1
|
Bertzbach LD, Ip WH, von Stromberg K, Dobner T, Grand RJ. A comparative review of adenovirus A12 and C5 oncogenes. Curr Opin Virol 2024; 67:101413. [PMID: 38865835 DOI: 10.1016/j.coviro.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Oncogenic viruses contribute to 15% of global human cancers. To achieve that, virus-encoded oncoproteins deregulate cellular transcription, antagonize common cellular pathways, and thus drive cell transformation. Notably, adenoviruses were the first human viruses proven to induce cancers in diverse animal models. Over the past decades, human adenovirus (HAdV)-mediated oncogenic transformation has been pivotal in deciphering underlying molecular mechanisms. Key adenovirus oncoproteins, encoded in early regions 1 (E1) and 4 (E4), co-ordinate these processes. Among the different adenovirus species, the most extensively studied HAdV-C5 displays lower oncogenicity than HAdV-A12. A complete understanding of the different HAdV-A12 and HAdV-C5 oncoproteins in virus-mediated cell transformation, as summarized here, is relevant for adenovirus research and offers broader insights into viral transformation and oncogenesis.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Konstantin von Stromberg
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany.
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Querido E, Teodoro JG, Branton PE. Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis. J Virol 1997; 71:3526-33. [PMID: 9094624 PMCID: PMC191499 DOI: 10.1128/jvi.71.5.3526-3533.1997] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been known for some time that expression of the 243-residue (243R) human adenovirus type 5 (Ad5) early region 1A (E1A) protein causes an increase in the level of the cellular tumor suppressor p53 and induction of p53-dependent apoptosis. Deletion of a portion of conserved region 1 (CR1) had been shown to prevent apoptosis, suggesting that binding of p300 and/or the pRB retinoblastoma tumor suppressor and related proteins might be implicated. To examine the mechanism of the E1A-induced accumulation of p53, cells were infected with viruses expressing E1A-243R containing various deletions which have well-characterized effects on p300 and pRB binding. It was found that in human HeLa cells and rodent cells, complex formation with p300 but not pRB was required for the rise in p53 levels. However, in other human cell lines, including MRC-5 cells, E1A proteins which were able to form complexes with either p300 or pRB induced a significant increase in p53 levels. Only E1A mutants defective in binding both classes of proteins were unable to stimulate p53 accumulation. This same pattern was also apparent in p53-null mouse cells coinfected by Ad5 mutants and an adenovirus vector expressing either wild-type or mutant human p53 under a cytomegalovirus promoter, indicating that the difference in importance of pRB binding may relate to differences between rodent and human p53 expression. The increase in p53 levels correlated well with the induction of apoptosis and, as shown previously, with the stimulation of cellular DNA synthesis. Thus, it is possible that the accumulation of p53 is induced by the induction of unscheduled DNA synthesis by E1A proteins and that increased levels of p53 then activate cell death pathways.
Collapse
Affiliation(s)
- E Querido
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
3
|
Affiliation(s)
- L A Lucher
- Department of Biological Sciences, Illinois State, University, Normal 61761, USA
| |
Collapse
|
4
|
Lucher LA, Khuntirat B, Zhao J, Angeletti PC. Altered expression of adenovirus 12 DNA-binding protein but not DNA polymerase during abortive infection of hamster cells. Virology 1992; 189:187-95. [PMID: 1534951 DOI: 10.1016/0042-6822(92)90694-k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Replication of human adenovirus type 12 DNA is blocked in abortively infected baby hamster kidney cells. The activity and accumulation of adenovirus 12 DNA polymerase is equivalent in infected hamster and human cell extracts. However, the accumulation of adenovirus type 12 DNA-binding protein is approximately 120-fold lower in extracts from infected hamster cells when compared to infected permissive human cells. This difference in accumulation is not due to replication of viral DNA during productive infection, since this difference is observed in the presence of hydroxyurea. The DNA-binding protein from infected hamster cells retains the ability to bind denatured DNA-cellulose. An adenovirus 5 early region 1 transformed hamster cell line competent to complement the adenovirus 12 DNA replication defect also stimulates accumulation of the DNA-binding protein even when the cells are treated with hydroxyurea. Thus, the reduced expression of the viral DNA-binding protein may play a role in the mechanism of abortive infection of hamster cells by adenovirus 12.
