1
|
Hwang YW, Yoo NK, Yang HM, Choi SY. RNA polymerase III control elements are required for trans-activation by the murine retroviral long terminal repeat sequences. Biochem Biophys Res Commun 2015; 456:110-5. [PMID: 25446107 DOI: 10.1016/j.bbrc.2014.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
RNA leukemia viruses induce T-cell lymphoblastic lymphomas or myeloid leukemias. Infection of cells with Moloney murine leukemia virus (M-MuLV) up-regulates the expression of a number of cellular genes, including those involved in T-lymphocyte activation. Previously, we demonstrated that this up-regulation occurs via the trans-activation activity of the M-MuLV long terminal repeat (LTR) sequences which produce an LTR-encoded transcript. Sequence analysis of the LTR revealed a potential transcription unit for RNA polymerase III (Pol III) within the U3 region that is actively occupied by Pol II factors. Here, we provide the direct evidence of involvement of Pol III in the trans-activation process and demonstrate the precise localization of the intragenic control elements for accurate and active Pol III transcription. Deletions of a copy of the directed repeats and further immediate upstream sequences significantly abrogated the generation of LTR-encoded transcript and abolished the trans-activational activity, whereas the deletion of a copy of directed repeats alone proportionally reduced the transcript size, but still retained moderately high trans-activational activity. In electrophoretic mobility shift assay, the fraction containing a multiple transcription factor TFIIIC complex strongly bound to the LTR-U3 probe containing the essential control elements. The specificity of the DNA-TFIIIC interaction was confirmed by conducting competition assays with DNA fragments containing a genuine Pol III-transcribed gene, VA1, and by vaccinia virus infection which stimulates the expression of Pol III factors. However, a deletion mutant lacking an essential control element bound to the TFIIIC complex poorly, consequently resulting in weak Pol III transcription as assessed by an IRES-GFP reporter system. This correlation strongly supports the possibility that the generation of LTR-encoded transcript is directed by Pol III. Therefore, this finding suggests the involvement of Pol III transcription in the retrovirus-induced activation of cellular genes, potentially contributing to leukemogenesis.
Collapse
Affiliation(s)
- Yong-Woo Hwang
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Na Kyung Yoo
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Heung Mo Yang
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Sang-Yun Choi
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
2
|
Kharytonchyk SA, Kireyeva AI, Osipovich AB, Fomin IK. Evidence for preferential copackaging of Moloney murine leukemia virus genomic RNAs transcribed in the same chromosomal site. Retrovirology 2005; 2:3. [PMID: 15656910 PMCID: PMC546228 DOI: 10.1186/1742-4690-2-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/18/2005] [Indexed: 11/11/2022] Open
Abstract
Background Retroviruses have a diploid genome and recombine at high frequency. Recombinant proviruses can be generated when two genetically different RNA genomes are packaged into the same retroviral particle. It was shown in several studies that recombinant proviruses could be generated in each round of HIV-1 replication, whereas the recombination rates of SNV and Mo-MuLV are 5 to 10-fold lower. The reason for these differences is not clear. One possibility is that these retroviruses may differ in their ability to copackage genomic RNAs produced at different chromosomal loci. Results To investigate whether there is a difference in the efficiency of heterodimer formation when two proviruses have the same or different chromosomal locations, we introduced two different Mo-MuLV-based retroviral vectors into the packaging cell line using either the cotransfection or sequential transfection procedure. The comparative study has shown that the frequency of recombination increased about four-fold when the cotransfection procedure was used. This difference was not associated with possible recombination of retroviral vectors during or after cotransfection and the ratios of retroviral virion RNAs were the same for two variants of transfection. Conclusions The results of this study indicate that a mechanism exists to enable the preferential copackaging of Mo-MuLV genomic RNA molecules that are transcribed on the same DNA template. The properties of Mo-MuLV genomic RNAs transport, processing or dimerization might be responsible for this preference. The data presented in this report can be useful when designing methods to study different aspects of replication and recombination of a diploid retroviral genome.
Collapse
Affiliation(s)
- Sergey A Kharytonchyk
- Laboratory of Cellular and Molecular Immunology, Institute of Hematology and Blood Transfusion, 223059 Minsk, Republic of Belarus
| | - Alla I Kireyeva
- Laboratory of Cellular and Molecular Immunology, Institute of Hematology and Blood Transfusion, 223059 Minsk, Republic of Belarus
| | - Anna B Osipovich
- Laboratory of Cellular and Molecular Immunology, Institute of Hematology and Blood Transfusion, 223059 Minsk, Republic of Belarus
- Present address: Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
| | - Igor K Fomin
- Laboratory of Cellular and Molecular Immunology, Institute of Hematology and Blood Transfusion, 223059 Minsk, Republic of Belarus
| |
Collapse
|
3
|
Abstract
Retrovirus (RV) has been one of the earliest recombinant vectors to be investigated in the context of cancer gene therapy. Experiments in cell culture and in animal brain tumor models have demonstrated the feasibility of RV mediated gene transduction and killing of glioma cells by toxicity generating transgenes. Phase I and II clinical studies in patients with recurrent malignant glioma have shown a favorable safety profile and some efficacy of RV mediated gene therapy. On the other hand, a prospective randomized phase III clinical study of RV gene therapy in primary malignant glioma failed to demonstrate significant extension of the progression-free or overall survival times in RV treated patients. The failure of this RV gene therapy study may be due to the low tumor cell transduction rate observed in vivo. The biological effects of the treatment may also heavily depend on the choice of transgene/prodrug system and on the vector delivery methods. Retrovirus clinical trials in malignant glioma have nevertheless produced a substantial amount of data and have contributed toward the identification of serious shortcomings of the non-replicating virus vector gene therapy strategy. Novel types of therapeutic virus vector systems are currently being designed and new clinical protocols are being created based on the lessons learned from the RV gene therapy trials in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
4
|
Rainov NG, Kramm CM. Recombinant retrovirus vectors for treatment of malignant brain tumors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:185-203. [PMID: 12968537 DOI: 10.1016/s0074-7742(03)01008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Walton Centre for Neurology and Neurosurgery NHS Trust, Liverpool L9 7LJ, United Kingdom
| | | |
Collapse
|
5
|
Ghosh SK, Faller DV. Feline leukemia virus long terminal repeat activates collagenase IV gene expression through AP-1. J Virol 1999; 73:4931-40. [PMID: 10233955 PMCID: PMC112537 DOI: 10.1128/jvi.73.6.4931-4940.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 03/15/1999] [Indexed: 11/20/2022] Open
Abstract
Leukemia and lymphoma induced by feline leukemia viruses (FeLVs) are the commonest forms of illness in domestic cats. These viruses do not contain oncogenes, and the source of their pathogenic activity is not clearly understood. Mechanisms involving proto-oncogene activation subsequent to proviral integration and/or development of recombinant viruses with enhanced replication properties are thought to play an important role in their disease pathogenesis. In addition, the long terminal repeat (LTR) regions of these viruses have been shown to be important determinants for pathogenicity and tissue specificity, by virtue of their ability to interact with various transcription factors. Previously, we have shown that, in the case of Moloney murine leukemia virus, the U3 region of the LTR independently induces transcriptional activation of specific cellular genes through an LTR-generated RNA transcript (S. Y. Choi and D. V. Faller, J. Biol. Chem. 269:19691-19694, 1994; S.-Y. Choi and D. V. Faller, J. Virol. 69:7054-7060, 1995). In this report, we show that the U3 region of exogenous FeLV LTRs can induce transcription from collagenase IV (matrix metalloproteinase 9) and monocyte chemotactic protein 1 (MCP-1) promoters up to 12-fold. We also show that AP-1 DNA-binding activity and transcriptional activity are strongly induced in cells expressing FeLV LTRs and that LTR-specific RNA transcripts are generated in those cells. Activation of mitogen-activated protein kinase kinases 1 and 2 (MEK1 and -2) by the LTR is an intermediate step in the FeLV LTR-mediated induction of AP-1 activity. These findings thus suggest that the LTRs of FeLVs can independently activate transcription of specific cellular genes. This LTR-mediated cellular gene transactivation may play an important role in tumorigenesis or preleukemic states and may be a generalizable activity of leukemia-inducing retroviruses.
