001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021; 18:767-784. [PMID: 33404285 PMCID: PMC8078518 DOI: 10.1080/15476286.2021.1872170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses. In this review, we summarize host noncoding RNA profiles during influenza virus infection and the regulation of influenza virus infection by host noncoding RNAs. Influenza viral non-coding RNAs are briefly discussed. Increased understanding of the molecular regulation of influenza viral replication will be beneficial in identifying potential therapeutic targets against the influenza virus.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
10
|
Abstract
The sudden outbreak of COVID-19 has once again shrouded people in the enormous threat of RNA virus. Extracellular vesicles (EVs), eukaryotic cells-derived small bi-layer vesicles mainly consisting of exosomes and microvesicles, share many properties with RNA viruses including structure, size, generation, and uptake. Emerging evidence has implicated the involvement of EVs in the pathogenesis of infectious diseases induced by RNA viruses. EVs can transfer viral receptors (e.g., ACE2 and CD9) to recipient cells to facilitate viral infection, directly transport infectious viral particles to adjacent cells for virus spreading, and mask viruses with a host structure to escape immune surveillance. Here, we examine the current status of EVs to summarize their roles in mediating RNA virus infection, together with a comprehensive discussion of the underlying mechanisms.
Collapse
|
11
|
Caobi A, Nair M, Raymond AD. Extracellular Vesicles in the Pathogenesis of Viral Infections in Humans. Viruses 2020; 12:E1200. [PMID: 33096825 PMCID: PMC7589806 DOI: 10.3390/v12101200] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Most cells can release extracellular vesicles (EVs), membrane vesicles containing various proteins, nucleic acids, enzymes, and signaling molecules. The exchange of EVs between cells facilitates intercellular communication, amplification of cellular responses, immune response modulation, and perhaps alterations in viral pathogenicity. EVs serve a dual role in inhibiting or enhancing viral infection and pathogenesis. This review examines the current literature on EVs to explore the complex role of EVs in the enhancement, inhibition, and potential use as a nanotherapeutic against clinically relevant viruses, focusing on neurotropic viruses: Zika virus (ZIKV) and human immunodeficiency virus (HIV). Overall, this review's scope will elaborate on EV-based mechanisms, which impact viral pathogenicity, facilitate viral spread, and modulate antiviral immune responses.
Collapse
Affiliation(s)
| | | | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine at Florida International University, Miami, FL 33199, USA; (A.C.); (M.N.)
| |
Collapse
|
12
|
Yang J, Huang X, Liu Y, Zhao D, Han K, Zhang L, Li Y, Liu Q. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Vet Res 2020; 51:132. [PMID: 33069243 PMCID: PMC7568386 DOI: 10.1186/s13567-020-00856-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA) plays a key role in virus-host interactions. Here, we employed deep sequencing technology to determine cellular miRNA expression profiles in chicken dendritic cells infected with H9N2 avian influenza virus (AIV). A total of 66 known and 36 novel miRNAs were differently expressed upon H9N2 infection, including 72 up-regulated and 30 down-regulated miRNAs. Functional analysis showed that the predicted targets of these miRNAs were significantly enriched in several pathways including endocytosis, notch, lysosome, p53, RIG-I-like and NOD-like receptor signaling pathways. These data provide valuable information for further investigating the roles of miRNA in AIV pathogenesis and host defense response.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Lijiao Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
13
|
Li K, Chen X, Zhong J, Ye H, Zhang S, Ge D, Wang X, Wu Y. The effects of the Xijiao Dihuang decoction combined with Yinqiao powder on miRNA-mRNA profiles in mice infected with influenza a virus. BMC Complement Med Ther 2020; 20:286. [PMID: 32957919 PMCID: PMC7507722 DOI: 10.1186/s12906-020-03074-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/08/2020] [Indexed: 01/12/2023] Open
Abstract
Background MicroRNAs (miRNAs) play vital roles in acute inflammatory and antiviral responses during influenza A virus (IAV) infection. The Xijiao Dihuang decoction combined with Yinqiao powder (XDY) is applied to remedy viral pneumonia in China and its therapeutic efficacy in pneumonic mice challenged with IAV was demonstrated; however, the underlying mechanisms remain elusive. Thus, this study aimed to explore the miRNA-mRNA profiles in the lungs of IAV-infected mice and investigate the therapeutic mechanisms of XDY involving miRNAs and associated pathways. Methods We detected the cellular miRNA contents in the lungs of mice treated with XDY (23 g/kg/d) for A/FM/1/47 (H1N1) (FM1) infection at 4 days postinoculation (dpi) and 7 dpi. MiRNA and mRNA high-throughput sequencing analyses, and miRNA and mRNA qRT-PCR analyses were used to detect and verify the relevant miRNAs and mRNAs. Conjoint analysis, GO enrichment analysis, and KEGG database analysis were applied to identify the miRNA-mRNA regulatory relationships. Results The quantities of differentially expressed miRNAs and mRNAs were upregulated over time. The data showed that 104 miRNAs and 3485 mRNAs were differentially expressed after challenge with FM1 on day 4, while 191 miRNAs and 6126 mRNAs were differentially expressed on day 7. The GO enrichment analysis and KEGG database data showed that the differentially expressed miRNAs and mRNAs were mainly enriched in JNK activity, MAPK phosphatase activity, and the TLR, Jak-STAT and TNF signalling pathways after treatment of FM1 infection with XDY. Generally, the expression trends of differentially expressed miRNAs and mRNAs based on the qRT-PCR results exhibited good consistency with the results of the high-throughput sequencing analysis. Conclusions MiRNAs and mRNAs were differentially expressed during FM1 infection. The therapeutic mechanisms of XDY in FM1-infected mice, might be related to regulating antiviral immunity and ameliorating excessive inflammatory responses by modulating the expression of dysregulated miRNAs and mRNAs involved in the ERK/JNK-AP-1, and IFN-β/STAT signalling pathways.
Collapse
Affiliation(s)
- Ke Li
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xiaoming Chen
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Jing Zhong
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Hehe Ye
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Shujing Zhang
- Center of Research and Experiments, Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Dongyu Ge
- Center of Research and Experiments, Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xudan Wang
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ying Wu
- Clinical Medicine Research Centre, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, 545001, China.
| |
Collapse
|
14
|
miR-215 Targeting Novel Genes EREG, NIPAL1 and PTPRU Regulates the Resistance to E.coli F18 in Piglets. Genes (Basel) 2020; 11:genes11091053. [PMID: 32906628 PMCID: PMC7563519 DOI: 10.3390/genes11091053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Previous research has revealed that miR-215 might be an important miRNA regulating weaned piglets’ resistance to Escherichia coli (E. coli) F18. In this study, target genes of miR-215 were identified by RNA-seq, bioinformatics analysis and dual luciferase detection. The relationship between target genes and E. coli infection was explored by RNAi technology, combined with E. coli stimulation and enzyme linked immunosorbent assay (ELISA) detection. Molecular regulating mechanisms of target genes expression were analyzed by methylation detection of promoter regions and dual luciferase activity assay of single nucleotide polymorphisms (SNPs) in core promoter regions. The results showed that miR-215 could target EREG, NIPAL1 and PTPRU genes. Expression levels of three genes in porcine intestinal epithelial cells (IPEC-J2) in the RNAi group were significantly lower than those in the negative control pGMLV vector (pGMLV-NC) group after E. coli F18 stimulation, while cytokines levels of TNF-α and IL-1β in the RNAi group were significantly higher than in the pGMLV-NC group. Variant sites in the promoter region of three genes could affect their promoter activities. These results suggested that miR-215 could regulate weaned piglets’ resistance to E. coli F18 by targeting EREG, NIPAL1 and PTPRU genes. This study is the first to annotate new biological functions of EREG, NIPAL1 and PTPRU genes in pigs, and provides a new experimental basis and reference for the research of piglets disease-resistance breeding.
