1
|
Kuan MI, Caruso LB, Zavala AG, Rana PSJB, O'Dowd JM, Tempera I, Fortunato EA. Human Cytomegalovirus Utilizes Multiple Viral Proteins to Regulate the Basement Membrane Protein Nidogen 1. J Virol 2022; 96:e0133622. [PMID: 36218358 PMCID: PMC9599421 DOI: 10.1128/jvi.01336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Nidogen 1 (NID1) is an important basement membrane protein secreted by many cell types. We previously found that human cytomegalovirus (HCMV) infection rapidly induced chromosome 1 breaks and that the basement membrane protein NID1, encoded near the 1q42 break site, was downregulated. We have now determined that the specific breaks in and of themselves did not regulate NID1, rather interactions between several viral proteins and the cellular machinery and DNA regulated NID1. We screened a battery of viral proteins present by 24 hours postinfection (hpi) when regulation was induced, including components of the incoming virion and immediate early (IE) proteins. Adenovirus (Ad) delivery of the tegument proteins pp71 and UL35 and the IE protein IE1 influenced steady-state (ss) NID1 levels. IE1's mechanism of regulation was unclear, while UL35 influenced proteasomal regulation of ss NID1. Real-time quantitative PCR (RT-qPCR) experiments determined that pp71 downregulated NID1 transcription. Surprisingly, WF28-71, a fibroblast clone that expresses minute quantities of pp71, suppressed NID1 transcription as efficiently as HCMV infection, resulting in the near absence of ss NID1. Sequence analysis of the region surrounding the 1q42 break sites and NID1 promoter revealed CCCTC-binding factor (CTCF) binding sites. Chromatin immunoprecipitation experiments determined that pp71 and CTCF were both bound at these two sites during HCMV infection. Expression of pp71 alone replicated this binding. Binding was observed as early as 1 hpi, and colocalization of pp71 and CTCF occurred as quickly as 15 min postinfection (pi) in infected cell nuclei. In fibroblasts where CTCF was knocked down, Adpp71 infection did not decrease NID1 transcription nor ss NID1 protein levels. Our results emphasize another aspect of pp71 activity during infection and identify this viral protein as a key contributor to HCMV's efforts to eliminate NID1. Further, we show, for the first time, direct interaction between pp71 and the cellular genome. IMPORTANCE We have found that human cytomegalovirus (HCMV) utilizes multiple viral proteins in multiple pathways to regulate a ubiquitous cellular basement membrane protein, nidogen-1 (NID1). The extent of the resources and the redundant methods that the virus has evolved to affect this control strongly suggest that its removal provides a life cycle advantage to HCMV. Our discoveries that one of the proteins that HCMV uses to control NID1, pp71, binds directly to the cellular DNA and can exert control when present in vanishingly small quantities may have broad implications in a wide range of infection scenarios. Dysregulation of NID1 in an immunocompetent host is not known to manifest complications during infection; however, in the naive immune system of a developing fetus, disruption of this developmentally critical protein could initiate catastrophic HCMV-induced birth defects.
Collapse
Affiliation(s)
- Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | | | - Anamaria G. Zavala
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Pranav S. J. B. Rana
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
2
|
Abualfaraj T, Hagkarim NC, Hollingworth R, Grange L, Jhujh S, Stewart GS, Grand RJ. The Promotion of Genomic Instability in Human Fibroblasts by Adenovirus 12 Early Region 1B 55K Protein in the Absence of Viral Infection. Viruses 2021; 13:2444. [PMID: 34960712 PMCID: PMC8708088 DOI: 10.3390/v13122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The adenovirus 12 early region 1B55K (Ad12E1B55K) protein has long been known to cause non-random damage to chromosomes 1 and 17 in human cells. These sites, referred to as Ad12 modification sites, have marked similarities to classic fragile sites. In the present report we have investigated the effects of Ad12E1B55K on the cellular DNA damage response and on DNA replication, considering our increased understanding of the pathways involved. We have compared human skin fibroblasts expressing Ad12E1B55K (55K+HSF), but no other viral proteins, with the parental cells. Appreciable chromosomal damage was observed in 55K+HSFs compared to parental cells. Similarly, an increased number of micronuclei was observed in 55K+HSFs, both in cycling cells and after DNA damage. We compared DNA replication in the two cell populations; 55K+HSFs showed increased fork stalling and a decrease in fork speed. When replication stress was introduced with hydroxyurea the percentage of stalled forks and replication speeds were broadly similar, but efficiency of fork restart was significantly reduced in 55K+HSFs. After DNA damage, appreciably more foci were formed in 55K+HSFs up to 48 h post treatment. In addition, phosphorylation of ATM substrates was greater in Ad12E1B55K-expressing cells following DNA damage. Following DNA damage, 55K+HSFs showed an inability to arrest in cell cycle, probably due to the association of Ad12E1B55K with p53. To confirm that Ad12E1B55K was targeting components of the double-strand break repair pathways, co-immunoprecipitation experiments were performed which showed an association of the viral protein with ATM, MRE11, NBS1, DNA-PK, BLM, TOPBP1 and p53, as well as with components of the replisome, MCM3, MCM7, ORC1, DNA polymerase δ, TICRR and cdc45, which may account for some of the observed effects on DNA replication. We conclude that Ad12E1B55K impacts the cellular DNA damage response pathways and the replisome at multiple points through protein-protein interactions, causing genomic instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roger J. Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK; (T.A.); (N.C.H.); (R.H.); (L.G.); (S.J.); (G.S.S.)