Collapse
Affiliation(s)
- S K Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Choi SY, van de Mark K, Faller DV. Identification of a cis-acting element in the class I major histocompatibility complex gene promoter responsive to activation by retroviral sequences. J Virol 1997; 71:965-70. [PMID: 8995614 PMCID: PMC191145 DOI: 10.1128/jvi.71.2.965-970.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The infection of cells with Moloney murine leukemia virus (M-MuLV) causes an increase in specific cellular gene products, including the major histocompatibility complex (MHC) class I antigens. This upregulation occurs through a transactivation process mediated by the long terminal repeat (LTR) of M-MuLV, and we show here that the gene activation response to the LTR requires at least one specific cis element within the MHC proximal promoter region. Nested deletions of MHC class I H-2Kb gene promoter sequence were subcloned into a chloramphenicol acetyltransferase (CAT) reporter vector and then transiently introduced into BALB/c-3T3 cells expressing M-MuLV or cotransfected into BALB/c-3T3 cells with a vector containing subgenomic portions of the virus, including the LTR. CAT activity assays demonstrated that a minimal H-2Kb gene promoter (-64 to +12) contained elements sufficient for this transactivation. DNase I footprinting assays located a protein-binding site in the region of -64 to -34 bp from the transcriptional start site, and point mutation analysis confirmed the location of this cis-acting element, designated the let response element (LRE), and defined a binding motif. This LRE is distinct from binding sites for currently known transcription factors in the class I MHC gene promoter and is conserved in the promoters of human and murine MHC class I genes. Mutation of the LRE resulted in dramatic reduction in both DNA-protein binding activity in electrophoretic mobility shift assay and in the ability of the mutated promoter to respond to retroviral transactivation. Addition of the LRE to a heterologous promoter conferred the ability to respond to retroviral transactivation.
Collapse
Affiliation(s)
- S Y Choi
- Cancer Research Center, Department of Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
7
|
Abstract
Nonacutely transforming retroviruses, such as Moloney murine leukemia virus (M-MuLV), differ from transforming viruses in their mechanisms of tumor induction. While the transforming viruses cause tumors by transduction of oncogenes, the leukemia retroviruses, lacking oncogenes, employ other mechanisms, including promoter insertion and enhancer activation. Although these two mechanisms occur in many tumors induced by leukemia viruses, a substantial proportion of such tumors do not show site-specific proviral insertions. Thus, other, unidentified virus-driven mechanisms may participate in tumorigenesis. In these studies, we show that infection of cells by M-MuLV activates expression of Rel family transcription factors. In murine cells chronically infected with M-MuLV, gel shift analyses with kappaB DNA-binding motifs from the murine immunoglobulin kappa light chain enhancer demonstrated induction of at least two distinct kappaB enhancer-binding complexes. Supershifting and immunoblotting analyses defined p50, p52, RelB, and c-Rel subunits as constituents of these virus-induced protein complexes. Transient transfections performed with kappaB-dependent reporter plasmids showed transcriptional activation in M-MuLV-infected cells relative to uninfected cells. Induction of Rel/NF-kappaB transcription factor activity by M-MuLV infection may prove relevant to the mechanism of M-MuLV-induced leukemia.
Collapse
Affiliation(s)
- J Pak
- Department of Pathology and Laboratory Medicine, Cancer Research Center, Boston University School of Medicine, Massachusetts 02118, USA
| | | |
Collapse
|
8
|
Choi SY, Faller DV. A transcript from the long terminal repeats of a murine retrovirus associated with trans activation of cellular genes. J Virol 1995; 69:7054-60. [PMID: 7474125 PMCID: PMC189625 DOI: 10.1128/jvi.69.11.7054-7060.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Infection of human or murine cells with murine leukemia viruses rapidly increases the expression of a number of genes that belong to the immunoglobulin superfamily and are involved in T-lymphocyte activation, including the class I major histocompatibility complex antigens. We have reported recently that the long terminal repeat (LTR) of Moloney murine leukemia virus encodes a trans activator which induces transcription and expression of class I major histocompatibility complex genes and certain cytokine genes. The portion of the LTR responsible for trans activation was mapped by deletions to lie within the U3 region. We demonstrate here that a transcript is initiated within the U3 region and that its presence correlates with the trans-activating activity. Analysis of the LTR region reveals a potential internal promoter element for RNA polymerase III transcription within the U3 region. Studies with polymerase inhibitors suggest that this LTR transcript, designated let (LTR-encoded trans activator), is a product of RNA polymerase III. The mechanisms whereby RNA leukemia viruses cause lymphoid neoplasia after a long latent period have been extensively studied but are only partially understood. The region of the LTR identified here as being important in trans activation has recently been shown to be a critical determinant of the leukemogenicity and latency of Moloney murine leukemia virus. These findings suggest a novel mechanism of retrovirus-induced activation of cellular gene expression, potentially contributing to leukemogenesis.
Collapse
Affiliation(s)
- S Y Choi
- Cancer Research Center, Boston University School of Medicine, Massachusetts 02118, USA
| | | |
Collapse
|
9
|
Kramm CM, Sena-Esteves M, Barnett FH, Rainov NG, Schuback DE, Yu JS, Pechan PA, Paulus W, Chiocca EA, Breakefield XO. Gene therapy for brain tumors. Brain Pathol 1995; 5:345-81. [PMID: 8974620 DOI: 10.1111/j.1750-3639.1995.tb00615.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has opened new doors for treatment of neoplastic diseases. This new approach seems very attractive, especially for glioblastomas, since treatment of these brain tumors has failed using conventional therapy regimens. Many different modes of gene therapy for brain tumors have been tested in culture and in vivo. Many of these approaches are based on previously established anti-neoplastic principles, like prodrug activating enzymes, inhibition of tumor neovascularization, and enhancement of the normally weak anti-tumor immune response. Delivery of genes to tumor cells has been mediated by a number of viral and synthetic vectors. The most widely used paradigm is based on the activation of ganciclovir to a cytotoxic compound by a viral enzyme, thymidine kinase, which is expressed by tumor cells, after the gene has been introduced by a retroviral vector. This paradigm has proven to be a potent therapy with minimal side effects in several rodent brain tumor models, and has proceeded to phase 1 clinical trials. In this review, current gene therapy strategies and vector systems for treatment of brain tumors will be described and discussed in light of further developments needed to make this new treatment modality clinically efficacious.