Collapse
|
15
|
Fei Y, Feng Z, Wu K, Luo Y, Yu L, Zhang Y, Lu L, Xu D. MicroRNA expression profiling of caudal fin cell of C. auratus gibelio upon cyprinid herpesvirus 2 infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103637. [PMID: 32035081 DOI: 10.1016/j.dci.2020.103637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
As a member of the genus Cyprinivirus in the family Alloherpesviridae, Cyprinid herpesvirus 2 (CyHV-2) has caused great economic loss in the aquaculture industry, mainly in C. auratus gibelio and goldfish. However, the molecular mechanisms underlying the pathogenicity of CyHV-2 remain elusive. In this study, high-throughput sequencing technology was employed to explore the miRNA expression profiles of C. auratus gibelio (GiCF) caudal fin cells in response to Cyprinid Herpesvirus-2 (CyHV-2) infection. A total of 631 novel miRNAs and 409 known miRNAs were identified. The expression levels of 7 miRNAs were found as significantly modulated (5 down-regulation and 2 up-regulation; P < 0.01, |logFC|>1, TPM>10) in CyHV-2 infected cells. 7 miRNA and their potential mRNA targets were validated by Real-time PCR (qRT-PCR), respectively. Targets prediction and functional analysis of these 7 miRNAs revealed significant enrichment for several signaling pathways, including PPAR, p53 and FoxO pathways. These studies provided more valuable basis for further study on the roles of miRNAs in CyHV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Yueyue Fei
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Kaixuan Wu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Yang Luo
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lu Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
16
|
Woods PS, Doolittle LM, Rosas LE, Nana-Sinkam SP, Tili E, Davis IC. Increased expression of microRNA-155-5p by alveolar type II cells contributes to development of lethal ARDS in H1N1 influenza A virus-infected mice. Virology 2020; 545:40-52. [PMID: 32308197 DOI: 10.1016/j.virol.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022]
Abstract
Alveolar type II (ATII) cells are essential to lung function and a primary site of influenza A virus (IAV) replication. Effects of IAV infection on ATII cell microRNA (miR) expression have not been comprehensively investigated. Infection of C57BL/6 mice with 10,000 or 100 pfu/mouse of IAV A/WSN/33 (H1N1) significantly altered expression of 73 out of 1908 mature murine miRs in ATII cells at 2 days post-infection (d.p.i.) and 253 miRs at 6 d.p.i. miR-155-5p (miR-155) showed the greatest increase in expression within ATII cells at both timepoints and the magnitude of this increase correlated with inoculum size and pulmonary edema severity. Influenza-induced lung injury was attenuated in C57BL/6-congenic miR-155-knockout mice without affecting viral replication. Attenuation of lung injury was dependent on deletion of miR-155 from stromal cells and was recapitulated in ATII cell-specific miR-155-knockout mice. These data suggest that ATII cell miR-155 is a potential therapeutic target for IAV-induced ARDS.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - Lauren M Doolittle
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - Lucia E Rosas
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - S Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Columbus, OH, USA
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA.
| |
Collapse
|
17
|
Zheng B, Zhou J, Wang H. Host microRNAs and exosomes that modulate influenza virus infection. Virus Res 2020; 279:197885. [PMID: 31981772 DOI: 10.1016/j.virusres.2020.197885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate over half of human protein-coding genes and play a vital role in cellular development, proliferation, metabolism, and homeostasis. Exosomes are rounded or cup-like extracellular vesicles that carry proteins, mRNAs, miRNAs, and lipids for release and exchange messages between cells involved in various cellular processes. Influenza virus is a substantial public health challenge. The expression of host miRNAs is altered in response to stimulation by influenza virus. These dysregulated miRNAs directly or indirectly target viral genes to regulate viral replication and stimulate or suppress innate immune responses and cell apoptosis during viral infection. Exosomes released by infected cells are associated with the transfer of antigens and key molecules that activate and modulate immune function. Dysregulation of miRNAs and secretion of exosomes are associated with pathogenicity and immune regulation during influenza infection. This review provides a comprehensive summary of the information available regarding host miRNAs and exosomes that are involved in the modulation of influenza virus infection and will facilitate the development of preventative or therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Baojia Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China
| | - Junmei Zhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education, and Deparment of Medical Microbiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Hui Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Exosome-delivered and Y RNA-derived small RNA suppresses influenza virus replication. J Biomed Sci 2019; 26:58. [PMID: 31416454 PMCID: PMC6694579 DOI: 10.1186/s12929-019-0553-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Multiple interplays between viral and host factors are involved in influenza virus replication and pathogenesis. Several small RNAs have recently emerged as important regulators of host response to viral infections. The aim of this study was to characterize the functional role of hsa-miR-1975, a Y5 RNA-derived small RNA, in defending influenza virus and delineate the mechanisms. Methods We performed high throughput sequencing of small RNAs in influenza virus-infected cells to identify up- or down- regulated small RNA species. The expression of the most abundant RNA species (hsa-miR-1975) was validated by stem-loop reverse transcription-polymerase chain reaction (RT-PCR). Antiviral effects of hsa-miR-1975 were confirmed by Western Blot, RT-PCR and plaque assay. In vitro perturbation of hsa-miR-1975 combined with exosomes isolation was used to elucidate the role and mechanism of hsa-miR-1975 in the context of antiviral immunity. Results Small RNA sequencing revealed that hsa-miR-1975 was the most up-regulated small RNA in influenza virus-infected cells. The amount of intracellular hsa-miR-1975 increased in the late stage of the influenza virus replication cycle. The increased hsa-miR-1975 was at least partially derived from degradation of Y5RNA as a result of cellular apoptosis. Unexpectedly, hsa-miR-1975 mimics inhibited influenza virus replication while hsa-miR-1975 sponges enhanced the virus replication. Moreover, hsa-miR-1975 was secreted in exosomes and taken up by the neighboring cells to induce interferon expression. Conclusions Our findings unravel a critical role of Y-class small RNA in host’s defense against influenza virus infection and reveal its antiviral mechanism through exosome delivery. This may provide a new candidate for targeting influenza virus. Electronic supplementary material The online version of this article (10.1186/s12929-019-0553-6) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Integration analysis of a miRNA-mRNA expression in A549 cells infected with a novel H3N2 swine influenza virus and the 2009 H1N1 pandemic influenza virus. INFECTION GENETICS AND EVOLUTION 2019; 74:103922. [PMID: 31207403 DOI: 10.1016/j.meegid.2019.103922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
Swine are reservoirs for anthropogenic/zoonotic influenza viruses, and the prevalence and repeated introduction of the 2009 H1N1 pandemic influenza virus (pdm/09) into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. However, studies aiming to identify miRNAs involved in the transfer of novel swine influenza virus infection to human cells are rare. In this investigation, from the view of small RNA, microarrays and high-throughput sequencing were used to detect differentially expressed miRNAs and mRNAs after human lung epithelial cells were infected with the following three stains of influenza viruses: a novel H3N2 swine influenza virus reassorted with pdm/09 fragments, pdm/09 and classical swine influenza virus. A miRNA-mRNA interaction map was generated to show the correlation between miRNAs related to infection by the viruses with human infective potential/capability. The expression of 4 miRNAs (hsa-miR-96-5p, hsa-miR-140-5p, hsa-miR-30a-3p and hsa-miR-582-5p) and 5 relevant mRNAs (RCC1, ERVFRD-1, RANBP1, SCARB2 and RPS29) was determined. The integration analysis indicated that these candidates have rarely been reported to be associated with influenza virus. Focusing on miRNA expression changes could reveal novel reassortant viruses with human infective potential that may provide insight into future pandemics.