| |
Collapse
|
3
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
4
|
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 2014; 6:2155-85. [PMID: 24859341 PMCID: PMC4036536 DOI: 10.3390/v6052155] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
O'Dowd JM, Zavala AG, Brown CJ, Mori T, Fortunato EA. HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome. PLoS Pathog 2012; 8:e1003038. [PMID: 23209410 PMCID: PMC3510244 DOI: 10.1371/journal.ppat.1003038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/03/2012] [Indexed: 02/05/2023] Open
Abstract
Many viruses subvert the host cell's ability to mount and complete various DNA damage responses (DDRs) after infection. HCMV infection of permissive fibroblasts activates host DDRs at the time of viral deposition and during replication, but the DDRs remain uncompleted without arrest or apoptosis. We believe this was in part due to partitioning of the damage response and double strand break repair components. After extraction of soluble proteins, the localization of these components fell into three groups: specifically associated with the viral replication centers (RCs), diffused throughout the nucleoplasm and excluded from the RCs. Others have shown that cells are incapable of processing exogenously introduced damage after infection. We hypothesized that the inability of the cells to process damage might be due to the differential association of repair components within the RCs and, in turn, potentially preferential repair of the viral genome and compromised repair of the host genome. To test this hypothesis we used multiple strategies to examine repair of UV-induced DNA damage in mock and virus-infected fibroblasts. Comet assays indicated that repair was initiated, but was not completed in infected cells. Quantitative analysis of immunofluorescent localization of cyclobutane pyrimidine dimers (CPDs) revealed that after 24 h of repair, CPDs were significantly reduced in viral DNA, but not significantly changed in the infected host DNA. To further quantitate CPD repair, we developed a novel dual-color Southern protocol allowing visualization of host and viral DNA simultaneously. Combining this Southern methodology with a CPD-specific T4 endonuclease V alkaline agarose assay to quantitate repair of adducts, we found efficient repair of CPDs from the viral DNA but not host cellular DNA. Our data confirm that NER functions in HCMV-infected cells and almost exclusively repairs the viral genome to the detriment of the host's genome. Human cytomegalovirus (HCMV) is a leading cause of birth defects. This may be due in part to this virus' ability to inflict specific damage to its host's DNA, combined with the disruption of an infected cell's ability to repair damage. Earlier studies found that components of the cell's repair machinery were differentially associated with the HCMV viral replication centers in the nucleus. Experiments here extend this observation to include components of the machinery involved in UV lesion repair. We hypothesized that association of components of the DNA repair machinery within the viral replication centers could favor the repair of viral DNA, but more importantly, be detrimental to the repair of cellular DNA. Infected cells were irradiated and examined for repair by three different methods. In the course of this study, we developed a new technique allowing simultaneous evaluation of both the viral and host genomes in an infected cell. These experiments found rapid, selective removal of UV lesions from the viral and not the cellular DNA within infected cells. Our results indicate the differential association of certain cellular repair proteins with this virus may have far-reaching implications in the disease pathogenesis of HCMV infection.