Collapse
Affiliation(s)
- C M Kramm
- Neuroscience Center, Massachusetts General Hospital, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The long terminal repeats of a murine retrovirus encode a trans-activator for cellular genes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32075-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Affiliation(s)
- L G Byrd
- Zoology Department, University of Maryland, College Park
| |
Collapse
|
12
|
Kanduc D, Prisco M. Hepatic DNA methylation in young, middle-aged, and senescent rats: the effect of mitogen-induced cell proliferation. BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 1992; 48:286-91. [PMID: 1282350 DOI: 10.1016/0885-4505(92)90075-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the effect of a single dose of the hepatomitogen lead nitrate on the 5-methyldeoxycytidine (5-mdcyd) content and the HpaII, MspI, and HaeIII restriction patterns of hepatic DNA from young, middle-aged, and senescent rats. It was found that (i) the methylation pattern of genomic DNA changed significantly with age and (ii) the methylation patterns were differentially affected by the liver mitogen in the three cell populations here considered.
Collapse
Affiliation(s)
- D Kanduc
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Bari, Italy
| | | |
Collapse
|
13
|
Abstract
According to prevailing models, the high frequency of recombination in retroviruses occurs during reverse transcription of two genetically different genomes copackaged into virion particles. This view has been tested in our studies of the mechanism of recombination within homologous sequences of two retroviral genomes during a single round of virus replication and in the absence of helper virus. The recombination substrates were Moloney murine leukemia virus-based vectors, each of which contains an altered defective neomycin gene (neo) under the transcriptional control of the 5' long terminal repeat; the 3' sequences of each construct contain either the Moloney murine leukemia virus or simian virus 40 large-T polyadenylation sequence. One neo gene contained a linker insertion mutation at the 5' end (neo minus), and the other contained a deletion and linker insertion at the 3' end (neo delta 3). Each of the mutant neo constructs was introduced into the packaging helper cell line psi 2 by sequential cotransfection, and individual psi 2 double transformants were selected. Supernatant fluids from the cloned psi 2 double transformants were used to infect NIH 3T3 cells, and recombinant neo+ proviruses were detected by their ability to confer G418 resistance during infection of NIH 3T3 cells. Our results show that (i) recombination between a homologous sequence of about 560 bp occurred with a frequency of about 10(-4) per virus replication cycle; (ii) recombination occurred only after the viral RNAs had been packaged into particles, i.e., recombination between the two vector DNAs or between viral RNAs prior to packaging was not detected; and (iii) copackaging of two different genomic RNAs as a heterodimer is a prerequisite for recombination. Furthermore, our results indicate that recombination can occur during the DNA negative-strand synthesis of reverse transcription.
Collapse
Affiliation(s)
- H Stuhlmann
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, California 94305-5307
| | | |
Collapse
|
14
|
Kanduc D, Rossiello MR, Aresta A, Cavazza C, Quagliariello E, Farber E. Transitory DNA hypomethylation during liver cell proliferation induced by a single dose of lead nitrate. Arch Biochem Biophys 1991; 286:212-6. [PMID: 1897949 DOI: 10.1016/0003-9861(91)90030-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present study we have examined the effect of a single dose of the mitogen lead nitrate (75 mumols/kg body wt) on the methylation status of hepatic DNA in male Wistar rats. It was found that extensive hypomethylation of hepatic DNA occurs in mitogen-treated rat liver. This effect could be seen as early as 12 h after metal treatment and parallels the changes in liver weight. Probing with the methylation-sensitive enzymes HpaII, MspI, and HaeIII confirmed HPLC analyses and showed that methylation at these sites was affected by lead treatment. DNA hypomethylation has already been found in regenerating rat liver and in hepatic (pre)malignant lesions when compared to normal nondividing liver. Thus the lowering of the DNA 5-methylcytosine content appears to be a property characteristic of cellular proliferation, regardless of whether it is caused by partial hepatectomy, carcinogen treatments, or mitogen administration.
Collapse
Affiliation(s)
- D Kanduc
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Hoeben RC, Migchielsen AA, van der Jagt RC, van Ormondt H, van der Eb AJ. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J Virol 1991; 65:904-12. [PMID: 1702844 PMCID: PMC239831 DOI: 10.1128/jvi.65.2.904-912.1991] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The expression of a retroviral vector with the Moloney murine leukemia virus (Mo-MuLV) long terminal repeat (LTR) promoter after integration into the genome of murine fibroblast cell lines was monitored with the Escherichia coli-derived beta-galactosidase (beta-gal) gene as the reporter. Monoclonal cell lines derived after retroviral infection exhibited a marked heterogeneity in their expression of the reporter gene. We studied two monoclonal cell lines with a single unrearranged copy of the vector provirus integrated into their genome. The first, BB10, expressed the marker enzyme in only 8% of its cell population, whereas in the second, BB16, beta-gal expression could be detected in over 98% of the cells. Treatment of BB10 with the DNA-demethylating agent 5-azacytidine raised the number of beta-gal-positive cells to over 60%. Transfection experiments showed that the Mo-MuLV LTR promoter-enhancer is potentially fully functional in both the BB10 and BB16 cell lines. The inactivated provirus from BB10 cells was cloned and subsequently used to generate retrovirus stocks. The promoter-enhancer activity of its LTR after infection with these BB10-derived viruses showed a variation similar to that of the original virus stocks. Our data showed that (1) inactivation of the Mo-MuLV LTR is a frequent event in murine fibroblast cell lines, (2) inactivation is associated with de novo methylation of cytidine residues, (3) the frequency of inactivation of the provirus must be determined by its chromosomal position, (4) the process of methylation of sequences within the LTR is not necessarily the same as the transcription-repression mechanism that is operating in undifferentiated embryonal carcinoma cells.
Collapse
Affiliation(s)
- R C Hoeben
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Abstract
Transduction of cellular oncogenes by retroviruses is thought to be a multistep process, involving transcriptional activation of a cellular gene by upstream proviral integration and joining of cellular DNA to retroviral transcriptional signals, followed by copackaging and recombination with a helper virus genome during reverse transcription. To examine the molecular mechanism of the reverse transcriptase-mediated recombination, we introduced into mouse fibroblast cells a variety of constructs in which the neo selectable marker was joined to flanking retroviruslike or cell-like sequences. After superinfection and copackaging with a replication-competent Mo-MuLVsupF virus, the formation of recombinant neo transducing viruses was assessed in a second round of virus infection by the ability to confer G418 resistance to infected cells. Our results showed that recombinant neo proviruses were generated from neo RNA containing either a 5' or 3' retroviral end, implying that one recombination event with helper virus RNA was sufficient to incorporate the neo gene into proviral DNA. Recombination occurred with an apparent frequency of 10(-4) to 10(-5) per replication cycle in the absence of homology between the two recombining partners. This frequency, however, increased at least 100-fold if homology was provided at the site of recombination. Our results support the hypothesis that neo-transducing viruses arise via reverse transcriptase-mediated recombination of RNA rather than by recombination proceeding through DNA intermediates. Unexpectedly, removal of the retroviral packaging site psi reduced the number of neo recombinants only slightly. Our data indicated that although RNAs lacking the psi site are poorly packaged into virions, those RNAs that are included in the virions undergo frequent recombination, even if there is no selection for recombination. Many of the neo recombinants formed with the psi- constructs had undergone additional recombinations and often incorporated the psi site from the helper RNA.