Collapse
Affiliation(s)
- L A Lucher
- Department of Biological Sciences, Illinois State University, Normal 61761
| | | | | | | |
Collapse
|
5
|
Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 1990. [PMID: 2136765 DOI: 10.1128/mcb.10.1.120] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cooperation of the nuclear oncogene E1A with the E1B oncogene is required for transformation of primary cells. Expression vectors were constructed to produce the 19-kilodalton (19K) and 55K E1B proteins under the direction of heterologous promoters in order to investigate the role of individual E1B proteins in transformation. Coexpression of E1A and either the 19K or 55K E1B gene products was sufficient for the formation of transformed foci in primary rat cells at half the frequency of an intact E1B gene, suggesting that the 19K and 55K proteins function via independent pathways in transformation. Furthermore, the effects of Ha-ras and the E1B 19K gene product were additive when cotransfected with E1A, suggesting that the 19K protein functions in transformation by a mechanism independent from that of ras as well. Although expression of E1A and either E1B protein was sufficient for the subsequent growth of cells in long-term culture, the 19K protein was required to support growth in semisolid media. As the 19K protein has been shown to associate with and disrupt intermediate filaments (IFs) when transiently expressed with plasmid vectors (E. White and R. Cipriani, Proc. Natl. Acad. Sci. USA, 86:9886-9890, 1989), the organization of IFs in transformed cells was investigated. Primary rat cells transformed by plasmids encoding E1A plus the E1B 19K protein showed gross perturbations of IFs, whereas cell lines transformed by plasmids encoding E1A plus the E1B 55K protein or E1A plus Ha-ras did not. These results suggest that an intact IF cytoskeleton may inhibit anchorage-independent growth and that the E1B 19K protein can overcome this inhibition by disrupting the IF cytoskeleton.
Collapse
|
6
|
White E, Cipriani R. Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 1990; 10:120-30. [PMID: 2136765 PMCID: PMC360719 DOI: 10.1128/mcb.10.1.120-130.1990] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cooperation of the nuclear oncogene E1A with the E1B oncogene is required for transformation of primary cells. Expression vectors were constructed to produce the 19-kilodalton (19K) and 55K E1B proteins under the direction of heterologous promoters in order to investigate the role of individual E1B proteins in transformation. Coexpression of E1A and either the 19K or 55K E1B gene products was sufficient for the formation of transformed foci in primary rat cells at half the frequency of an intact E1B gene, suggesting that the 19K and 55K proteins function via independent pathways in transformation. Furthermore, the effects of Ha-ras and the E1B 19K gene product were additive when cotransfected with E1A, suggesting that the 19K protein functions in transformation by a mechanism independent from that of ras as well. Although expression of E1A and either E1B protein was sufficient for the subsequent growth of cells in long-term culture, the 19K protein was required to support growth in semisolid media. As the 19K protein has been shown to associate with and disrupt intermediate filaments (IFs) when transiently expressed with plasmid vectors (E. White and R. Cipriani, Proc. Natl. Acad. Sci. USA, 86:9886-9890, 1989), the organization of IFs in transformed cells was investigated. Primary rat cells transformed by plasmids encoding E1A plus the E1B 19K protein showed gross perturbations of IFs, whereas cell lines transformed by plasmids encoding E1A plus the E1B 55K protein or E1A plus Ha-ras did not. These results suggest that an intact IF cytoskeleton may inhibit anchorage-independent growth and that the E1B 19K protein can overcome this inhibition by disrupting the IF cytoskeleton.
Collapse
Affiliation(s)
- E White
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
7
|
Jelsma TN, Howe JA, Mymryk JS, Evelegh CM, Cunniff NF, Bayley ST. Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 1989; 171:120-30. [PMID: 2568030 DOI: 10.1016/0042-6822(89)90518-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A range of deletion and other mutants in the coding region of the E1A gene of Ad5 has been assayed for transformation of baby rat kidney (BRK) cells in cooperation with ras, repression of the SV40 enhancer, and induction of proliferating cell nuclear antigen (PCNA). Transformation efficiency was drastically reduced by deletion of residues 4-25, 36-60, or 111-138 in exon 1 of the 289 residue (289R) and 243R E1A proteins. Deletion of other residues in exon 1 had little effect. With mutants in the region unique to the 289R protein, and in exon 2, the only effect on transformation seemed to be an increased tendency of mutant transformants, compared to wt, to migrate to form secondary foci. Repression assays, performed with E1A plasmids producing only the 243R protein, showed that deletion of residues 4-25 or 36-60 inhibited repression completely. Deletion of residues 128-138 reduced repression, but deletions elsewhere in exon 1 had little effect. Deletion of residues 188-204 in exon 2 reduced repression slightly, and deletion of all of exon 2 reduced it to about one-half. It is concluded that for transformation, there are two functional domains in E1A proteins, both in exon 1, both involved in binding different cellular proteins, and both probably concerned with different transforming functions. One of these domains, involving residues 4-25 and 36-60, also functions in repression, but the role of the second in repression is much less critical. All of the deletion mutants in exon 1 induced PCNA synthesis in BRK cells. This result, together with previously published work, suggests that the active site for PCNA induction either involves residues 61-69 or 82-85 in exon 1, which have not been deleted, or it does not depend on any single limited region of the E1A proteins.