Collapse
Affiliation(s)
- John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Anamaria G. Zavala
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Celeste J. Brown
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
6
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
7
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
8
|
Pelka P, Scimè A, Mandalfino C, Joch M, Abdulla P, Whyte P. Adenovirus E1A proteins direct subcellular redistribution of Nek9, a NimA-related kinase. J Cell Physiol 2007; 212:13-25. [PMID: 17443675 DOI: 10.1002/jcp.20983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A monoclonal antibody raised against adenovirus E1A-associated cellular proteins recognized Nek9, a NimA-related protein kinase. Subcellular fractionation and immunofluorescence indicated that Nek9 was primarily cytoplasmic with a small portion located in the nucleus whereas E1A was primarily nuclear. Although co-immunoprecipitation experiments indicated that nuclear Nek9 interacted, directly or indirectly, with E1A, the major effect of E1A was to diminish the amount of Nek9 in the nucleus suggesting that E1A alters the subcellular distribution of Nek9 and that the interaction is transient. A Nek9 deletion mutant lacking a central RCC1-like domain interacted stably with E1A and accumulated in the nucleus in the presence of E1A, possibly representing an intermediate stage of the normally transient Nek9/E1A interaction. The interaction of Nek9 with E1A was dependent on the N-terminal sequences of E1A. Attempts to stably overexpress either Nek9 or the kinase-inactive mutant in various cell lines were unsuccessful; however, the presence of E1A allowed stable overexpression of both proteins. These results suggest that E1A disrupts a nuclear function of Nek9.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Simpson DA, Livanos E, Heffernan TP, Kaufmann WK. Telomerase expression is sufficient for chromosomal integrity in cells lacking p53 dependent G1 checkpoint function. J Carcinog 2005; 4:18. [PMID: 16209708 PMCID: PMC1262734 DOI: 10.1186/1477-3163-4-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 10/06/2005] [Indexed: 11/23/2022] Open
Abstract
Background Secondary cultures of human fibroblasts display a finite lifespan ending at senescence. Loss of p53 function by mutation or viral oncogene expression bypasses senescence, allowing cell division to continue for an additional 10 – 20 doublings. During this time chromosomal aberrations seen in mitotic cells increase while DNA damage and decatenation checkpoint functions in G2 cells decrease. Methods To explore this complex interplay between chromosomal instability and checkpoint dysfunction, human fibroblast lines were derived that expressed HPV16E6 oncoprotein or dominant-negative alleles of p53 (A143V and H179Q) with or without the catalytic subunit of telomerase. Results Cells with normal p53 function displayed 86 – 93% G1 arrest after exposure to 1.5 Gy ionizing radiation (IR). Expression of HPV16E6 or p53-H179Q severely attenuated G1 checkpoint function (3 – 20% arrest) while p53-A143V expression induced intermediate attenuation (55 – 57% arrest) irrespective of telomerase expression. All cell lines, regardless of telomerase expression or p53 status, exhibited a normal DNA damage G2 checkpoint response following exposure to 1.5 Gy IR prior to the senescence checkpoint. As telomerase-negative cells bypassed senescence, the frequencies of chromosomal aberrations increased generally congruent with attenuation of G2 checkpoint function. Telomerase expression allowed cells with defective p53 function to grow >175 doublings without chromosomal aberrations or attenuation of G2 checkpoint function. Conclusion Thus, chromosomal instability in cells with defective p53 function appears to depend upon telomere erosion not loss of the DNA damage induced G1 checkpoint.
Collapse
Affiliation(s)
- Dennis A Simpson
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| | - Elizabeth Livanos
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| | - Timothy P Heffernan
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| | - William K Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
11
|
Abstract
The advent of advanced cell culture and cytogenetics techniques in the 1950s opened a new avenue for research on the pathogenic interactions between animal viruses and their hosts. Studies of many viruses revealed their ability to nonspecifically induce cytogenetic damage to their host cell's chromosomes. However, only three viruses, the oncogenic adenoviruses, herpes simplex virus (HSV) and human cytomegalovirus (HCMV), have been found to cause non-random, site-specific chromosomal damage. Adenovirus (Ad) type 12 induces fragility at four distinct loci (RNU1, RNU2, RN5S and PSU1) in many different types of human cells. A common feature of these loci is that they contain a repeated array of transcriptionally active genes encoding small structural RNAs. Site-specific induction of breaks also requires the virally encoded E1B protein of M(r) 55000 and the C-terminus of the cellular p53 protein. Analysis of the induction of damage by HSV and HCMV necessitates consideration of several factors, including the strain of virus used, the timing of infection, the type of cell used, and the multiplicity of infection. Both HSV strains 1 and 2 are cytotoxic, although the former seems to be more proficient at inducing damage. At early times post infection, HSV induces breaks and specific uncoiling of the centromeres of chromosomes 1, 9 and 16. This is followed at later times by a more complete severing of all of the chromosomes, termed pulverisation. Damage by HSV requires viral entry and de novo viral protein synthesis, with immediate early viral proteins responsible for the induction of breaks and uncoiling and early gene products (most likely nucleases) involved in the extensive pulverisation seen later. HCMV has been studied primarily in permissive human fibroblasts. Its ability to induce specific damage in chromosome 1 at two loci, 1q21 and 1q42, was only recently revealed as the cells must be in S-phase when they are infected for the breaks to be observed. In contrast to adenovirus and HSV, HCMV induction of specific breakage requires only viral entry into the cell and not de novo viral protein expression. This latter point may be a factor in its ability to cause damage in the developing fetal brain, where the most severe clinical manifestations of congenital infection are observed.