Collapse
Affiliation(s)
- H Stuhlmann
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, California 94305-5307
| | | | | |
Collapse
|
17
|
Mooslehner K, Karls U, Harbers K. Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions. J Virol 1990; 64:3056-8. [PMID: 2335826 PMCID: PMC249491 DOI: 10.1128/jvi.64.6.3056-3058.1990] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription of cellular sequences flanking proviral insertion sites was studied in several Mov mouse strains, each of which carried one copy of the Moloney murine leukemia virus in its germ line. In three out of five randomly chosen Mov strains, the provirus had integrated in the vicinity of DNA regions transcribed in the embryonal stem cell line CCE and the embryonal carcinoma cell line F9. Assuming that CCE and F9 cells are developmentally equivalent to the early embryonic cells that were infected to establish the Mov strains, our results suggest that retroviruses integrate preferentially into actively transcribed DNA regions.
Collapse
Affiliation(s)
- K Mooslehner
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Federal Republic of Germany
| | | | | |
Collapse
|
18
|
Martinelli SC, Goff SP. Rapid reversion of a deletion mutation in Moloney murine leukemia virus by recombination with a closely related endogenous provirus. Virology 1990; 174:135-44. [PMID: 2294637 DOI: 10.1016/0042-6822(90)90062-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During abortive infection of mouse cells, defective retroviruses carrying deletions in essential functions can recombine with endogenous retroviral sequences to form viable, replication-competent viruses. We have examined the reversion of a mutant Moloney murine leukemia virus with a deletion in the protease domain of the pol gene after infection of NIH/3T3 cells. In this system revertants arise quickly, only 2 weeks after infection. Analysis of DNA clones of the revertant viral genomes showed that they were derived by recombination with a long sequence of gag and pol exhibiting 95% sequence identity to Moloney virus. One such cloned recombinant was fully infectious, indicating that the repertoire of viral sequences in the NIH/3T3 genome must include substantial stretches of functional viral genes. Examination of the viral DNAs very early in the infection revealed the presence of defective genomes, formed by nonhomologous crossovers between the two parental sequences. We suggest that these may serve as intermediates in the eventual formation of the viable revertant genomes.
Collapse
Affiliation(s)
- S C Martinelli
- Department of Biochemistry, Columbia University, College of Physicians and Surgeons, New York, New York 10032
| | | |
Collapse
|
19
|
Kiessling AA, Crowell R, Fox C. Epididymis is a principal site of retrovirus expression in the mouse. Proc Natl Acad Sci U S A 1989; 86:5109-13. [PMID: 2740346 PMCID: PMC297566 DOI: 10.1073/pnas.86.13.5109] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High levels of retrovirus particles are present in the reproductive tract of male mice. In this report epithelial cells that line the lumen of the epididymis are shown to be a principal site of virus synthesis. Aggregates of free virus were evident in the epididymal lumen in addition to the sperm-associated virus previously reported. Large intraluminal cells with characteristics of macrophages and engorged with virus particles were also seen. Virus particles were not detected in testis, liver, brain, or spleen. Thus, the epididymal epithelium is a principal reservoir for retrovirus expression. The virus would be ejaculated as free, cell-associated, and sperm-bound particles. The high level of expression and the relative isolation of epididymal virus from the immune system may relate to venereal transmission of retrovirus infections in mice and humans.
Collapse
Affiliation(s)
- A A Kiessling
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
20
|
Buchberg AM, Brownell E, Nagata S, Jenkins NA, Copeland NG. A comprehensive genetic map of murine chromosome 11 reveals extensive linkage conservation between mouse and human. Genetics 1989; 122:153-61. [PMID: 2567264 PMCID: PMC1203679 DOI: 10.1093/genetics/122.1.153] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interspecific backcross animals from a cross between C57BL/6J and Mus spretus mice were used to generate a comprehensive linkage map of mouse chromosome 11. The relative map positions of genes previously assigned to mouse chromosome 11 by somatic cell hybrid or genetic backcross analysis were determined (Erbb, Rel, 11-3, Csfgm, Trp53-1, Evi-2, Erba, Erbb-2, Csfg, Myhs, Cola-1, Myla, Hox-2 and Pkca). We also analyzed genes that we suspected would map to chromosome 11 by virtue of their location in human chromosomes and the known linkage homologies that exist between murine chromosome 11 and human chromosomes (Mpo, Ngfr, Pdgfr and Fms). Two of the latter genes, Mpo and Ngfr, mapped to mouse chromosome 11. Both genes also mapped to human chromosome 17, extending the degree of linkage conservation observed between human chromosome 17 and mouse chromosome 11. Pdgfr and Fms, which are closely linked to II-3 and Csfgm in humans on chromosome 5, mapped to mouse chromosome 18 rather than mouse chromosome 11, thereby defining yet another conserved linkage group between human and mouse chromosomes. The mouse chromosome 11 linkage map generated in these studies substantially extends the framework for identifying homologous genes in the mouse that are involved in human disease, for elucidating the genes responsible for several mouse mutations, and for gaining insights into chromosome evolution and genome organization.
Collapse
Affiliation(s)
- A M Buchberg
- Mammalian Genetics Laboratory, NCI-Frederick Cancer Research Facility, Maryland 21701
| | | | | | | | | |
Collapse
|
21
|
Sithanandam G, Rapp UR. A single point mutation in the envelope gene is responsible for replication and XC fusion deficiency of the endogenous ecotropic C3H/He murine leukemia virus and for its repair in culture. J Virol 1988; 62:932-43. [PMID: 2828688 PMCID: PMC253652 DOI: 10.1128/jvi.62.3.932-943.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular basis has been determined for differences in infectivity and XC phenotype of endogenous ecotropic murine leukemia virus of the low-leukemia mouse strain C3H/He, its relative in the high-leukemia mouse strain AKR, and highly infectious, XC-positive C3H virus variants selected in vitro. Endogenous ecotropic type C virus induced by iododeoxyuridine from the nontransformed C3H/10T1/2 cell line is XC negative and replication deficient. In contrast, viruses produced late after iododeoxyuridine induction in chemically transformed C3H/10T1/2 cells (MCA5) are XC positive and infectious. XC-negative viruses can be converted to XC-positive viruses by being grown in certain transformed cell lines. We have cloned the endogenous ecotropic provirus of C3H/He from MCA5 cells, which is XC negative and replication deficient, as well as two XC-positive C3H proviruses derived by in vitro conversion. Fragment exchange between the XC-negative molecular clone p110 and the XC-positive AKR virus clone p623 revealed that the defect in p110 lies 3' of the SalI site located in the pol region. Nucleotide sequencing established that the C3H p110 provirus was integrated within the R region of an endogenous VL30 long terminal repeat (LTR) in reverse orientation and that the virus differed from the infectious AKR p623 provirus by a point mutation, substituting Lys for Arg at the potential precursor cleavage site for gp70 and p15E. In vitro-converted XC-positive C3H proviral clones 3211 and 4211 are identical to XC-negative C3H p110, except that they have Arg at this site and the normal cleavage site is thus regenerated in these clones. The XC-negative C3H p110 was blocked in processing of Pr85env, whereas clones 3211 and 4211 had normal cleavage of the env precursor into gp70. Both the XC-negative C3H provirus and the in vitro-converted XC-positive C3H proviruses had a single copy of a 99-base-pair enhancer element in the LTR, whereas two copies of this sequence are present in the AKR proviral LTR. Substitution of Arg for Lys at the envelope precursor processing site of C3H p110 by site-directed mutagenesis is sufficient by itself to convert the virus to the XC-positive replication-competent phenotype. Thus, we have established that a single point mutation at the processing site of the envelope precursor protein Pr85 is responsible for the difference in the infectivity and XC phenotype of endogenous ecotropic murine leukemia virus from C3H/He and AKR mice and that the basis for in vitro conversion is a mutation at this site.