Collapse
Affiliation(s)
- T N Jelsma
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
McGlade CJ, Tremblay ML, Branton PE. Mapping of a phosphorylation site in the 176R (19 kDa) early region 1B protein of human adenovirus type 5. Virology 1989; 168:119-27. [PMID: 2521265 DOI: 10.1016/0042-6822(89)90410-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 176-residue (176R) early region 1B (E1B) protein of human adenovirus type 5 (Ad5) was shown to be phosphorylated at serine in lytically infected KB cells at a level estimated to be about one phosphate group per 28 176R molecules. Through the analysis of peptides generated by cleavage with cyanogen bromide and Staphylococcus aureus V-8 protease the phosphorylation site was mapped to Ser-164. Using site-directed mutagenesis, a mutant was produced in which the codon for Ser-164 was changed to that of asparagine while leaving the coding sequence for the overlapping 496R protein unchanged. This virus, which replicated well on human KB cells, produced normal levels of 176R, but in an unphosphorylated form. The mutant transformed baby rat kidney cells in cooperation with E1A at an efficiency about one-half that obtained with wt E1B. These data therefore gave little indication that phosphorylation is essential for the function of 176R.
Collapse
Affiliation(s)
- C J McGlade
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
9
|
The E1a gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat embryo cells. Mol Cell Biol 1988. [PMID: 2970008 DOI: 10.1128/mcb.8.7.2984] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated that second-passage rat embryo cells transformed by the ras oncogene alone are both tumorigenic and highly metastatic when injected into nude mice. In contrast, rat embryo cells cotransformed with the ras oncogene and the adenovirus type 2 (Ad2) E1a gene are tumorigenic but either fail to metastasize or exhibit a very low metastatic potential. In this report, we demonstrate that transfection of the Ad2 E1a gene into four independent ras-transformed rat embryo cell lines results in a dramatic reduction in metastatic potential relative to that of the parental cell line. Transfection of cDNAs for the 12S and 13S E1a transcripts showed that the 12S cDNA was highly effective in reducing the metastatic potential of ras-transformed cell lines, while the 13S cDNA showed an effect in only one of the two cell lines tested. This effect is specific to the Ad2 E1a gene, since ras-transformed cell lines expressing the Ad12 E1a gene maintained their high metastatic potential. We hypothesize that the Ad2 E1a gene may regulate the expression of one or more cellular genes that contribute to the metastatic phenotype.
Collapse
|
10
|
The E1a gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat embryo cells. Mol Cell Biol 1988; 8:2984-8. [PMID: 2970008 PMCID: PMC363519 DOI: 10.1128/mcb.8.7.2984-2988.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have previously demonstrated that second-passage rat embryo cells transformed by the ras oncogene alone are both tumorigenic and highly metastatic when injected into nude mice. In contrast, rat embryo cells cotransformed with the ras oncogene and the adenovirus type 2 (Ad2) E1a gene are tumorigenic but either fail to metastasize or exhibit a very low metastatic potential. In this report, we demonstrate that transfection of the Ad2 E1a gene into four independent ras-transformed rat embryo cell lines results in a dramatic reduction in metastatic potential relative to that of the parental cell line. Transfection of cDNAs for the 12S and 13S E1a transcripts showed that the 12S cDNA was highly effective in reducing the metastatic potential of ras-transformed cell lines, while the 13S cDNA showed an effect in only one of the two cell lines tested. This effect is specific to the Ad2 E1a gene, since ras-transformed cell lines expressing the Ad12 E1a gene maintained their high metastatic potential. We hypothesize that the Ad2 E1a gene may regulate the expression of one or more cellular genes that contribute to the metastatic phenotype.