Collapse
Affiliation(s)
- Elizabeth A Fortunato
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | |
Collapse
|
12
|
Yu A, Fan HY, Liao D, Bailey AD, Weiner AM. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 2000; 5:801-10. [PMID: 10882116 DOI: 10.1016/s1097-2765(00)80320-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infection by adenovirus 12, transfection with the Ad12 E1B 55 kDa gene, or activation of p53 cause metaphase fragility of four loci (RNU1, PSU1, RNU2, and RN5S) each containing tandemly repeated genes for an abundant small RNA (U1, U2, and 5S RNA). We now show that loss of the Cockayne syndrome group B protein (CSB) or overexpression of the p53 carboxy-terminal domain induces fragility of the same loci; moreover, p53 interacts with CSB in vivo and in vitro. We propose that CSB functions as an elongation factor for transcription of structured RNAs, including some mRNAs. Activation of p53 would inhibit CSB, stalling transcription complexes and locally blocking chromatin condensation. Impaired transcription elongation may also explain the diverse clinical features of Cockayne syndrome.
Collapse
Affiliation(s)
- A Yu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
13
|
Fortunato EA, Dell'Aquila ML, Spector DH. Specific chromosome 1 breaks induced by human cytomegalovirus. Proc Natl Acad Sci U S A 2000; 97:853-8. [PMID: 10639169 PMCID: PMC15420 DOI: 10.1073/pnas.97.2.853] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the major viral cause of birth defects and a serious problem for immunocompromised individuals. Here we show that infection of cells with HCMV during the S-phase of the cell cycle results in two specific chromosome 1 breaks at positions 1q42 and 1q21. We demonstrate that purified virions, and not infected cell supernatant alone, are responsible for the damage. In addition, we show that the specific breaks occur when different sources of fibroblasts and strains of HCMV are used. Incubation of the virus with neutralizing antibody prevents the induction of breaks. However, UV-inactivated virus is as efficient as untreated virus in inducing specific damage to chromosome 1. Thus, there is a requirement for viral adsorption/penetration, but not new viral gene expression. This HCMV-mediated induction of site-specific damage in actively dividing cells may provide clues for the development of neurological defects in the congenitally infected infant.
Collapse
Affiliation(s)
- E A Fortunato
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0366, USA
| | | | | |
Collapse
|
14
|
Sanchez-Prieto R, de Alava E, Palomino T, Guinea J, Fernandez V, Cebrian S, LLeonart M, Cabello P, Martin P, San Roman C, Bornstein R, Pardo J, Martinez A, Diaz-Espada F, Barrios Y, Ramon y Cajal S. An association between viral genes and human oncogenic alterations: the adenovirus E1A induces the Ewing tumor fusion transcript EWS-FLI1. Nat Med 1999; 5:1076-9. [PMID: 10470089 DOI: 10.1038/12516] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant transformation of human cells requires the accumulation of multiple genetic alterations, such as the activation of oncogenes and loss of function of tumor suppressor genes or those related to genomic instability. Among the genetic alterations most frequently found in human tumors are chromosomal translocations that may result in the expression of chimeric products with transforming capability or are able to change the expression of oncogenes. We show here that the adenovirus early region 1A (E1A) gene can induce a specific human fusion transcript (EWS-FLI1) that is characteristic of Ewing tumors. This fusion transcript was detected by RT-PCR in normal human fibroblasts and keratinocytes after expression of the adenovirus E1A gene, as well as in human cell lines immortalized by adenoviruses. Cloning and sequencing of the RT-PCR product showed fusion points between EWS and FLI1 cDNA identical to those detected in Ewing tumors. In addition, we detected a chimeric protein by western blot analysis and immunoprecipitation and a t(11,22) by fluorescent in situ hybridization. This association between a single viral gene and a specific human fusion transcript indicates a direct link between viral genes and chromosome translocations, one of the hallmarks of many human tumors.