Collapse
Affiliation(s)
- G Sithanandam
- Laboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, Maryland 21701
| | | |
Collapse
|
22
|
Faller DV, Wilson LD, Flyer DC. Mechanism of induction of class I major histocompatibility antigen expression by murine leukemia virus. J Cell Biochem 1988; 36:297-309. [PMID: 3288646 DOI: 10.1002/jcb.240360310] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations in expression of major histocompatibility complex (MHC) antigens on tumor cells clearly correlate with the tumorgenicity and metastatic potential of those cells. These changes in the biological behavior of the tumor cells are presumably secondary to resulting changes in their susceptibility to immune recognition and destruction. Murine leukemia viruses (MuLV) exert regulatory effects on class I genes of the MHC locus. MuLV infection results in substantial increases in cell surface expression of all three class I MHC antigens. These viral effects on MHC antigen expression profoundly influence immune-mediated interaction with the infected cells, as assessed by cytotoxic T lymphocyte recognition and killing. Control of class I MHC and beta-2 microglobulin genes by MuLV takes place via a trans-acting molecular mechanism. MuLV controls expression of widely separated endogenous cellular MHC genes, transfected xenogeneic class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to a bacterial reporter gene. These findings indicate that MuLV exerts its effects on MHC expression via a trans mechanism. The MuLV-responsive sequences on the MHC genes appear to lie within 1.2 kilobases upstream of the initiation codon for those genes.
Collapse
Affiliation(s)
- D V Faller
- Division of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
23
|
Murine retroviruses control class I major histocompatibility antigen gene expression via a trans effect at the transcriptional level. Mol Cell Biol 1987. [PMID: 2441241 DOI: 10.1128/mcb.7.7.2406] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Moloney murine leukemia virus (M-MuLV) and Moloney murine sarcoma virus (M-MSV) exert a regulatory effect on the class I genes of the murine major histocompatibility complex (MHC). We have previously shown that M-MuLV infection of mouse fibroblasts results in a substantial increase in cell surface expression of H-2K, H-2D, and H-2L proteins, whereas M-MSV, upon coinfection of the same cells, is apparently able to override the MuLV-induced increase in H-2 expression. As a result of this modulation, immune recognition of the infected cells is profoundly altered. Our efforts have been directed toward elucidating the molecular basis for this phenomenon. We report here that stimulation of interferon production as a result of infection with MuLV does not occur and, therefore, is not the cause of MuLV-induced enhancement of MHC expression. Control of H-2 class I and beta 2-microglobulin gene expression by M-MuLV, and probably by M-MSV, takes place at the transcriptional level as indicated by nuclear runoff studies and analysis of steady-state mRNA levels. Our demonstration that M-MuLV controls expression of widely separated endogenous cellular genes (those coding for H-2D, H-2K, H-2L, and beta 2-microglobulin), transfected class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to sequences encoding a procaryotic enzyme, chloramphenicol acetyltransferase, suggests that M-MuLV exerts its effect in trans and not by proviral integration in the vicinity of the H-2 gene complex. Finally, we show that the sequences of at least one MHC gene, which are responsive to trans regulation by M-MuLV, lie within 1.2 kilobases upstream of the initiation codon for that gene.
Collapse
|
24
|
Wilson LD, Flyer DC, Faller DV. Murine retroviruses control class I major histocompatibility antigen gene expression via a trans effect at the transcriptional level. Mol Cell Biol 1987; 7:2406-15. [PMID: 2441241 PMCID: PMC365372 DOI: 10.1128/mcb.7.7.2406-2415.1987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Moloney murine leukemia virus (M-MuLV) and Moloney murine sarcoma virus (M-MSV) exert a regulatory effect on the class I genes of the murine major histocompatibility complex (MHC). We have previously shown that M-MuLV infection of mouse fibroblasts results in a substantial increase in cell surface expression of H-2K, H-2D, and H-2L proteins, whereas M-MSV, upon coinfection of the same cells, is apparently able to override the MuLV-induced increase in H-2 expression. As a result of this modulation, immune recognition of the infected cells is profoundly altered. Our efforts have been directed toward elucidating the molecular basis for this phenomenon. We report here that stimulation of interferon production as a result of infection with MuLV does not occur and, therefore, is not the cause of MuLV-induced enhancement of MHC expression. Control of H-2 class I and beta 2-microglobulin gene expression by M-MuLV, and probably by M-MSV, takes place at the transcriptional level as indicated by nuclear runoff studies and analysis of steady-state mRNA levels. Our demonstration that M-MuLV controls expression of widely separated endogenous cellular genes (those coding for H-2D, H-2K, H-2L, and beta 2-microglobulin), transfected class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to sequences encoding a procaryotic enzyme, chloramphenicol acetyltransferase, suggests that M-MuLV exerts its effect in trans and not by proviral integration in the vicinity of the H-2 gene complex. Finally, we show that the sequences of at least one MHC gene, which are responsive to trans regulation by M-MuLV, lie within 1.2 kilobases upstream of the initiation codon for that gene.
Collapse
|
25
|
Taketo M, Tanaka M. A cellular enhancer of retrovirus gene expression in embryonal carcinoma cells. Proc Natl Acad Sci U S A 1987; 84:3748-52. [PMID: 3473480 PMCID: PMC304953 DOI: 10.1073/pnas.84.11.3748] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Murine embryonal carcinoma (EC) cells are refractory to infection by retroviruses because retroviral long terminal repeat (LTR) enhancers have little activity in EC cells. A previous report described the isolation of clonal EC cell lines that express the integrated neomycin-resistance gene (neo) linked to the Moloney murine leukemia virus LTR. The expression of the neo gene was explained by a cis-acting mechanism [Taketo, M., Gilboa, E. & Sherman, M. I. (1985) Proc. Natl. Acad. Sci. USA 82, 2422-2426]. From one such EC cell line, we isolated the flanking cellular sequence 5' to the proviral genome, ligated it to various test constructs, and transfected into the parental EC cells. The cellular sequence increased expression of the LTR-linked neo gene significantly, in a manner independent of its orientation and position. The neo mRNA was initiated at the bona fide promoter of the LTR. By deletion analyses, we defined a region of DNA essential for the enhancer activity and determined its sequence. This region contains distinctly characteristic stretches as well as some similarity to various viral and cellular enhancers. Thus the LTR-linked neo gene is expressed because the provirus is integrated in the vicinity of this enhancer that is active in undifferentiated EC cells.
Collapse
|
26
|
Soriano P, Gridley T, Jaenisch R. Retroviruses and insertional mutagenesis in mice: proviral integration at the Mov 34 locus leads to early embryonic death. Genes Dev 1987; 1:366-75. [PMID: 2824282 DOI: 10.1101/gad.1.4.366] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thirty-four transgenic mouse strains, each carrying a single proviral insert, were generated by infection of preimplantation and postimplantation embryos with retroviruses. Animals homozygous for proviral integrations were derived for all strains with the exception of Mov 24, where the provirus is inserted on the Y chromosome, and Mov 34. Embryos homozygous at the Mov 34 locus develop normally to the blastocyst stage and die shortly after implantation, indicating that virus integration resulted in a recessive lethal mutation. The provirus and flanking sequences were cloned and the virus was mapped to the 5' side of an abundantly and ubiquitously transcribed gene. Similar to the previously derived Mov 13 mutation, proviral integration at the Mov 34 locus interferes with the expression of the adjacent gene. These and our previous results indicate that of a total of 48 proviral integrations in the germ line, two resulted in transgenic mouse strains with recessive lethal mutations.