Collapse
|
20
|
Gao Z, Sun L, Dai K, Du Y, Wu S, Bao W. Effects of mutations in porcine miRNA-215 precursor sequences on miRNA-215 regulatory function. Gene 2019; 701:131-138. [PMID: 30905811 DOI: 10.1016/j.gene.2019.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) play an important role in animal growth and disease development, and sequence variation in microRNAs can alter their functions. Herein, we explored the effects of mutations in the miRNA-215 precursor sequence on the miRNA-215 regulatory network and resistance to Escherichia coli (E. coli). Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to detect sequence variations in Sutai and Meishan pigs. The miR-192 precursor sequence was not mutated, but the miR-215 precursor included an AT insertion mutation at position 6 (start from the first base of the miR-215 precursor) and a C/T mutation at position 43. Wild-type (WT) and mutant miR-215 precursor expression vectors were constructed to investigate the effects of sequence variation on expression of miR-215 and its target genes DLG5 and ALCAM, cytokine levels and E. coli adhesion. Compared with the WT control group, cells harbouring the C/T mutant vector displayed reduced miR-215 expression, increased target gene expression, elevated cytokine levels and rising E. coli adhesion, whereas cells harbouring the AT insertion mutant vector were not significantly changed. The sequence variation in the miRNA-215 precursor may affect the miRNA-215 regulatory network, and alter the stability of intestinal epithelial cells (IPEC-J2 cells) and resistance to E. coli. Our findings provide guidance for future research on the regulatory mechanisms of miR-215 in porcine resistance to E. coli F18, and identifying effective genetic markers against this organism.
Collapse
Affiliation(s)
- Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaiyu Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yulu Du
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Zhao L, Zhang X, Wu Z, Huang K, Sun X, Chen H, Jin M. The Downregulation of MicroRNA hsa-miR-340-5p in IAV-Infected A549 Cells Suppresses Viral Replication by Targeting RIG-I and OAS2. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:509-519. [PMID: 30753994 PMCID: PMC6370596 DOI: 10.1016/j.omtn.2018.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
The influenza A virus poses serious public health challenges worldwide. Strikingly, small noncoding microRNAs (miRNAs) that modulate gene expression are closely involved in antiviral responses, although the underlying mechanisms are essentially unknown. We now report that microRNA-340 (miR340) is downregulated following influenza A and other RNA virus infections, implying that host cells deplete miR340 as an antiviral defense mechanism. Accordingly, the inhibition or knockdown of endogenous miR340 clearly prevents the infection of cultured cells, whereas the forced expression of miR340 significantly enhances virus replication. Using next-generation sequencing, we found that miR340 attenuates cellular antiviral immunity. Moreover, mechanistic studies defined miR340 as a repressor of RIG-I and OAS2, critical factors for the establishment of an antiviral response. Collectively, these data indicate that host cells may lower their viral loads by regulating miRNA pathways, which may, in turn, provide new opportunities for treatment.
Collapse
Affiliation(s)
- Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhu Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
22
|
Gao J, Gao L, Li R, Lai Z, Zhang Z, Fan X. Integrated analysis of microRNA-mRNA expression in A549 cells infected with influenza A viruses (IAVs) from different host species. Virus Res 2018; 263:34-46. [PMID: 30605755 DOI: 10.1016/j.virusres.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022]
Abstract
Although several miRNAs have been demonstrated to be involved in the influenza virus replication cycle, the identification of miRNAs and mRNAs that are expressed in A549 cells infected with influenza A viruses (IAVs) from different host species has remained poorly studied. To investigate the molecular mechanisms associated with the differential expression of miRNAs during influenza A virus infection, we performed global miRNA and mRNA expression profiling in A549 cells infected with human-origin seasonal influenza A virus H3N2 (Human_Br07), swine-origin influenza A virus H1N1 (SW_3861) or avian-origin influenza A virus H3N2 (AVI_9990). The miRNA and mRNA expression profiles were obtained by microarray and high-throughput sequencing analyses, respectively. The integrated analysis of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) was performed using bioinformatics tools, and the expression of miRNAs and mRNAs was validated by real-time quantitative polymerase chain reaction (RT-qPCR). We identified 20 miRNAs (6 upregulated and 14 downregulated) and 1286 mRNAs (935 upregulated and 351 downregulated) exhibiting the same differential expression trends in three infected groups of cells compared with an uninfected control. An integrated analysis of these expression profiles identified 79 miRNA-mRNA pairs associated with the influenza A reference pathway, and 107 miRNA-mRNA interactions were correlated with the defense of the virus. Additionally, the obtained results were supported by an RT-qPCR analysis of 8 differentially expressed miRNAs (hsa-miR-210-3p, hsa-miR-296-5p, hsa-miR-371a-5p, hsa-miR-762, hsa-miR-937-5p, hsa-miR-1915-3p, hsa-miR-3665, and hsa-miR-1290) and 13 differentially expressed mRNAs (IFNL1, CXCL10, RSAD2, MX1, OAS2, IFIT2, IFI44 L, MX2, XAF1, NDRG1, FGA, EGLN3, and TFRC). Our findings indicate that dysregulated miRNA expression plays a crucial role in infection caused by IAVs originating from different species and provide a foundation for further investigations of the molecular regulatory mechanisms of miRNAs involved in influenza A virus infection.
Collapse
Affiliation(s)
- Jie Gao
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Lingxi Gao
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Rui Li
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Zhenping Lai
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Zengfeng Zhang
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xiaohui Fan
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
23
|
Starbæk SMR, Brogaard L, Dawson HD, Smith AD, Heegaard PMH, Larsen LE, Jungersen G, Skovgaard K. Animal Models for Influenza A Virus Infection Incorporating the Involvement of Innate Host Defenses: Enhanced Translational Value of the Porcine Model. ILAR J 2018; 59:323-337. [PMID: 30476076 DOI: 10.1093/ilar/ily009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/19/2018] [Indexed: 01/05/2025] Open
Abstract
Influenza is a viral respiratory disease having a major impact on public health. Influenza A virus (IAV) usually causes mild transitory disease in humans. However, in specific groups of individuals such as severely obese, the elderly, and individuals with underlying inflammatory conditions, IAV can cause severe illness or death. In this review, relevant small and large animal models for human IAV infection, including the pig, ferret, and mouse, are discussed. The focus is on the pig as a large animal model for human IAV infection as well as on the associated innate immune response. Pigs are natural hosts for the same IAV subtypes as humans, they develop clinical disease mirroring human symptoms, they have similar lung anatomy, and their respiratory physiology and immune responses to IAV infection are remarkably similar to what is observed in humans. The pig model shows high face and target validity for human IAV infection, making it suitable for modeling many aspects of influenza, including increased risk of severe disease and impaired vaccine response due to underlying pathologies such as low-grade inflammation. Comparative analysis of proteins involved in viral pattern recognition, interferon responses, and regulation of interferon-stimulated genes reveals a significantly higher degree of similarity between pig, ferret, and human compared with mice. It is concluded that the pig is a promising animal model displaying substantial human translational value with the ability to provide essential insights into IAV infection, pathogenesis, and immunity.