Collapse
MESH Headings
- Adenovirus E1A Proteins/genetics
- Adenovirus E1A Proteins/metabolism
- Adenoviruses, Human/genetics
- Base Sequence
- Cell Line
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 22/genetics
- Fibroblasts
- Gene Expression Regulation, Neoplastic
- Genes, Viral/genetics
- Genes, Viral/physiology
- Humans
- In Situ Hybridization, Fluorescence
- Keratinocytes
- Molecular Sequence Data
- Molecular Weight
- Mutation
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Oncogenes/genetics
- Oncogenes/physiology
- Proto-Oncogene Protein c-fli-1
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA-Binding Protein EWS
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- R Sanchez-Prieto
- Department of Pathology, Clinica Puerta de Hierro, San Martin de Porres 4, 28035 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Philpott SM, Buehring GC. Defective DNA repair in cells with human T-cell leukemia/bovine leukemia viruses: role of tax gene. J Natl Cancer Inst 1999; 91:933-42. [PMID: 10359545 DOI: 10.1093/jnci/91.11.933] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus (HTLV)/bovine leukemia virus (BLV) group retroviruses, which cause hematopoietic cancers, encode a unique protein, Tax, involved in the transformation of infected cells. Our purpose was to determine whether the mechanism by which Tax protein induces transformation in HTLV- or BLV-infected cells involves DNA damage. METHODS We used a micronucleus assay to measure chromosomal damage and alkali denaturation analysis to test host-cell DNA integrity in cells infected with HTLV, BLV, or simian T-lymphotropic virus or in cells transfected with the tax gene of HTLV or BLV. Controls included uninfected cells and cells infected with other oncogenic retroviruses or oncogenic DNA viruses. We used a plasmid reactivation assay to examine whether the damage might be due to the inhibition of DNA repair. To ascertain which of several repair pathways might be inhibited, chemical methods were used to selectively introduce lesions repaired by specific pathways into the reporter plasmid. RESULTS The presence of Tax was associated with DNA damage. HTLV- or BLV-infected or tax-transfected cells showed normal ability to repair damage induced by deoxyribonuclease I or psoralen but markedly decreased ability to repair damage induced by UV light, quercetin, or hydrogen peroxide. CONCLUSIONS These data suggest that the DNA repair pathway most inhibited by Tax is base-excision repair of oxidative damage. To our knowledge, this is the first report demonstrating inhibition of DNA repair by any retrovirus and suggests that this inhibition of DNA repair may contribute to the mechanism of cell transformation by the HTLV/BLV group of viruses.
Collapse
Affiliation(s)
- S M Philpott
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley 94720, USA
| | | |
Collapse
|
16
|
Li Z, Bailey AD, Buchowski J, Weiner AM. A tandem array of minimal U1 small nuclear RNA genes is sufficient to generate a new adenovirus type 12-inducible chromosome fragile site. J Virol 1998; 72:4205-11. [PMID: 9557709 PMCID: PMC109649 DOI: 10.1128/jvi.72.5.4205-4211.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection of human cells with adenovirus serotype 12 (Ad12) induces metaphase fragility of four, and apparently only four, chromosomal loci. Surprisingly, each of these four loci corresponds to a cluster of genes encoding a small abundant structural RNA: the RNU1 and RNU2 loci contain tandemly repeated genes encoding U1 and U2 small nuclear RNAs (snRNAs), respectively; the PSU1 locus is a cluster of degenerate U1 genes; and the RN5S locus contains the tandemly repeated genes encoding 5S rRNA. These observations suggested that high local levels of transcription, in combination with Ad12 early functions, can interfere with metaphase chromatin packing. In support of this hypothesis, we and others found that an artificial tandem array of transcriptionally active, but not inactive, U2 snRNA genes would generate a novel Ad12-inducible fragile site. Although U1 and U2 snRNA are both transcribed by RNA polymerase II and share similar enhancer, promoter, and terminator signals, the human U1 promoter is clearly more complex than that of U2. In addition, the natural U1 tandem repeat unit exceeds 45 kb, whereas the U2 tandem repeat unit is only 6.1 kb. We therefore asked whether an artificial array of minimal U1 genes would also generate a novel Ad12-inducible fragile site. The exogenous U1 genes were marked by an innocuous U72C point mutation within the U1 coding region so that steady-state levels of U1 snRNA derived from the artificial array could be quantified by a simple primer extension assay. We found that the minimal U1 genes were efficiently expressed and were as effective as minimal U2 genes in generating a novel Ad12-inducible fragile site. Thus, despite significant differences in promoter architecture and overall gene organization, the active U1 transcription units suffice to generate a new virally inducible fragile site.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
17
|