Collapse
Affiliation(s)
- P Soriano
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | | | |
Collapse
|
27
|
Korman AJ, Frantz JD, Strominger JL, Mulligan RC. Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proc Natl Acad Sci U S A 1987; 84:2150-4. [PMID: 3031667 PMCID: PMC304606 DOI: 10.1073/pnas.84.8.2150] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrovirus vectors [direct orientation (DO) vectors] that permit the simultaneous expression of an inserted protein-coding sequence and a dominant-acting selectable marker have been constructed. In these vectors, an internal simian virus 40 or human metallothionein promoter sequence serves to drive the expression of the bacterial neomycin phosphotransferase or guanine-xanthine phosphoribosyltransferase genes, whereas the viral long terminal repeat sequences are utilized to promote expression of inserted sequences. In some of the vectors, the viral 5' splice site, normally used in the biogenesis of the subgenomic env-encoding mRNA, has been eliminated. These vectors yield high transient and stable titers of virus after transfection of viral packaging cell lines, show little or no depression of virus titer with a variety of inserts, and faithfully transmit recombinant proviral sequences to recipient cells. To characterize the expression potential of these vectors, a variety of inserts encoding the alpha and beta subunits of the human major histocompatibility complex class II antigen HLA-DR have been introduced into these vectors. NIH 3T3 cells infected by viruses containing HLA-DR alpha or beta cDNAs express these proteins as shown by immunoprecipitation of metabolically labeled extracts. In addition, through the sequential infection of cells with retrovirus constructions expressing two different selectable markers, both subunits of the class II antigen have been introduced into NIH 3T3 cells. Such infected cells express HLA-DR molecules at the cell surface.
Collapse
|
28
|
Horowitz JM, Holland GD, King SR, Risser R. Germ line integration of a murine leukemia provirus into a retroviruslike sequence. J Virol 1987; 61:701-7. [PMID: 3027396 PMCID: PMC254009 DOI: 10.1128/jvi.61.3.701-707.1987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleotide sequence analysis of the cellular sequences flanking the integrated ecotropic (mouse-infectious) murine leukemia provirus of BALB/c mice indicated that the murine leukemia provirus is integrated in opposing transcriptional orientation within a solo long terminal repeat (LTR) of the VL30 family of endogenous retrovirus-related sequences. To quantify the effect of this integration event on the ability of the ecotropic provirus to be expressed, we constructed recombinant molecules that carried the chloramphenicol acetyltransferase (cat) gene and various viral LTRs and determined the CAT activity induced by these constructs after transfection of NIH 3T3 cells. Our results indicate that the BALB/c ecotropic LTR is about 10-fold more active than the VL30 LTR. The presence of the VL30 LTR did not affect the transcriptional activity of the ecotropic LTR in the context of the integration event. Our results also indicate that the LTRs of the BALB/c provirus are less transcriptionally active than are the proviral LTRs of AKR murine leukemia virus and the Harvey murine sarcoma virus.
Collapse
|
29
|
Rohdewohld H, Weiher H, Reik W, Jaenisch R, Breindl M. Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 1987; 61:336-43. [PMID: 3027365 PMCID: PMC253954 DOI: 10.1128/jvi.61.2.336-343.1987] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The chromatin conformation of mouse genome regions containing Moloney murine leukemia proviral intergration sites in two Mov mouse strains and randomly selected integration sites in virus-infected mouse 3T3 fibroblasts was analyzed. All integrations have occurred into chromosomal regions containing several DNase-hypersensitive sites, and invariably the proviral integration sites map within a few hundred base pairs of a DNase-hypersensitive site. The probability that this close association between proviral integration sites and DNase-hypersensitive sites was due to chance was calculated to be extremely low (2 X 10(-4]. Because the proviral integrations analyzed were not selected for an altered phenotype, our results suggest that DNase-hypersensitive regions are preferred targets for retrovirus integration.
Collapse
|
30
|
|
31
|
Ballmer-Hofer K, Mandel G, Faller DV, Roberts TM, Benjamin TL. Expression of influenza hemagglutinin-polyoma T-antigen fusion proteins in a rat embryo fibroblast cell line. Virus Res 1987; 6:345-61. [PMID: 3031893 DOI: 10.1016/0168-1702(87)90066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasmids encoding the amino terminal portion of an influenza virus hemagglutinin (HA) fused to polyoma virus middle T (mT) or large T (lT) sequences have been constructed. Stable expression of the chimeric proteins was obtained in established rat embryo fibroblasts following plasmid co-transfection and selection for G418 resistance. The synthesis and localization of the proteins was followed by metabolic labeling with [35S]methionine and [3H]mannose, cell fractionation, and immunoprecipitation with anti-polyoma T antibody. The HA leader and amino terminal peptide direct the synthesis of the lT and mT proteins into the endoplasmic reticulum where they undergo glycosylation, but this occurs with a very low efficiency. Most of the HA-mT and HA-lT fusion protein molecules do not enter completely into the endoplasmic reticulum, but rather achieve their normal locations in the cell as slightly higher molecular weight proteins, presumably due to the extra sequences derived from HA at their amino termini. HA-mT fusion protein is found to have associated tyrosine-specific protein kinase activity precipitable with anti-src as well as anti-T antibody, and cells expressing this fusion protein have a transformed phenotype.
Collapse
|
32
|
|
33
|
Chromosomal position and specific demethylation in enhancer sequences of germ line-transmitted retroviral genomes during mouse development. Mol Cell Biol 1986. [PMID: 3837187 DOI: 10.1128/mcb.5.9.2212] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methylation pattern of the germ line-transmitted Moloney leukemia proviral genome was analyzed in DNA of sperm, of day-12 and day-17 embryos, and of adult mice from six different Mov substrains. At day 12 of gestation, all 50 testable CpG sites in the individual viral genomes as well as sites in flanking host sequences were highly methylated. Some sites were unmethylated in sperm, indicating de novo methylation of unique DNA sequences during normal mouse development. At subsequent stages of development, specific CpG sites which were localized exclusively in the 5' and 3' enhancer regions of the long terminal repeat became progressively demethylated in all six proviruses. The extent of enhancer demethylation, however, was tissue specific and strongly affected by the chromosomal position of the respective proviral genome. This position-dependent demethylation of enhancer sequences was not accompanied by a similar change within the flanking host sequences, which remained virtually unchanged. Our results indicate that viral enhancer sequences, but not other sequences in the M-MuLV genome, may have an intrinsic ability to interact with cellular proteins, which can perturb the interaction of the methylase with DNA. Demethylation of enhancer sequences is not sufficient for gene expression but may be a necessary event which enables the enhancer to respond to developmental signals which ultimately lead to gene activation.