Collapse
|
11
|
Pozzatti R, McCormick M, Thompson MA, Garbisa S, Liotta L, Khoury G. Regulation of the metastatic phenotype by the E1A gene of adenovirus-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 233:293-301. [PMID: 2975915 DOI: 10.1007/978-1-4899-5037-6_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously demonstrated that rat embryo cells transformed by the ras oncogene alone are both tumorigenic and highly metastatic when injected into nude mice. In contrast, rat embryo cells transformed with the ras oncogene and the adenovirus 2 (Ad2) Ela gene are tumorigenic but either fail to metastasize, or exhibit a very low metastatic potential. Here we demonstrate that transfection of the Ad2 Ela gene into several of the ras transformed rat embryo cell lines results in a dramatic reduction in metastatic potential relative to the parental cell line. Transfection of cDNAs for the 12S and 13S Ela transcripts showed that both gene products are capable of reducing the metastatic potential of the ras transformed cell lines, however the 12S cDNA was more effective. This effect is specific to the Ad2 Ela gene as ras transformed cell lines expressing the Ad12 Ela gene or the human N-myc gene maintained their high metastatic potential. We hypothesize that the Ad2 Ela gene may regulate the expression of one or more cellular genes that contribute to the metastatic phenotype.
Collapse
Affiliation(s)
- R Pozzatti
- Laboratory of Molecular Virology, National Cancer Inst., Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
12
|
McGlade CJ, Tremblay ML, Yee SP, Ross R, Branton PE. Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5. J Virol 1987; 61:3227-34. [PMID: 2957509 PMCID: PMC255902 DOI: 10.1128/jvi.61.10.3227-3234.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Antipeptide sera were prepared in rabbits against synthetic peptides corresponding to the predicted amino and carboxy termini of the early region 1B 176R (19-kilodalton [kDa]) protein of human adenovirus type 5. Both antisera specifically immunoprecipitated the 19- and 18.5-kDa forms of the 176R protein observed previously with antitumor sera. These data suggested that both species are full-length molecules of 176 residues. To identify posttranslational modifications that could explain the formation of these multiple species and possibly their known association with membranes, studies were carried out to determine whether they are glycosylated or acylated. Neither the 19- nor the 18.5-kDa species appeared to be a glycoprotein, however, they were labeled with [3H]palmitate and [3H]myristate, indicating that both species are acylated. Thus, whereas acylation does not appear to be the cause of the multiple species, it could play a role in the membrane association of these viral proteins. The acylation of 176R was found to be unusual. The fatty acid linkage was resistant to treatment with hydroxylamine or methanol-KOH, suggesting that acylation was through an amide bond. In addition, both palmitate and myristate were present in 176R, suggesting either a lack of specificity in the acylation reaction or the existence of more than one acylation site.
Collapse
|
13
|
Barker DD, Berk AJ. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 1987; 156:107-21. [PMID: 2949421 DOI: 10.1016/0042-6822(87)90441-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To determine the requirements for the individual Ad2 E1B proteins during the transformation of rodent cells, viral mutants were constructed with genetic lesions disrupting the coding sequence of either the 175 amino acid residue (175R) or the 495 amino acid residue (495R) E1B proteins. Point mutations generating stop codons very early in the coding sequences were constructed to prevent the expression of amino-terminal protein fragments which might have biological activity. Mutant virus pm1722 contains a point mutation that terminates translation of the 175R protein after three amino acids. It was completely defective for transformation of CREF cells in virion- and DNA-mediated assays. In HeLa cells, pm1722 replicated as well as wild-type virus but produced an extreme cytopathic effect and fragmentation of host-cell DNA. Nonetheless, we provide evidence that the observed transformation defect is not due to the death of transformed cells. The mutant virus dl1520, a double mutant unable to synthesize the 495R protein, was also extremely defective for the transformation of CREF cells in virion- and viral DNA-mediated assays. This result is in contrast to studies with other Ad5 mutants with lesions in the equivalent protein. Possible explanations for this difference are discussed. Replication of dl1520 in HeLa cells was significantly reduced compared to wild-type. Studies with a third mutant virus, pm2022, which contains a stop codon after the second codon of the 495R protein, suggest that very low levels of 495R protein activity are sufficient for a productive infection and significant transforming activity.