Li Z, Yu A, Weiner AM. Adenovirus type 12-induced fragility of the human RNU2 locus requires p53 function. J Virol 1998; 72:4183-91. [PMID: 9557707 PMCID: PMC109647 DOI: 10.1128/jvi.72.5.4183-4191.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adenovirus type 12 (Ad12) infection of human cells induces four chromosomal fragile sites corresponding to the U1 small nuclear RNA (snRNA) genes (the RNU1 locus), the U2 snRNA genes (RNU2), the U1 snRNA pseudogenes (PSU1), and the 5S rRNA genes (RN5S). Ad12-induced fragility of the RNU2 locus requires U2 snRNA transcriptional regulatory elements and viral early functions but not viral replication or integration, or chromosomal sequences flanking the RNU2 locus. We now show that Ad12 cannot induce the RNU1, RNU2, or PSU1 fragile sites in Saos-2 cells lacking the p53 and retinoblastoma (Rb) proteins but that viral induction of fragility is rescued in these cells when the expression of wild-type p53 or selected hot-spot mutants (i.e., V143A, R175H, R248W, and R273H) is restored by transient expression or stable retroviral transduction. We also observed weak constitutive fragility of the RNU1 and RNU2 loci in cells belonging to xeroderma pigmentosum complementation groups B and D (XPB and XPD) which are partially defective in the ERCC2 (XPD) and ERCC3 (XPB) helicase activities shared between the repairosome and the RNA polymerase H basal transcription factor TFIIH. We propose a model for Ad12-induced chromosome fragility in which interaction of p53 with the Ad12 E1B 55-kDa transforming protein (and possibly E4orf6) induces a p53 gain of function which ultimately perturbs the RNA polymerase II basal transcription apparatus. The p53 gain of function could interfere with chromatin condensation either by blocking mitotic shutdown of U1 and U2 snRNA transcription or by phenocopying global or local DNA damage. Specific fragilization of the RNU1, RNU2, and PSU1 loci could reflect the unusually high local concentration of strong transcription units or the specialized nature of the U1 and U2 snRNA transcription apparatus.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
18
|
MacArthur HL, Agarwal ML, Bacchetti S. Induction of fragility at the human RNU2 locus by cytosine arabinoside is dependent upon a transcriptionally competent U2 small nuclear RNA gene and the expression of p53. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:379-89. [PMID: 9661701 DOI: 10.1007/bf02673748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosomal fragile sites are regions that are intrinsically unstable and are susceptible to experimentally induced damage. In most cases, the target and mechanism of induction of fragility are unknown. Using ectopic integration of engineered DNA arrays to create "new" fragile sites, we and others have previously shown that the transcriptionally competent U2 gene is necessary and sufficient for induction of fragility at the RNU2 locus upon infection of human cells with Adenovirus 12. In the present study we have investigated the response of the RNU2 locus to cytosine arabinoside (araC), an inhibitor of DNA polymerases and a common inducer of fragile sites. We demonstrate that the RNU2 locus is sensitive to the drug and that araC-induced fragility is dependent upon a functional U2 gene and on the expression of the cellular p53 protein. Our results identify a novel DNA structure associated with fragile sites and suggest a role for transcription and repair processes in RNU2 fragility.
Collapse
Affiliation(s)
- H L MacArthur
- Department of Pathology, McMaster University, Hamilton, Ont., Canada
| | | | | |
Collapse
|
19
|
Bailey AD, Li Z, Pavelitz T, Weiner AM. Adenovirus type 12-induced fragility of the human RNU2 locus requires U2 small nuclear RNA transcriptional regulatory elements. Mol Cell Biol 1995; 15:6246-55. [PMID: 7565777 PMCID: PMC230876 DOI: 10.1128/mcb.15.11.6246] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Infection of human cells with oncogenic adenovirus type 12 (Ad12) induces four specific chromosome fragile sites. Remarkably, three of these sites appear to colocalize with tandem arrays of genes encoding small, abundant, ubiquitously expressed structural RNAs--the RNU1 locus encoding U1 small nuclear RNA (snRNA), the RNU2 locus encoding U2 snRNA, and the RN5S locus encoding 5S rRNA. Recently, an artificial tandem array of the natural 5.8-kb U2 repeat unit has been shown to generate a new Ad12-inducible fragile site (Y.-P. Li, R. Tomanin, J. R. Smiley, and S. Bacchetti, Mol. Cell. Biol. 13:6064-6070, 1993), demonstrating that the U2 repeat unit alone is sufficient for virally induced fragility. To identify elements within the U2 repeat unit that are required for virally induced fragility, we generated cell lines containing artificial tandem arrays of the entire 5.8-kb repeat unit, an 834-bp fragment spanning the U2 gene alone, or the same 834-bp fragment from which key U2 transcriptional regulatory elements had been deleted. The U2 snRNA coding regions within each artificial array were marked by an innocuous single base change (U to C at position 87) so that the relative expression of supernumerary and endogenous U2 genes could be monitored by a primer extension assay. We find that artificial arrays of both the 5.8- and the 0.8-kb U2 repeat units are fragile but that arrays lacking either the distal sequence element or both the distal and the proximal sequence elements of the promoter are not. Surprisingly, variations in repeat copy number and/or transcriptional activity of the artificial arrays do not appear to correlate with the degree of Ad12-inducible fragility. We conclude that U2 transcriptional regulatory elements are required for virally induced fragility but not necessarily U2 snRNA transcription per se.