Collapse
|
34
|
Jähner D, Jaenisch R. Chromosomal position and specific demethylation in enhancer sequences of germ line-transmitted retroviral genomes during mouse development. Mol Cell Biol 1985; 5:2212-20. [PMID: 3837187 PMCID: PMC366946 DOI: 10.1128/mcb.5.9.2212-2220.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The methylation pattern of the germ line-transmitted Moloney leukemia proviral genome was analyzed in DNA of sperm, of day-12 and day-17 embryos, and of adult mice from six different Mov substrains. At day 12 of gestation, all 50 testable CpG sites in the individual viral genomes as well as sites in flanking host sequences were highly methylated. Some sites were unmethylated in sperm, indicating de novo methylation of unique DNA sequences during normal mouse development. At subsequent stages of development, specific CpG sites which were localized exclusively in the 5' and 3' enhancer regions of the long terminal repeat became progressively demethylated in all six proviruses. The extent of enhancer demethylation, however, was tissue specific and strongly affected by the chromosomal position of the respective proviral genome. This position-dependent demethylation of enhancer sequences was not accompanied by a similar change within the flanking host sequences, which remained virtually unchanged. Our results indicate that viral enhancer sequences, but not other sequences in the M-MuLV genome, may have an intrinsic ability to interact with cellular proteins, which can perturb the interaction of the methylase with DNA. Demethylation of enhancer sequences is not sufficient for gene expression but may be a necessary event which enables the enhancer to respond to developmental signals which ultimately lead to gene activation.
Collapse
|
35
|
Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity. Nature 1985; 315:594-7. [PMID: 2989695 DOI: 10.1038/315594a0] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pattern of DNA methylation changes during development of eukaryotes, and hypomethylation frequently correlates with gene expression (for reviews see refs 1-4). A causal relationship between hypermethylation and gene inactivity has been established for retroviral genomes which are methylated de novo when inserted into the germ line of mice (ref. 5; for review, see ref. 6). The mutual interaction of the provirus with the host genome can influence virus expression and can result in inactivation of the host gene by insertional mutagenesis. We report here that the insertion of a provirus can change the methylation pattern of the host DNA. Sequences flanking the provirus become methylated de novo within 1 kilobase (kb) of the integration site. In Mov-13 mice, which carry a lethal mutation of the alpha 1(I) collagen gene, de novo methylation of host DNA is associated with a change in chromatin conformation. This suggests that virus-induced DNA methylation can alter DNA-protein interactions and thereby interfere with correct gene activation during embryonic development.
Collapse
|
36
|
Flyer DC, Burakoff SJ, Faller DV. Expression and CTL recognition of cloned subgenomic fragments of Moloney murine leukemia virus in murine cells. SURVEY OF IMMUNOLOGIC RESEARCH 1985; 4:168-72. [PMID: 3875887 DOI: 10.1007/bf02918812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Mann R, Baltimore D. Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J Virol 1985; 54:401-7. [PMID: 3989912 PMCID: PMC254810 DOI: 10.1128/jvi.54.2.401-407.1985] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By using a retroviral construct derived from Moloney murine leukemia virus and capable of expressing the dominant selectable neo gene, we measured the effects of moving or deleting a sequence (psi) known to be required in cis for the packaging of genomic RNA into virus particles. When psi was at its wild-type position (in SVX virus) near the 5' end of the RNA, the titer of infectious virus production was 5 X 10(6) G-418-resistant CFU per ml. The titer was decreased approximately fivefold when psi was moved, in its proper orientation, to near the 3' end of the virus (SVX-psi C) and was decreased approximately 600-fold when psi was moved, in its proper orientation, into the U3 region of the long terminal repeat. When psi was deleted (SVX-psi-) or inserted in the opposite orientation at either of these two positions, the titer was decreased by 3000-fold relative to SVX. In SVX-psi C, psi was no longer in the intron (as it is in SVX and Moloney murine leukemia virus) but was moved to a region which is only exonic. This resulted in the encapsidation of both spliced and unspliced RNAs, their efficient reverse transcription, and their integration into the genome of an infected cell. A number of proviruses resulting from integration of either spliced or unspliced RNAs were cloned. Four of these clones were subjected to sequence analysis in the region of the splice sites, and it was determined which sites are used by these viruses and also which are used by Moloney murine leukemia virus.
Collapse
|
38
|
Crawford S, Goff SP. A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. J Virol 1985; 53:899-907. [PMID: 3882995 PMCID: PMC254725 DOI: 10.1128/jvi.53.3.899-907.1985] [Citation(s) in RCA: 222] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Deletion mutations in the 5' part of the pol gene of Moloney murine leukemia virus were generated by restriction enzyme site-directed mutagenesis of cloned proviral DNA. DNA sequence analysis indicated that one such deletion was localized entirely within the 5' part of the pol gene, did not affect the region encoding reverse transcriptase, and preserved the translational reading frame downstream of the mutation. The major viral precursor polyproteins (Pr65gag, Pr200gag-pol, and gPr80env) were synthesized at wild-type levels in cell lines carrying the mutant genome. These cell lines assembled and released wild-type levels of virion particles into the medium. Cleavage of both Pr65gag and Pr200gag-pol precursors to the mature proteins was completely blocked in the mutant virions. Surprisingly, these virions contained high levels of active reverse transcriptase; examination of the endogenous reverse transcription products synthesized by the mutant virions revealed normal amounts of minus-strand strong-stop DNA, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not significantly impaired. Processing of gPr80env to gP70env and P15E was not affected by the mutation, but cleavage of P15E to P12E was not observed. The mutant particles were poorly infectious; analysis indicated that infection was blocked at an early stage. The data are consistent with the idea that the 5' part of the pol gene encodes a protease directly responsible for processing Pr65gag, and possibly Pr200gag-pol, to the structural virion proteins. It appears that cleavage of the gag gene product is not required for budding and release of virions and that complete processing of the pol gene product to the mature form of reverse transcriptase is not required for its functional activation.
Collapse
|
39
|
Abstract
We found that an endogenous mouse mammary tumor provirus, GR-MTV-8, is embedded within a member of the BAM HI family of long interspersed repetitive mouse DNAs. GR-MTV-8 appears to be transcriptionally silent at its normal chromosomal position in the mouse genome. The provirus is transcriptionally active, however, when cloned and transfected into mouse cells (Kennedy et al., Nature (London) 295:622-624, 1982). We propose that the transcriptional inactivity of GR-MTV-8 in situ is due to an inhibitory effect, possibly involving DNA methylation, attributable to the flanking BAM HI element.
Collapse
|
40
|
Jaenisch R, Schnieke A, Harbers K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc Natl Acad Sci U S A 1985; 82:1451-5. [PMID: 2579397 PMCID: PMC397280 DOI: 10.1073/pnas.82.5.1451] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The drug 5-azacytidine was injected into mice to activate silent retroviral genomes. The Mov-7 and Mov-10 substrains of mice were used, each of which carries a Moloney murine leukemia provirus with mutations in the coding regions at nonidentical positions. These proviral genomes are highly methylated and are not expressed in the animal. A single injection of the drug into postnatal mice induced transcription of the endogenous defective proviral genomes in thymus, spleen, and liver at 3 days after treatment. No viral transcription was detected in the brain of drug-exposed animals. When postnatal Mov-7/Mov-10 F1 mice were treated with the drug, infectious virus was generated efficiently and resulted in virus spread and viremia in all animals by 3 weeks of age. In contrast, infectious virus was not generated in F1 mice that had been treated during gestation with up to sublethal doses of the drug. Our results demonstrate that injection of 5-azacytidine can be used to efficiently and reproducibly activate silent genes in different cell populations of postnatal mice.