Collapse
Affiliation(s)
- Sofie M R Starbæk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harry D Dawson
- Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Allen D Smith
- Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Peter M H Heegaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Keshavarz M, Mirzaei H, Salemi M, Momeni F, Mousavi MJ, Sadeghalvad M, Arjeini Y, Solaymani-Mohammadi F, Sadri Nahand J, Namdari H, Mokhtari-Azad T, Rezaei F. Influenza vaccine: Where are we and where do we go? Rev Med Virol 2018; 29:e2014. [PMID: 30408280 DOI: 10.1002/rmv.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
The alarming rise of morbidity and mortality caused by influenza pandemics and epidemics has drawn attention worldwide since the last few decades. This life-threatening problem necessitates the development of a safe and effective vaccine to protect against incoming pandemics. The currently available flu vaccines rely on inactivated viral particles, M2e-based vaccine, live attenuated influenza vaccine (LAIV) and virus like particle (VLP). While inactivated vaccines can only induce systemic humoral responses, LAIV and VLP vaccines stimulate both humoral and cellular immune responses. Yet, these vaccines have limited protection against newly emerging viral strains. These strains, however, can be targeted by universal vaccines consisting of conserved viral proteins such as M2e and capable of inducing cross-reactive immune response. The lack of viral genome in VLP and M2e-based vaccines addresses safety concern associated with existing attenuated vaccines. With the emergence of new recombinant viral strains each year, additional effort towards developing improved universal vaccine is warranted. Besides various types of vaccines, microRNA and exosome-based vaccines have been emerged as new types of influenza vaccines which are associated with new and effective properties. Hence, development of a new generation of vaccines could contribute to better treatment of influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Salemi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Momeni
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sadeghalvad
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Solaymani-Mohammadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Keshavarz M, Dianat-Moghadam H, Sofiani VH, Karimzadeh M, Zargar M, Moghoofei M, Biglari H, Ghorbani S, Nahand JS, Mirzaei H. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10:829-844. [DOI: 10.2217/epi-2017-0170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Influenza A virus is known worldwide as a threat associated with human and livestock diseases. Hence, identification of physiological and molecular aspects of influenza A could contribute to better design of therapeutic approaches for reducing adverse effects associated with disease caused by this virus. miRNAs are epigenetic regulators playing important roles in many pathological processes that help in progression of influenza A. Besides miRNAs, exosomes have ememrged as other effective players in influenza A pathogenesis. Exosomes exert their effects via targeting their cargos (e.g., DNAs, mRNA, miRNAs and proteins) to recipient cells. Here, we summarized various roles of miRNAs and exosomes in influenza A pathogenesis. Moreover, we highlighted therapeutic applications of miRNAs and exosomes in influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medicine Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering & Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Geddes VEV, de Oliveira AS, Tanuri A, Arruda E, Ribeiro-Alves M, Aguiar RS. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection. PLoS Negl Trop Dis 2018; 12:e0006508. [PMID: 29813068 PMCID: PMC5993330 DOI: 10.1371/journal.pntd.0006508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950’s, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA) and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection). Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2), a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes) and TRAF3 (TNF-Receptor Associated Factor 3), were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold) and virus titer (3 fold). Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of its partners STING and TRAF3. We concluded stating that the present study, the first for a Peribunyaviridae member, gives insights in its prospective pathways that could help to understand virus biology, interactions with host cells and pathogenesis, suggesting that the virus escapes the antiviral cellular pathways increasing the expression of cognates miRNAs. Oropouche Virus causes typical arboviral febrile illness and is widely distributed in tropical region of Americas, mainly Amazon region, associated with cases of encephalitis. 500,000 people are estimated to be infected with Oropouche worldwide and some states in Brazil detected higher number of cases among other arboviruses such as Dengue and Chikungunya. As much as climate change, human migration and vector and host availability might increase the risk of virus transmission. Despite its estimated high prevalence in Central and South America populations, the literature concerning the main aspects of viral biology remain scarce and began to be investigated only in the last two decades. Nonetheless, little is known about virus-host cell interactions and pathogenesis. Virus infection regulates cellular pathways either promoting its replication or escaping from immune response through microRNAs. Knowing which microRNAs and target genes are modulated in infection could give us new insights to understand multiple aspects of infection. Here, we depicted candidate miRNAs, genes and pathways affected by Oropouche Virus infection in hepatocyte cells. We hope this work serve as guideline for prospective studies in order to assess the complexity regarding the orthobunyaviruses infections.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal Silva de Oliveira
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
27
|
Xia B, Lu J, Wang R, Yang Z, Zhou X, Huang P. miR-21-3p Regulates Influenza A Virus Replication by Targeting Histone Deacetylase-8. Front Cell Infect Microbiol 2018; 8:175. [PMID: 29888214 PMCID: PMC5981164 DOI: 10.3389/fcimb.2018.00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) is responsible for severe morbidity and mortality in animals and humans worldwide. miRNAs are a class of small noncoding single-stranded RNA molecules that can negatively regulate gene expression and play important roles in virus-host interaction. However, the roles of miRNAs in IAV infection are still not fully understood. Here, we profiled the cellular miRNAs of A549 cells infected with A/goose/Jilin/hb/2003 (H5N1) and a comparison A/Beijing/501/2009 (H1N1). miRNA microarray and quantitative PCR analysis showed that several miRNAs were differentially expressed in A549 cells during IAV infection. Subsequently, we demonstrated that IAV replication was essential for the regulation of these miRNAs, and bioinformatic analysis revealed that the targets of these miRNAs affected biological processes relevant to IAV replication. Specifically, miR-21-3p was found to be down-regulated in IAV-infected A549 cells and selected for further detailed analysis. Target prediction and functional study illustrated that miR-21-3p repressed the expression of HDAC8 by targeting its 3′UTR. Furthermore, we confirmed miR-21-3p could promote virus replication, which was similar to the result of knocking down HDAC8, indicating that miR-21-3p promoted IAV replication by suppressing HDAC8 expression. Altogether, our results suggest a potential host defense against IAV through down-regulation of miR-21-3p.
Collapse
Affiliation(s)
- Binghui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaowei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
28
|
Zheng Y, Fu X, Wang L, Zhang W, Zhou P, Zhang X, Zeng W, Chen J, Cao Z, Jia K, Li S. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses. Microb Pathog 2018; 121:252-261. [PMID: 29772263 DOI: 10.1016/j.micpath.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs.
Collapse
Affiliation(s)
- Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xinliang Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Jidang Chen
- School of Life Science and Engineering, Foshan University, Guangzhou, People's Republic of China
| | - Zongxi Cao
- Hainan Academy of Agricultural Science, Hainan, People's Republic of China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
29
|
Brogaard L, Larsen LE, Heegaard PMH, Anthon C, Gorodkin J, Dürrwald R, Skovgaard K. IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs. PLoS One 2018; 13:e0194765. [PMID: 29677213 PMCID: PMC5909910 DOI: 10.1371/journal.pone.0194765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/02/2018] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is paramount in the response to and clearance of influenza A virus (IAV) infection in non-immune individuals. Known factors include type I and III interferons and antiviral pathogen recognition receptors, and the cascades of antiviral and pro- and anti-inflammatory gene expression they induce. MicroRNAs (miRNAs) are increasingly recognized to participate in post-transcriptional modulation of these responses, but the temporal dynamics of how these players of the antiviral innate immune response collaborate to combat infection remain poorly characterized. We quantified the expression of miRNAs and protein coding genes in the lungs of pigs 1, 3, and 14 days after challenge with swine IAV (H1N2). Through RT-qPCR we observed a 400-fold relative increase in IFN-λ3 gene expression on day 1 after challenge, and a strong interferon-mediated antiviral response was observed on days 1 and 3 accompanied by up-regulation of genes related to the pro-inflammatory response and apoptosis. Using small RNA sequencing and qPCR validation we found 27 miRNAs that were differentially expressed after challenge, with the highest number of regulated miRNAs observed on day 3. In contrast, the number of protein coding genes found to be regulated due to IAV infection peaked on day 1. Pulmonary miRNAs may thus be aimed at fine-tuning the initial rapid inflammatory response after IAV infection. Specifically, we found five miRNAs (ssc-miR-15a, ssc-miR-18a, ssc-miR-21, ssc-miR-29b, and hsa-miR-590-3p)-four known porcine miRNAs and one novel porcine miRNA candidate-to be potential modulators of viral pathogen recognition and apoptosis. A total of 11 miRNAs remained differentially expressed 14 days after challenge, at which point the infection had cleared. In conclusion, the results suggested a role for miRNAs both during acute infection as well as later, with the potential to influence lung homeostasis and susceptibility to secondary infections in the lungs of pigs after IAV infection.
Collapse
Affiliation(s)
- Louise Brogaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| | - Lars E. Larsen
- Division of Diagnostics and Scientific Advice–Virology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter M. H. Heegaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ralf Dürrwald
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Kerstin Skovgaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 2018; 38:BSR20171160. [PMID: 29363554 PMCID: PMC5821941 DOI: 10.1042/bsr20171160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.