Collapse
Affiliation(s)
- A D Bailey
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA
| | | | | | | |
Collapse
|
20
|
Gargano S, Wang P, Rusanganwa E, Bacchetti S. The transcriptionally competent U2 gene is necessary and sufficient for adenovirus type 12 induction of the fragile site at 17q21-22. Mol Cell Biol 1995; 15:6256-61. [PMID: 7565778 PMCID: PMC230877 DOI: 10.1128/mcb.15.11.6256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenovirus type 12 induces four fragile sites upon infection of human cells. The U2 locus, consisting of up to 20 tandem repeats of a 5.8-kbp monomer, maps at the most sensitive of these sites at 17q21-22. We have previously shown that an artificial U2 locus integrated into the human genome generates a new virus-induced fragile site. To determine which elements within the U2 monomer are responsible for fragility, we constructed loci consisting of tandem repeats of subfragments of the U2 monomer. With this approach, we demonstrate that a transcriptionally competent U2 gene is necessary and sufficient for virus-induced fragility and that no other element within the 5.8-kbp monomer contributes to this effect.
Collapse
Affiliation(s)
- S Gargano
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Generation of a new adenovirus type 12-inducible fragile site by insertion of an artificial U2 locus in the human genome. Mol Cell Biol 1993. [PMID: 8413208 DOI: 10.1128/mcb.13.10.6064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with adenovirus type 12 (Ad12) induces four fragile sites in the human genome (H.F. Stich, G.L. van Hoosier, and J.J. Trentin, Exp. Cell Res. 34:400-403, 1964; H. zur Hausen, J. Virol. 1:1174-1185, 1967). The major site, at 17q21-22, contains the U2 gene cluster, which is specifically disrupted by infection in at least a percentage of the cells (D.M. Durnam, J.C. Menninger, S.H. Chandler, P.P. Smith, and J.K. McDougall, Mol. Cell. Biol. 8:1863-1867, 1988). For direct assessment of whether the U2 locus is the target of the Ad12 effect, an artificial locus, constructed in vitro and consisting of tandem arrays of the U2 6-kbp monomer, was transfected into human cells. We report that integration of this artificial locus on the p arm of chromosome 13 creates a new Ad12-inducible fragile site.
Collapse
|
22
|
Li YP, Tomanin R, Smiley JR, Bacchetti S. Generation of a new adenovirus type 12-inducible fragile site by insertion of an artificial U2 locus in the human genome. Mol Cell Biol 1993; 13:6064-70. [PMID: 8413208 PMCID: PMC364666 DOI: 10.1128/mcb.13.10.6064-6070.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infection with adenovirus type 12 (Ad12) induces four fragile sites in the human genome (H.F. Stich, G.L. van Hoosier, and J.J. Trentin, Exp. Cell Res. 34:400-403, 1964; H. zur Hausen, J. Virol. 1:1174-1185, 1967). The major site, at 17q21-22, contains the U2 gene cluster, which is specifically disrupted by infection in at least a percentage of the cells (D.M. Durnam, J.C. Menninger, S.H. Chandler, P.P. Smith, and J.K. McDougall, Mol. Cell. Biol. 8:1863-1867, 1988). For direct assessment of whether the U2 locus is the target of the Ad12 effect, an artificial locus, constructed in vitro and consisting of tandem arrays of the U2 6-kbp monomer, was transfected into human cells. We report that integration of this artificial locus on the p arm of chromosome 13 creates a new Ad12-inducible fragile site.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Blotting, Southern
- Chromosome Fragile Sites
- Chromosome Fragility
- Chromosome Mapping
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 17
- Cloning, Molecular
- DNA Damage
- Genes, Synthetic
- Genome, Human
- Humans
- Microscopy, Fluorescence
- Multigene Family
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nuclear/genetics
- Transfection
- Tumor Cells, Cultured
- Virus Integration/physiology
Collapse
Affiliation(s)
- Y P Li
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993. [PMID: 7684492 DOI: 10.1128/mcb.13.6.3231] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome.
Collapse
|
24
|
Panning B, Smiley JR. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993; 13:3231-44. [PMID: 7684492 PMCID: PMC359768 DOI: 10.1128/mcb.13.6.3231-3244.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome.