Collapse
|
41
|
Abstract
Using the S1 nuclease mapping technique, we demonstrated that the majority of Moloney murine leukemia RNA molecules, isolated either from the nucleus or cytoplasm of infected mouse cells, share a uniform 3' end located at the border of the R and U-5 regions of the long terminal repeat. When the long terminal repeat sequences were inserted in the pSV plasmid downstream of the simian virus 40 late promoter, the 3' end of the viral RNA was also generated close to the R region of the long terminal repeat. These results demonstrate that the long terminal repeat signals the generation of an authentic 3' end when situated downstream of an actively transcribed region.
Collapse
|
42
|
Schwartzberg P, Colicelli J, Goff SP. Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 1984; 37:1043-52. [PMID: 6204767 DOI: 10.1016/0092-8674(84)90439-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have used in vitro mutagenesis to explore the functions of the gene products encoded by the pol gene of Moloney murine leukemia virus (M-MuLV). Deletions were constructed at a variety of positions in the gene, and the altered DNA copies of the viral genome were introduced into mouse cells by cotransformation. The mutants could be divided into two classes depending on the phenotype and map position of the deletion within the pol gene. Mutants with deletions mapping in the 5' portion of the gene were found to be completely deficient in reverse transcriptase activity. Mutants mapping in the 3' portion of the gene, however, assembled and released virions with normal levels of reverse transcriptase and RNAase H activities. When applied to permissive cells, these virions directed the synthesis of all three forms of unintegrated viral DNA: full-length, double-stranded linear DNA and the two circular forms with one and two copies of the long terminal repeat sequences. The infection was arrested at this point and the infected cells did not become producers of virus. Thus the 3' portion of the pol gene encodes a polypeptide with a function distinct from that of reverse transcriptase, which is not required for synthesis of viral DNA but is essential for establishment of that DNA in a stable, active form in the infected cell. We suggest that this function may be the integration of the proviral DNA.
Collapse
|
43
|
Lobel LI, Goff SP. Construction of mutants of Moloney murine leukemia virus by suppressor-linker insertional mutagenesis: positions of viable insertion mutations. Proc Natl Acad Sci U S A 1984; 81:4149-53. [PMID: 6330745 PMCID: PMC345386 DOI: 10.1073/pnas.81.13.4149] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A highly efficient method for the generation of insertion mutations is described. The procedure involves the use of a 220-base-pair (bp) EcoRI fragment bearing the SuIII+ suppressor tRNA gene as an insertional mutagen. The plasmid DNA to be mutagenized is linearized by a variety of means, and the suppressor fragment is ligated into the site of cleavage. Successful insertion mutants can be readily detected in Escherichia coli carrying lac- amber mutations on MacConkey lactose plates; virtually 100% of the red colonies contain insertions of the fragment. Subsequent removal of the SuIII+ gene and recyclization leaves a 12-bp insertion if the original cleavage was blunt-ended and a 9-bp insertion if the original cleavage generated 3-bp cohesive termini. This technique, as well as conventional linker mutagenesis with decamer and dodecamer linkers, was used to generate a large library of insertion mutations in cloned DNA copies of the genome of Moloney murine leukemia virus. A number of viable mutants were isolated bearing 9-, 10-, and 12-bp insertions in various domains of the genome. The map positions of the viable mutations suggest that the viral long terminal repeats and portions of the gag and env genes are quite insensitive to alteration. Although most of the mutations were stable for many passages, some of the mutants lost the inserted DNA; we presume that the insertion was somewhat deleterious in these mutants and that continued passage of the virus selected for overgrowth by a revertant.
Collapse
|
44
|
Jaenisch R, Jähner D. Methylation, expression and chromosomal position of genes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 782:1-9. [PMID: 6372865 DOI: 10.1016/0167-4781(84)90099-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Crawford S, Goff SP. Mutations in gag proteins P12 and P15 of Moloney murine leukemia virus block early stages of infection. J Virol 1984; 49:909-17. [PMID: 6608006 PMCID: PMC255553 DOI: 10.1128/jvi.49.3.909-917.1984] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A collection of mutants of Moloney murine leukemia virus with deletions in the gag gene was generated by restriction enzyme site-directed mutagenesis of a cloned proviral DNA. The mutants all contained deletions of the NarI site in the P12 region, and some contained deletions extending into the adjacent P15 region. The deletions did not significantly affect the assembly or release of viral particles. Examination of endogenous reverse transcription products demonstrated normal synthesis of minus- and plus-strand strong-stop DNAs, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not impaired. The virion particles contained high levels of an abnormal protein which corresponded to a P15-P12 fusion protein; proteolytic processing of this abnormal protein was completely blocked by all the mutations. The infectivity of the particles was dramatically reduced. Analysis of the low-molecular-weight DNA in infected NIH/3T3 cells indicated that the mutant virions could not carry out viral DNA synthesis. These data suggest that the P12 and P15 proteins may not be critical for virion assembly but do play an important role in early steps of viral infection.
Collapse
|
46
|
Hoffman RM. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 738:49-87. [PMID: 6204687 DOI: 10.1016/0304-419x(84)90019-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
|
48
|
|
49
|
Flyer DC, Burakoff SJ, Faller DV. Cytotoxic T lymphocyte recognition of transfected cells expressing a cloned retroviral gene. Nature 1983; 305:815-8. [PMID: 6605480 DOI: 10.1038/305815a0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysis of murine sarcoma virus-murine leukaemia virus (MSV-MuLV)-induced tumour cells by cytotoxic T lymphocytes (CTL) appears to require that an antigen specified by MSV-MuLV, or induced by the infection, be presented in association with class I major histocompatibility complex antigens. The viral proteins of the tumorigenic MuLV seem to be a part of the antigens recognized by these dually restricted anti-MuLV CTL, but the precise nature of the putative viral antigen(s) recognized by CTL is unknown. Studies using recombinant viruses have suggested that a product of the viral envelope gene (env gene), perhaps the glycoprotein gp70, is the viral antigen recognized by CTL. Attempts to use purified gp70 or anti-gp70 antibodies to block CTL recognition of retrovirus-induced tumour cells, however, have yielded contradictory results. To examine more closely the role of gp70 in the CTL response to MuLV infections, we have constructed murine cell lines which express only the env gene of the Moloney murine leukaemia virus (M-MuLV). We show here that BALB/c-3T3 cells expressing the M-MuLV envelope gene products on their cell surface are susceptible to lysis by M-MuLV-specific CTL.
Collapse
|
50
|
Zabarovsky ER, Chumakov I, Kisselev LL. Tight linkage of retroviral-like sequences to a variant human c-mos gene in the human genome. Gene X 1983; 23:379-84. [PMID: 6628997 DOI: 10.1016/0378-1119(83)90026-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chumakov et al. [Gene 17 (1982) 19-26] identified in the human gene library a number of recombinant phages that possess a homology to the v-mos gene. Here we report the unusual structure of one of these recombinants, lambda gp5. The 14.3-kb stretch of human DNA from this phage contains at least three regions of homology to the v-mos gene, together with multiple copies of Alu-family repeats. Moreover, we have shown the presence of retrovirus-related sequences in the close vicinity of the mos-homologous regions. These data point to the possibility of involvement of retrovirus in the process of c-mos gene amplification during the formation of a multigene family.
Collapse
|