Collapse
|
31
|
Peng S, Wang J, Wei S, Li C, Zhou K, Hu J, Ye X, Yan J, Liu W, Gao GF, Fang M, Meng S. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:361-375. [PMID: 29499948 PMCID: PMC5862538 DOI: 10.1016/j.omtn.2017.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
The reciprocal interaction between influenza virus and host microRNAs (miRNAs) has been implicated in the regulation of viral replication and host tropism. However, the global roles of the cellular miRNA repertoire and the mechanisms of miRNA-mediated antiviral defense await further elucidation. In this study, we systematically screened 297 cellular miRNAs from human and mouse epithelial cells and identified five inhibitory miRNAs that efficiently inhibited influenza virus replication in vitro and in vivo. Among these miRNAs, hsa-mir-127-3p, hsa-mir-486-5p, hsa-mir-593-5p, and mmu-mir-487b-5p were found to target at least one viral gene segment of both the human seasonal influenza H3N2 and the attenuated PR8 (H1N1) virus, whereas hsa-miR-1-3p inhibited viral replication by targeting the supportive host factor ATP6V1A. Moreover, the number of miRNA binding sites in viral RNA segments was positively associated with the activity of host miRNA-induced antiviral defense. Treatment with a combination of the five miRNAs through agomir delivery pronouncedly suppressed viral replication and effectively improved protection against lethal challenge with PR8 in mice. These data suggest that the highly expressed miRNAs in respiratory epithelial cells elicit effective antiviral defenses against influenza A viruses and will be useful for designing miRNA-based therapies against viral infection.
Collapse
Affiliation(s)
- Shanxin Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Songtao Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kai Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; International College, University of Chinese Academy of Sciences, Beijing, China.
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Wang K, Lai C, Gu H, Zhao L, Xia M, Yang P, Wang X. miR-194 Inhibits Innate Antiviral Immunity by Targeting FGF2 in Influenza H1N1 Virus Infection. Front Microbiol 2017; 8:2187. [PMID: 29163456 PMCID: PMC5674008 DOI: 10.3389/fmicb.2017.02187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factor 2 (FGF2 or basic FGF) regulates a wide range of cell biological functions including proliferation, angiogenesis, migration, differentiation, and injury repair. However, the roles of FGF2 and the underlying mechanisms of action in influenza A virus (IAV)-induced lung injury remain largely unexplored. In this study, we report that microRNA-194-5p (miR-194) expression is significantly decreased in A549 alveolar epithelial cells (AECs) following infection with IAV/Beijing/501/2009 (BJ501). We found that miR-194 can directly target FGF2, a novel antiviral regulator, to suppress FGF2 expression at the mRNA and protein levels. Overexpression of miR-194 facilitated IAV replication by negatively regulating type I interferon (IFN) production, whereas reintroduction of FGF2 abrogated the miR-194-induced effects on IAV replication. Conversely, inhibition of miR-194 alleviated IAV-induced lung injury by promoting type I IFN antiviral activities in vivo. Importantly, FGF2 activated the retinoic acid-inducible gene I signaling pathway, whereas miR-194 suppressed the phosphorylation of tank binding kinase 1 and IFN regulatory factor 3. Our findings suggest that the miR-194-FGF2 axis plays a vital role in IAV-induced lung injury, and miR-194 antagonism might be a potential therapeutic target during IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengcai Lai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingna Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Min Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Penghui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing 302 Hospital, Beijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
33
|
Zhang S, Wu Y, Xuan Z, Chen X, Zhang J, Ge D, Wang X. Screening differential miRNAs responsible for permeability increase in HUVECs infected with influenza A virus. PLoS One 2017; 12:e0186477. [PMID: 29059211 PMCID: PMC5653366 DOI: 10.1371/journal.pone.0186477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/01/2017] [Indexed: 11/24/2022] Open
Abstract
Severe influenza infections are featured by acute lung injury, a syndrome of increased pulmonary microvascular permeability. A growing number of evidences have shown that influenza A virus induces cytoskeletal rearrangement and permeability increase in endothelial cells. Although miRNA’s involvement in the regulation of influenza virus infection and endothelial cell (EC) function has been well documented, little is known about the miRNA profiles in influenza-infected endothelial cells. Using human umbilical vein endothelial cells (HUVECs) as cell models, the present study aims to explore the differential miRNAs in influenza virus-infected ECs and analyze their target genes involved in EC permeability regulation. As the results showed, permeability increased and F-actin cytoskeleton reorganized after HUVECs infected with influenza A virus (CA07 or PR8) at 30 MOI. MicroRNA microarray revealed a multitude of miRNAs differentially expressed in HUVECs after influenza virus infection. Through target gene prediction, we found that a series of miRNAs were involved in PKC, Rho/ROCK, HRas/Raf/MEK/ERK, and Ca2+/CaM pathways associated with permeability regulation, and most of these miRNAs were down-regulated after flu infection. It has been reported that PKC, Rho/ROCK, HRas/Raf/MEK/ERK, and Ca2+/CaM pathways are activated by flu infection and play important roles in permeability regulation. Therefore, the cumulative effects of these down-regulated miRNAs which synergistically enhanced activation of PKC, Rho/ROCK, Ras/Raf/MEK/ERK, and Ca2+/CaM pathways, can eventually lead to actin rearrangement and hyperpermeability in flu-infected HUVECs.
Collapse
Affiliation(s)
- Shujing Zhang
- Scientific Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wu
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| | - Zinan Xuan
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoming Chen
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Junjie Zhang
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyu Ge
- Scientific Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Xudan Wang
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Wang R, Zhang YY, Lu JS, Xia BH, Yang ZX, Zhu XD, Zhou XW, Huang PT. The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome. J Cell Mol Med 2017; 21:3076-3086. [PMID: 28609011 PMCID: PMC5661113 DOI: 10.1111/jcmm.13219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3'UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR-584-5p and miR-1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down-regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR-1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host-mediated inhibition of viral replication through down-regulation of cellular miRNAs, which target its viral genome.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying-Ying Zhang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,The General Hospital of the PLA Rocket Force, Beijing, China
| | - Jian-Sheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Bing-Hui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Xin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xu-Dong Zhu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Wei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Pei-Tang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
35
|
Peng F, He J, Loo JFC, Kong SK, Li B, Gu D. Identification of serum MicroRNAs as diagnostic biomarkers for influenza H7N9 infection. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.virep.2016.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Raj M, Langley M, McArthur SJ, Jean F. Moonlighting glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is required for efficient hepatitis C virus and dengue virus infections in human Huh-7.5.1 cells. J Gen Virol 2017; 98:977-991. [PMID: 28548037 DOI: 10.1099/jgv.0.000754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hijacking of cellular biosynthetic pathways by human enveloped viruses is a shared molecular event essential for the viral lifecycle. In this study, the accumulating evidence of the importance of human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the host secretory pathway led us to hypothesize that this moonlighting enzyme could play a key role in the lifecycle steps of two important Flaviviridae members, hepatitis C virus (HCV) and dengue virus (DENV). We used short interfering RNA (siRNA)-mediated knockdown of human GAPDH in Huh-7.5.1 cells- both pre- and post-HCV infection- to demonstrate that GAPDH is a host factor for HCV infection. siRNA-induced GAPDH knockdown performed pre-HCV infection inhibits HCV core production in infected cells and leads to a decrease in infectivity of the HCV-infected cell supernatants. siRNA-induced GAPDH knockdown performed post-HCV infection does not have an effect on HCV core abundance in infected cells, but does lead to a decrease in infectivity of the HCV-infected cell supernatants. Exogenous expression of V5-tagged human GAPDH, pre- and post-infection, increases the infectivity of HCV-infected cell supernatants, suggesting a role for GAPDH during HCV post-replication steps. Interestingly, siRNA-induced GAPDH knockdown in HCV replicon-harbouring cells had no effect on viral RNA replication. Importantly, we confirmed the important role of GAPDH in the HCV lifecycle using Huh-7-derived stable GAPDH-knockdown clones. Finally, siRNA-induced GAPDH knockdown inhibits intracellular DENV-2 E glycoprotein production in infected cells. Collectively, our findings suggest that the moonlighting enzyme, GAPDH, is an important host factor for HCV infection, and they support its potential role in the DENV lifecycle.