Collapse
Affiliation(s)
- B Panning
- Pathology Department, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
25
|
Johnson PA, Miyanohara A, Levine F, Cahill T, Friedmann T. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 1992; 66:2952-65. [PMID: 1373198 PMCID: PMC241054 DOI: 10.1128/jvi.66.5.2952-2965.1992] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-defective mutants of herpes simplex virus type 1 (HSV-1) may prove useful as vectors for gene transfer, particularly to nondividing cells. Cgal delta 3 is an immediate-early gene 3 (IE 3) deletion mutant of HSV-1 that expresses the lacZ gene of Escherichia coli from the human cytomegalovirus immediate-early control region but does not express viral early or late genes. This vector was able to efficiently infect and express lacZ in cells refractory to traditional methods of gene transfer. However, 1 to 3 days postinfection, Cgal delta 3 induced cytopathic effects (CPE) in many cell types, including neurons. In human primary fibroblasts Cgal delta 3 induced chromosomal aberrations and host cell DNA fragmentation. Other HSV-1 strains that caused CPE, tested under conditions of viral replication-inhibition, included mutants of the early gene UL42, the virion host shutoff function, single mutants of IE 1, IE 2, and IE 3, and double mutants of IE 3 and 4 and IE 3 and 5. Inhibition of viral gene expression by UV irradiation of virus stocks or by preexposure of cells to interferon markedly reduced the CPE. We conclude from these studies that HSV-1 IE gene expression is sufficient for the induction of CPE, although none of the five IE gene products appear to be solely responsible. After infection of human fibroblasts with Cgal delta 3 at a low multiplicity of infection, we were able to recover up to 6% of the input virus 2 weeks later by a superinfection-rescue procedure, even though the virally transduced human cytomegalovirus-lacZ transgene was not expressed at this time. It is therefore likely that inhibition or inactivation of viral IE gene expression, either for establishing latency or for the long-term transduction of foreign genes by HSV-1 vectors, is essential to avoid the death of infected cells.
Collapse
Affiliation(s)
- P A Johnson
- Department of Pediatrics, University of California, San Diego, La Jolla 92093-0634
| | | | | | | | | |
Collapse
|
26
|
Caporossi D, Bacchetti S, Nicoletti B. Synergism between aphidicolin and adenoviruses in the induction of breaks at fragile sites on human chromosomes. CANCER GENETICS AND CYTOGENETICS 1991; 54:39-53. [PMID: 1648440 DOI: 10.1016/0165-4608(91)90028-s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infection of human embryonic kidney cells with adenoviruses results in the induction of gaps and breaks in cell chromosomes. With adenovirus type 12, cytogenetic damage is known to occur primarily at fragile sites on chromosomes 1 and 17. We have mapped adenovirus type 5-induced breaks and have observed that, although they occur on all chromosomes, they are localized primarily on bands where fragile sites have been mapped. The susceptibility of fragile sites to adenovirus led us to investigate their expression upon combined treatments with virus and aphidicolin, a frequently used inducer of fragile sites. Under these experimental conditions, the frequency of damage at all sites was found to increase significantly, and the magnitude of such increases indicated a synergistic effect between drug and virus.
Collapse
Affiliation(s)
- D Caporossi
- Department of Public Health and Cellular Biology, II University of Rome, Italy
| | | | | |
Collapse
|
27
|
Stewart N, Bacchetti S. Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 1991; 180:49-57. [PMID: 1845837 DOI: 10.1016/0042-6822(91)90008-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression of the Simian virus 40 (SV40) early region in human cells results in the induction of chromosomal aberrations and polyploidy, and in transformation. To understand how genetic damage occurs and what role it plays in transformation, human diploid fibroblasts and embryonic kidney cells were transfected with plasmids encoding wild type or mutant forms of the viral early region, and the neo gene. Clones selected for G418 resistance and expressing viral genes were initially analyzed within 20 cell divisions. Our results demonstrate that expression of the SV40 large T antigen is sufficient for the induction of chromosomal damage and ploidy changes, and that small t does not contribute to these processes. Mutant plasmids lacking the SV40 origin of DNA replication were as proficient as wild type plasmids, indicating that viral DNA replication is not required for cytogenetic damage. We have also shown that chromosome aberrations, but not necessarily polyploidy, increase in frequency and complexity upon subculturing of the clones regardless of whether such populations arrest at crisis or yield immortal lines. Our results are compatible with the hypothesis that large T antigen destabilizes the cellular genome, and that specific mutations arising from this process may contribute to cell immortalization.
Collapse
Affiliation(s)
- N Stewart
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|