Collapse
|
14
|
|
15
|
Cook JL, Walker TA, Lewis AM, Ruley HE, Graham FL, Pilder SH. Expression of the adenovirus E1A oncogene during cell transformation is sufficient to induce susceptibility to lysis by host inflammatory cells. Proc Natl Acad Sci U S A 1986; 83:6965-9. [PMID: 2944117 PMCID: PMC386632 DOI: 10.1073/pnas.83.18.6965] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mammalian cells transformed by nononcogenic human adenoviruses exhibit high susceptibility to destruction by host mononuclear inflammatory cells. We have analyzed the viral gene regulation of the susceptibility of transformed cells to lysis by natural killer cells and activated macrophages. Comparisons of target cell lines transformed by overlapping segments of the adenovirus E1-transforming gene region revealed that isolated expression of a single oncogene, E1A, was sufficient to cause increased cytolytic susceptibility in the absence of detectable transformed cell-surface expression of viral transplantation antigens and irrespective of histocompatibility antigen identity between killer cells and target cells. These results suggest that oncogene functions that are not linked to the expression of previously recognized cell-surface target structures may actively induce neoplastic cell elimination by components of the host immune surveillance system.
Collapse
|
16
|
Branton PE, Rowe DT. Stabilities and interrelations of multiple species of human adenovirus type 5 early region 1 proteins in infected and transformed cells. J Virol 1985; 56:633-8. [PMID: 4057361 PMCID: PMC252624 DOI: 10.1128/jvi.56.2.633-638.1985] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early region 1A (E1A) of human adenovirus type 5 (Ad5) produces two mRNAs coding for phosphoproteins of 289 and 243 residues (289R and 243R). Each of these products has been shown to migrate on sodium dodecyl sulfate gels as two major and two minor species. In the present study, the stabilities of E1A polypeptides, as well as those of some other early Ad5 proteins, were studied in infected KB cells that were pulse-labeled with [35S]methionine and then chased in the presence or absence of cycloheximide. The E1B 58,000- and 19,000-molecular-weight proteins (58K and 19K proteins; 496R and 176R) as well as the E2A 72K DNA-binding protein were relatively stable over the 4-h chase period; turnover was less than 30%. The E1A species were considerably more unstable, with an overall half-life of about 60 min. Interestingly, it was found that when cycloheximide was present during the chase, E1A proteins were much more stable, and the half-life increased to about 240 min. Analysis of the stabilities of individual E1A species indicated that the products of the 1.1-kilobase mRNA (289R) had half lives (about 55 min) somewhat shorter than those (about 90 min) of the 0.9-kilobase mRNA products (243R). In addition, the faster-migrating species produced from each mRNA (molecular weights, 48,500 and 45,000) had significantly shorter half-lives than did the slower-migrating species (52,000 and 50,000). In the presence of cycloheximide, the faster-migrating species were still quite short-lived, but the half-lives of the 52K and 50K species were considerably increased. An examination of the kinetics of turnover of the various E1A species suggested that the faster-migrating forms may be precursors to the slower-migrating ones. Somewhat similar stabilities were also found for the various E1A species in Ad5-transformed 293 cells.
Collapse
|
17
|
Tremblay ML, Yee SP, Persson RH, Bacchetti S, Smiley JR, Branton PE. Activation and inhibition of expression of the 72,000-Da early protein of adenovirus type 5 in mouse cells constitutively expressing an immediate early protein of herpes simplex virus type 1. Virology 1985; 144:35-45. [PMID: 2998046 DOI: 10.1016/0042-6822(85)90302-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been previously reported that immediate early proteins of pseudorabies and cytomegalo viruses can substitute for the products of the human adenovirus type 5 (Ad5) E1A gene in the activation of early Ad5 transcription. In the present report the effect of one of the herpes simplex virus type 1 (HSV-1) immediate early genes, ICP4, on Ad5 early gene expression has been examined using mouse cell lines that constitutively express ICP4. These lines as well as nonproducers were infected with wild-type (wt) Ad5 or with various Ad5 E1A mutants and the levels of expression of the Ad5 E2A 72K DNA binding protein were measured by immunoprecipitation with a monoclonal antibody specific for 72K. With dl 312, which lacks E1A, some 72K expression was seen in nonproducer lines but levels were considerably higher in the producer lines. A similar result was also obtained using dl 312-infected nonproducer cells that were superinfected with HSV-1 virions. These data suggest that HSV-1 ICP4 can substitute for E1A in the activation of expression of early Ad5 proteins. With wt Ad5, 72K was also expressed at high levels in nonproducer mouse cells, however, in the ICP4 producer cell lines, a marked inhibition of 72K expression was observed and this inhibition correlated with the amount of ICP4 present. Using the E1A mutants pm 975 and hr 1, this inhibition was found to be specific for the products of the 1.1-kb E1A mRNA. These data suggest that ICP4 and E1A proteins either directly inhibit each other, or more likely, operate independently and competitively on factors required for viral gene activation.