Collapse
Affiliation(s)
- Meera Raj
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Present address: Canadian Blood Services and the Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mary Langley
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Present address: School of Medicine, Flinders University, Adelaide, South Australia
| | - Steven J McArthur
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
37
|
Chen W, Yi L, Feng S, Zhao L, Li J, Zhou M, Liang R, Gu N, Wu Z, Tu J, Lin L. Characterization of microRNAs in orange-spotted grouper (Epinephelus coioides) fin cells upon red-spotted grouper nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 63:228-236. [PMID: 28232192 DOI: 10.1016/j.fsi.2017.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Nervous necrosis virus (NNV), one of the most prevalent fish pathogens, has caused fatal disease of viral nervous necrosis (VNN) in many marine and freshwater fishes, and resulted in heavy economic losses in aquaculture industry worldwide. However, the molecular mechanisms underlying the pathogenicity of NNV remain elusive. In this study, the expression profiles of microRNA (miRNA) were investigated in grouper fin (GF-1) cells infected with red-spotted grouper nervous necrosis virus (RGNNV) via deep sequencing technique. The results showed that a total of 220 miRNAs were identified by aligning the small RNA sequences with the miRNA database of zebrafish, and 18 novel miRNAs were predicted using miRDeep2 software. Compared with the non-infected groups, 51 and 16 differentially expressed miRNAs (DE-miRNAs) were identified in the samples infected with RGNNV at 3 and 24 h, respectively. Six DE-miRNAs were randomly selected to validate their expressions using quantitative reverse transcription polymerase chain reaction (qRT-PCR), the results showed that their expression profiles were consistent with those obtained by deep sequencing. The target genes of the DE-miRNAs covered a wide range of functions, such as regulation of transcription, oxidation-reduction process, proteolysis, regulation of apoptotic process, and immune response. In addition, the effects of four DE-miRNAs including miR-1, miR-30b, miR-150, and miR-184 on RGNNV replication were evaluated, and the results showed that over-expression of each of the four miRNAs promoted the replication of RGNNV. These data provide insight into the molecular mechanism of RGNNV infection, and will benefit for the development of effective strategies to control RGNNV infection.
Collapse
Affiliation(s)
- Wenjie Chen
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lizhu Yi
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijuan Zhao
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Li
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Meng Zhou
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Rishen Liang
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Na Gu
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zaohe Wu
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Li Lin
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
38
|
Preusse M, Schughart K, Pessler F. Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection. Front Immunol 2017; 8:246. [PMID: 28377766 PMCID: PMC5359533 DOI: 10.3389/fimmu.2017.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. RESULTS miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs (n = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs (n = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the more susceptible DBA/2J strain. CONCLUSION Substantial differences in pulmonary miRNA expression between the two differentially susceptible mouse strains were evident even before infection, but evolved further throughout infection and could in part be attributed to differences in peripheral blood leukocyte populations. Thus, pulmonary miRNA expression both before and during IAV infection is in part determined genetically and contributes to susceptibility to IAV infection in this murine host, and likely in humans.
Collapse
Affiliation(s)
- Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
39
|
Gui S, Rice AP, Chen R, Wu L, Liu J, Miao H. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data. BMC Bioinformatics 2017; 18:74. [PMID: 28143596 PMCID: PMC5294888 DOI: 10.1186/s12859-017-1489-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022] Open
Abstract
Background Gene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher. Results Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 104, and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV. Conclusions The proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB Ⓡ, and the source code is freely available from https://github.com/Hongyu-Miao/DMI.git. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1489-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shupeng Gui
- Department of Computer Science, University of Rochester, Rochester, 14620, NY, USA
| | - Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Liang Wu
- Department of Biostatistics, University of Texas Health Science Center, Houston, 77030, TX, USA
| | - Ji Liu
- Department of Computer Science, University of Rochester, Rochester, 14620, NY, USA.,Goergen Institute for Data Science, University of Rochester, Rochester, 14620, NY, USA
| | - Hongyu Miao
- Department of Biostatistics, University of Texas Health Science Center, Houston, 77030, TX, USA.
| |
Collapse
|
40
|
Fan Y, Mok CKP, Chan MCW, Zhang Y, Nal B, Kien F, Bruzzone R, Sanyal S. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. J Biol Chem 2017; 292:5070-5088. [PMID: 28130444 PMCID: PMC5377818 DOI: 10.1074/jbc.m117.776112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G1 phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells. Knockdown of Ccnd3 by small interfering RNA significantly enhanced virus progeny titers in cell culture supernatants. Interestingly, the increase in virus production was due to cyclin D3 deficiency per se and not merely a consequence of cell cycle deregulation. A combined knockdown of Ccnd3 and Rb1, which rescued cell cycle progression into S phase, failed to normalize virus production. Infection by influenza A virus triggered redistribution of cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. When overexpressed in HEK 293T cells, cyclin D3 impaired binding of M2 with M1, which is essential for proper assembly of progeny virions, lending further support to its role as a putative restriction factor. Our study describes the identification and characterization of cyclin D3 as a novel interactor of influenza A virus M2 protein. We hypothesize that competitive inhibition of M1-M2 interaction by cyclin D3 impairs infectious virion formation and results in attenuated virus production. In addition, we provide mechanistic insights into the dynamic interplay of influenza virus with the host cell cycle machinery during infection.
Collapse
Affiliation(s)
- Ying Fan
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | - Chris Ka-Pun Mok
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Michael Chi Wai Chan
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Béatrice Nal
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Division of Biosciences, College of Health and Life Sciences, Brunel University London, London UB8 3PH, United Kingdom
| | - François Kien
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,Ksilink, French-German Advanced Translational Center, Strasbourg 67000, France, and
| | - Roberto Bruzzone
- From the HKU-Pasteur Research Pole and .,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Department of Cell Biology and Infection, Institut Pasteur, Paris Cedex 75015, France
| | - Sumana Sanyal
- From the HKU-Pasteur Research Pole and .,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus. Int J Mol Sci 2016; 18:ijms18010039. [PMID: 28035991 PMCID: PMC5297674 DOI: 10.3390/ijms18010039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a new type of regulators that play important roles in various cellular processes, including cell growth, differentiation, survival, and apoptosis. ncRNAs, including small non-coding RNAs (e.g., microRNAs, small interfering RNAs) and long non-coding RNAs (lncRNAs), are pervasively transcribed in human and mammalian cells. Recently, it has been recognized that these ncRNAs are critically implicated in the virus-host interaction as key regulators of transcription or post-transcription during viral infection. Influenza A virus (IAV) is still a major threat to human health. Hundreds of ncRNAs are differentially expressed in response to infection with IAV, such as infection by pandemic H1N1 and highly pathogenic avian strains. There is increasing evidence demonstrating functional involvement of these regulatory microRNAs, vault RNAs (vtRNAs) and lncRNAs in pathogenesis of influenza virus, including a variety of host immune responses. For example, it has been shown that ncRNAs regulate activation of pattern recognition receptor (PRR)-associated signaling and transcription factors (nuclear factor κ-light-chain-enhancer of activated B cells, NF-κB), as well as production of interferons (IFNs) and cytokines, and expression of critical IFN-stimulated genes (ISGs). The vital functions of IAV-regulated ncRNAs either to against defend viral invasion or to promote progeny viron production are summarized in this review. In addition, we also highlight the potentials of ncRNAs as therapeutic targets and diagnostic biomarkers.
Collapse
|
42
|
Genetic resistance - an alternative for controlling PRRS? Porcine Health Manag 2016; 2:27. [PMID: 28405453 PMCID: PMC5382513 DOI: 10.1186/s40813-016-0045-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
PRRS is one of the most challenging diseases for world-wide pig production. Attempts for a sustainable control of this scourge by vaccination have not yet fully satisfied. With an increasing knowledge and methodology in disease resistance, a new world-wide endeavour has been started to support the combat of animal diseases, based on the existence of valuable gene variants with regard to any host-pathogen interaction. Several groups have produced a wealth of evidence for natural variability in resistance/susceptibility to PRRS in our commercial breeding lines. However, up to now, exploiting existing variation has failed because of the difficulty to detect the carriers of favourable and unfavourable alleles, especially with regard to such complex polygenic traits like resistance to PRRS. New hope comes from new genomic tools like next generation sequencing which have become extremely fast and low priced. Thus, research is booming world-wide and the jigsaw puzzle is filling up – slowly but steadily. On the other hand, knowledge from virological and biomedical basic research has opened the way for an “intervening way”, i.e. the modification of identified key genes that occupy key positions in PRRS pathogenesis, like CD163. CD163 was identified as the striking receptor in PRRSV entry and its knockout from the genome by gene editing has led to the production of pigs that were completely resistant to PRRSV – a milestone in modern pig breeding. However, at this early step, concerns remain about the acceptance of societies for gene edited products and regulation still awaits upgrading to the new technology. Further questions arise with regard to upcoming patents from an ethical and legal point of view. Eventually, the importance of CD163 for homeostasis, defence and immunity demands for more insight before its complete or partial silencing can be answered. Whatever path will be followed, even a partial abolishment of PRRSV replication will lead to a significant improvement of the disastrous herd situation, with a significant impact on welfare, performance, antimicrobial consumption and consumer protection. Genetics will be part of a future solution.
Collapse
|
43
|
Wu Z, Qin W, Wu S, Zhu G, Bao W, Wu S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol Direct 2016; 11:59. [PMID: 27809935 PMCID: PMC5093996 DOI: 10.1186/s13062-016-0160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background Escherichia coli F18 is mainly responsible for post-weaning diarrhea (PWD) in piglets. The molecular regulation of E. coli F18 resistance in Chinese domestic weaned piglets is still obscure. We used Meishan piglets as model animals to test their susceptibility to E. coli F18. Small RNA duodenal libraries were constructed for E. coli F18-sensitive and -resistant weaned piglets challenged with E. coli F18 and sequenced using Illumina Solexa high-throughput sequencing technology. Results Sequencing results showed that 3,475,231 and 37,198,259 clean reads were obtained, with 311 known miRNAs differently expressed in resistant and sensitive groups, respectively. Twenty-four miRNAs, including 15 up-regulated and 9 down-regulated, demonstrated more than a 2-fold differential expression between the F18-resistant and -sensitive piglets. Stem-loop RT-qPCR showed that miR-136, miR-196b, miR-499-5p and miR-218-3p significantly expressed in intestinal tissue (p < 0.05). KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in infectious diseases, signal transduction and immune system pathways. Interestingly, the expression of miR-218-3p in intestinal tissue had a very significant negative correlation with target DLG5 (P < 0.01). Conclusions Based on the expression correlation between miRNA and target genes analysis, we speculate that miR-218-3p targeting to DLG5, appears to be very promising candidate for miRNAs involved in response to E. coli F18 infection. The present study provides improved database information on pig miRNAs, better understanding of the genetic basis of E. coli F18 resistance in local Chinese pig breeds and lays a new foundation for identifying novel markers of E. coli F18 resistance. Reviewers This article was reviewed by Neil R Smalheiser and Weixiong Zhang. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0160-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Weiyun Qin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Seng Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
44
|
Andres-Terre M, McGuire HM, Pouliot Y, Bongen E, Sweeney TE, Tato CM, Khatri P. Integrated, Multi-cohort Analysis Identifies Conserved Transcriptional Signatures across Multiple Respiratory Viruses. Immunity 2016; 43:1199-211. [PMID: 26682989 PMCID: PMC4684904 DOI: 10.1016/j.immuni.2015.11.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/03/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Respiratory viral infections are a significant burden to healthcare worldwide. Many whole genome expression profiles have identified different respiratory viral infection signatures, but these have not translated to clinical practice. Here, we performed two integrated, multi-cohort analyses of publicly available transcriptional data of viral infections. First, we identified a common host signature across different respiratory viral infections that could distinguish (1) individuals with viral infections from healthy controls and from those with bacterial infections, and (2) symptomatic from asymptomatic subjects prior to symptom onset in challenge studies. Second, we identified an influenza-specific host response signature that (1) could distinguish influenza-infected samples from those with bacterial and other respiratory viral infections, (2) was a diagnostic and prognostic marker in influenza-pneumonia patients and influenza challenge studies, and (3) was predictive of response to influenza vaccine. Our results have applications in the diagnosis, prognosis, and identification of drug targets in viral infections. MVS is a common transcriptional host response to respiratory viral infection MVS could be used in clinics as a diagnostic and/or prognostic biomarker IMS distinguishes influenza from other viral and bacterial infections IMS correlates with infection symptomatology and vaccine response
Collapse
Affiliation(s)
- Marta Andres-Terre
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Helen M McGuire
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Yannick Pouliot
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Erika Bongen
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Timothy E Sweeney
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA; Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Cristina M Tato
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA; Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Rivera A, Barr T, Rais M, Engelmann F, Messaoudi I. microRNAs Regulate Host Immune Response and Pathogenesis During Influenza Infection in Rhesus Macaques. Viral Immunol 2016; 29:212-27. [PMID: 27008411 DOI: 10.1089/vim.2015.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that are key regulators of biological processes, including the immune response to viral infections. Differential expression levels of cellular miRNAs and their predicted targets have been described in the lungs of H1N1-infected BALB/c mice, the lungs of H5N1 influenza-infected cynomolgus macaques, and in peripheral blood mononuclear cells (PBMCs) of critically ill patients infected with 2009 pandemic H1N1. However, a longitudinal analysis of changes in the expression of miRNAs and their targets during influenza infection and how they relate to viral replication and host response has yet to be carried out. In the present study, we conducted a comprehensive analysis of innate and adaptive immune responses as well as the expression of several miRNAs and their validated targets in both peripheral blood and bronchoalveolar lavage (BAL) collected from rhesus macaques over the course of infection with the 2009 H1N1 virus A/Mexico/4108/2009 (MEX4108). We describe a distinct set of differentially expressed miRNAs in BAL and PBMCs, which regulate the expression of genes involved in inflammation, immune response, and regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Andrea Rivera
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Tasha Barr
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Maham Rais
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Flora Engelmann
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Ilhem Messaoudi
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California.,2 Oregon Primate Research Center , Beaverton, Oregon
| |
Collapse
|
46
|
Makkoch J, Poomipak W, Saengchoowong S, Khongnomnan K, Praianantathavorn K, Jinato T, Poovorawan Y, Payungporn S. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Exp Biol Med (Maywood) 2016; 241:409-420. [PMID: 26518627 PMCID: PMC4935422 DOI: 10.1177/1535370215611764] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Jarika Makkoch
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Witthaya Poomipak
- Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Suthat Saengchoowong
- Joint Chulalongkorn University - University of Liverpool PhD Programme in Biomedical Sciences and Biotechnology, Bangkok 10330, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | | | - Thananya Jinato
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
47
|
Peng F, He J, Loo JFC, Yao J, Shi L, Liu C, Zhao C, Xie W, Shao Y, Kong SK, Gu D. Identification of microRNAs in Throat Swab as the Biomarkers for Diagnosis of Influenza. Int J Med Sci 2016; 13:77-84. [PMID: 26917988 PMCID: PMC4747873 DOI: 10.7150/ijms.13301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Influenza is a serious worldwide disease that captures global attention in the past few years after outbreaks. The recent discoveries of microRNA (miRNA) and its unique expression profile in influenza patients have offered a new method for early influenza diagnosis. The aim of this study was to examine the utility of miRNAs for the diagnosis of influenza. METHODS Thirteen selected miRNAs were investigated with the hosts' throat swabs (25 H1N1, 20 H3N2, 20 influenza B and 21 healthy controls) by real-time quantitative polymerase chain reaction (RT-qPCR) using U6 snRNA as endogenous control for normalization, and receiver operating characteristic (ROC) curve/Area under curve (AUC) for analysis. RESULTS miR-29a-3p, miR-30c-5p, miR-34c-3p and miR-181a-5p are useful biomarkers for influenza A detection; and miR-30c-5p, miR-34b-5p, miR-205-5p and miR-449b-5p for influenza B detection. Also, use of both miR-30c-5p and miR-34c-3p (AUC=0.879); and miR-30c-5p and miR-449b-5p (AUC=0.901) are better than using one miRNA to confirm influenza A and influenza B infection, respectively. CONCLUSIONS Given its simplicity, non-invasiveness and specificity, we found that the throat swab-derived miRNAs miR-29a-3p, miR-30c-5p, miR-34b-5p, miR-34c-3p, miR-181a-5p, miR-205-5p and miR-449b-5p are a useful tool for influenza diagnosis on influenza A and B.