Collapse
|
18
|
Bernards R, Van der Eb AJ. Adenovirus: transformation and oncogenicity. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 783:187-204. [PMID: 6391550 DOI: 10.1016/0167-4781(84)90029-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Polyoma middle T antigen requires cooperation from another gene to express the malignant phenotype in vivo. Mol Cell Biol 1984. [PMID: 6325896 DOI: 10.1128/mcb.4.4.755] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic potential of polyomavirus in newborn hamsters can be expressed by a recombinant encoding only the middle T protein. However, polyoma middle T requires the cooperation from small T to induce tumors in newborn rats. Similar complementary functions such as cocarcinogens or tumor promotors can be exerted by the simian virus 40 T antigens as well as by one or several products of the early region 1A of adenovirus 2.
Collapse
|
20
|
Asselin C, Gélinas C, Branton PE, Bastin M. Polyoma middle T antigen requires cooperation from another gene to express the malignant phenotype in vivo. Mol Cell Biol 1984; 4:755-60. [PMID: 6325896 PMCID: PMC368794 DOI: 10.1128/mcb.4.4.755-760.1984] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The oncogenic potential of polyomavirus in newborn hamsters can be expressed by a recombinant encoding only the middle T protein. However, polyoma middle T requires the cooperation from small T to induce tumors in newborn rats. Similar complementary functions such as cocarcinogens or tumor promotors can be exerted by the simian virus 40 T antigens as well as by one or several products of the early region 1A of adenovirus 2.
Collapse
|
21
|
Branton PE, Bayley ST, Graham FL. Transformation by human adenoviruses. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 780:67-94. [PMID: 3886009 DOI: 10.1016/0304-419x(84)90007-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When, approximately 10 years ago, it was shown that the functions essential for cell transformation were localized in a small region of the adenovirus genome, a DNA segment which at that time was thought to be capable of encoding two or three average-sized proteins at most, it seemed reasonable to hope that an understanding of the mechanisms by which adenoviruses transform cells might be quickly achieved. While such optimism might be forgiven, it was quite clearly naive in the extreme. As a consequence of mRNA splicing and the use of overlapping reading frames the number of proteins encoded within E1 is 2-3-times greater than would have been predicted a decade ago, and post-translational modifications may add another dimension of complexity. In fact it has taken nearly all of the past decade just to identify the proteins encoded in E1 and to characterize them in the most rudimentary way. However, we have now entered a period in which new information is accumulating at an extremely rapid rate as a result of several major technical and fundamental advances. Chief among these are the use of recombinant DNA techniques, particularly site-directed mutagenesis, which combined with methods for introducing mutations made in cloned sequences back into infectious virus, clearly represents a powerful approach to studying the functions of transforming proteins. In addition, the ability to express transforming proteins in bacteria and to produce large amounts of highly purified proteins which previously were only just detectable in infected and transformed cells is a major breakthrough. Advances in immunological techniques, particularly the development of monoclonal antibodies and antisera against synthetic peptides, have enormously simplified the task of detecting and characterizing E1 proteins. Finally, recent results suggesting that adenovirus transforming proteins may be functionally and structurally similar to other oncogenes brings a new perspective to the study of oncogenic transformation. Have all the proteins involved in transformation by adenoviruses been identified? It seems probable that all those virally coded proteins which play a major role are now known but of course minor players in the cast could still be waiting in the wings. We have pointed out that viral functions encoded outside region E1 may have some importance at least in initiation of transformation by virions and have speculated on the possibility that one or more of these may be involved in the integration of viral DNA into the host cell chromosome.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
22
|
Graham FL, Rowe DT, McKinnon R, Bacchetti S, Ruben M, Branton PE. Transformation by human adenoviruses. JOURNAL OF CELLULAR PHYSIOLOGY. SUPPLEMENT 1984; 3:151-63. [PMID: 6611340 DOI: 10.1002/jcp.1041210418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|