Collapse
Affiliation(s)
- Fang Peng
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jianan He
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jacky Fong Chuen Loo
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyu Yao
- 4. Guangdong Medical University, Zhanjiang, China
| | - Lei Shi
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunxiao Liu
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunzhong Zhao
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Weidong Xie
- 5. Shenzhen Key Lab of Health Science and Technology, Division of Life Sciences & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yonghong Shao
- 6. College of Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems, Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, China
| | - Siu Kai Kong
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dayong Gu
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| |
Collapse
|
48
|
Abstract
MicroRNAs (miRNAs) are differentially regulated in healthy, activated, inflamed, neoplastic, or otherwise pathological cells and tissues. While their main functions are executed intracellularly, many miRNAs can reproducibly be detected extracellularly in plasma and serum. This circulating, extracellular miRNA is protected against degradation by complexation with carrier proteins and/or by being enclosed in subcellular membrane vesicles. This, together with their tissue- and disease-specific expression, has fuelled the interest in using circulating microRNA profiles as harbingers of disease, i.e., as diagnostic analytes and as clues to dysregulated pathways in disease. Many studies show that inflammation and immune dysregulation, e.g., in autoimmune diseases, are associated with distinct miRNA expression changes in targeted tissues and in innate and adaptive immunity cells such as lymphocytes, natural killer cells, neutrophil granulocytes, and monocyte-macrophages. Exploratory studies (only validated in a few cases) also show that specific profiles of circulating miRNAs are associated with different systemic autoimmune diseases including systemic lupus erythematosus (SLE), systemic sclerosis, and rheumatoid arthritis. Even though the link between cellular alterations and extracellular profiles is still unpredictable, the data suggest that circulating miRNAs in autoimmunity may become diagnostically useful. Here, we review important circulating miRNAs in animal models of inflammation and in systemic autoimmunity and summarize some proposed functions of miRNAs in immune regulation and dysregulation. We conclude that the studies suggest new hypotheses and additional experiments, and that further diagnostic development is highly dependent on analytical method development and on obtaining sufficient numbers of uniformly processed samples from clinically well-characterized patients and controls.
Collapse
|
49
|
Hu Y, Jiang L, Lai W, Qin Y, Zhang T, Wang S, Ye X. MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity. J Gen Virol 2015; 97:27-38. [PMID: 26498766 DOI: 10.1099/jgv.0.000311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to explore the roles of microRNA(s) [miRNA(s)] in the influenza A virus life cycle, we compared the miRNA profiles of 293T and HeLa cell lines, as influenza A virus can replicate efficiently in 293T cells but only poorly in HeLa cells. We analysed differentially expressed miRNAs and identified five, including miR-33a, that could disturb influenza A virus replication significantly. Using TargetScan analysis, we found that ARCN1 could be a potential target of miR-33a. To confirm whether miR-33a could truly target ARCN1, we generated a luciferase reporter for the ARCN1 3' untranslated region (UTR) and performed a luciferase assay. The data indicated that miR-33a could suppress the luciferase activity of the reporter for the ARCN1 3' UTR but not a reporter in which the predicted miR-33a targeting sites on ARCN1 3' UTR were mutated. We performed immunoblotting to confirm that miR-33a could downregulate the protein level of ARCN1. Consistently, the level of ARCN1 protein in HeLa cells was significantly lower than that in 293T cells. We also demonstrated that ectopic expression of ARCN1 could partially rescue the inhibitory effect of miR-33a on virus replication. Furthermore, we demonstrated that miR-33a could impede virus replication at the stage of virus internalization, which was similar to the pattern for knockdown of ARCN1, indicating that miR-33a inhibits influenza virus infection by suppressing ARCN1 expression. In addition, we found that miR-33a could also weaken the viral ribonucleoprotein activity in an ARCN1-independent manner. In conclusion, we found that miR-33a is a novel inhibitory factor for influenza A virus replication.
Collapse
Affiliation(s)
- Yi Hu
- Center for Molecular Immunology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, PR China
| | - Liangzhen Jiang
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Wenbin Lai
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Yujie Qin
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Tinghong Zhang
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Shixiong Wang
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Xin Ye
- Center for Molecular Immunology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, PR China
| |
Collapse
|
50
|
Bao Y, Gao Y, Jin Y, Cong W, Pan X, Cui X. MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus. Mol Genet Genomics 2015; 290:1885-97. [PMID: 25893419 DOI: 10.1007/s00438-015-1047-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 11/27/2022]
Abstract
Influenza A viruses can cause localized outbreaks and worldwide pandemics, owing to their high transmissibility and wide host range. As such, they are among the major diseases that cause human death. However, the molecular changes induced by influenza A virus infection in lung tissue are not entirely clear. Changes in microRNA (miRNA) expression occur in many pathological and physiological processes, and influenza A virus infection has been shown to alter miRNA expression in cultured cells and animal models. In this study, we mined key miRNAs closely related to influenza A virus infection and explored cellular regulatory mechanisms against influenza A virus infection, by building networks among miRNAs and genes, gene ontologies (GOs), and pathways. In this study, miRNAs and mRNAs induced by H1N1 influenza virus infection were measured by gene chips, and we found that 82 miRNAs and 3371 mRNAs were differentially expressed. The 82 miRNAs were further analyzed with the series test of cluster (STC) analysis. Three of the 16 cluster profiles identified by STC, which include 46 miRNAs in the three profiles, changed significantly. Using potential target genes of the 46 miRNAs, we looked for intersections of these genes with 3371 differentially expressed mRNAs; 719 intersection genes were identified. Based on the GO or KEGG databases, we attained GOs or pathways for all of the above intersection genes. Fisher's and χ (2) test were used to calculate p value and false discovery rate (FDR), and according to the standard of p < 0.001, 241 GOs and 76 pathways were filtered. Based on these data, miRNA-gene, miRNA-GO, and miRNA-pathway networks were built. We then extracted three classes of GOs (related to inflammatory and immune response, cell cycle, proliferation and apoptosis, and signal transduction) to build three subgraphs, and pathways strictly related with H1N1 influenza virus infection were filtered to extract a subgraph of the miRNA-pathway network. Last, according to the pathway analysis and miRNA-pathway network analysis, 17 miRNAs were found to be associated with the "influenza A" pathway. This study provides the most complete miRNAome profiles, and the most detailed miRNA regulatory networks to date, and is the first to report the most important 17 miRNAs closely related with the pathway of influenza A. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology and the use of mice as a model for human H1N1 influenza virus infection studies.
Collapse
Affiliation(s)
- Yanyan Bao
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingjie Gao
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yahong Jin
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xin Pan
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolan Cui
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|