1
|
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem Pharmacol 2024; 225:116270. [PMID: 38734316 DOI: 10.1016/j.bcp.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.
Collapse
Affiliation(s)
- Martyna Pociupany
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Hill MAM, Satchell T, Troyer RM. Detection of Felis catus Gammaherpesvirus 1 in Domestic Cat Saliva: Prevalence, Risk Factors, and Attempted Virus Isolation. Pathogens 2024; 13:111. [PMID: 38392850 PMCID: PMC10891546 DOI: 10.3390/pathogens13020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Felis catus gammaherpesvirus 1 (FcaGHV1) infects domestic cats worldwide, yet it has not been successfully propagated in cell culture, and little is known about how it is shed and transmitted. To investigate the salivary shedding of FcaGHV1, we quantified FcaGHV1 DNA in feline saliva by qPCR. For FcaGHV1-positive saliva, we sequenced a portion of the viral glycoprotein B (gB) gene and attempted to isolate the infectious virus by passage in several felid and non-felid cell lines. We detected FcaGHV1 DNA in 45/227 (19.8%) saliva samples with variable viral DNA loads from less than 100 to greater than 3 million copies/mL (median 4884 copies/mL). Multiple saliva samples collected from an infected cat over a two-month period were consistently positive, indicating that chronic shedding can occur for at least two months. Cat age, sex, and health status were not associated with shedding prevalence or viral DNA load in saliva. Feral status was also not associated with shedding prevalence. However, feral cats had significantly higher FcaGHV1 DNA load than non-feral cats. Sequencing of FcaGHV1 gB showed low sequence diversity and >99.5% nucleotide identity to the worldwide consensus FcaGHV1 gB sequence. We did not detect virus replication during the passage of FcaGHV1-positive saliva in cell culture, as indicated by consistently negative qPCR on cell lysate and supernatant. To our knowledge, these data show for the first time that cats in Canada are infected with FcaGHV1. The data further suggest that shedding of FcaGHV1 in saliva is common, can occur chronically over an extended period of time, and may occur at higher levels in feral compared to non-feral cats.
Collapse
Affiliation(s)
- Malcolm A. M. Hill
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada;
| | | | - Ryan M. Troyer
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada;
| |
Collapse
|
3
|
Wang Q, Zhu N, Hu J, Wang Y, Xu J, Gu Q, Lieberman PM, Yuan Y. The mTOR inhibitor manassantin B reveals a crucial role of mTORC2 signaling in Epstein-Barr virus reactivation. J Biol Chem 2020; 295:7431-7441. [PMID: 32312752 PMCID: PMC7247311 DOI: 10.1074/jbc.ra120.012645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
Lytic replication of Epstein-Barr virus (EBV) is not only essential for its cell-to-cell spread and host-to-host transmission, but it also contributes to EBV-induced oncogenesis. Thus, blocking EBV lytic replication could be a strategy for managing EBV-associated diseases. Previously, we identified a series of natural lignans isolated from the roots of Saururus chinensis (Asian lizard's tail) that efficiently block EBV lytic replication and virion production with low cytotoxicity. In this study, we attempted to elucidate the molecular mechanism by which these lignans inhibit EBV lytic replication. We found that a representative compound, CSC27 (manassantin B), inhibits EBV lytic replication by suppressing the expression of EBV immediate-early gene BZLF1 via disruption of AP-1 signal transduction. Further analysis revealed that manassantin B specifically blocks the mammalian target of rapamycin complex 2 (mTORC2)-mediated phosphorylation of AKT Ser/Thr protein kinase at Ser-473 and protein kinase Cα (PKCα) at Ser-657. Using phosphoinositide 3-kinase-AKT-specific inhibitors for kinase mapping and shRNA-mediated gene silencing, we validated that manassantin B abrogates EBV lytic replication by inhibiting mTORC2 activity and thereby blocking the mTORC2-PKC/AKT-signaling pathway. These results suggest that mTORC2 may have utility as an antiviral drug target against EBV infections and also reveal that manassantin B has potential therapeutic value for managing cancers that depend on mTORC2 signaling for survival.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Nannan Zhu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiayuan Hu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yan Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Xu
- School of Pharmacy, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Gu
- School of Pharmacy, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | | | - Yan Yuan
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
4
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
6
|
Macaca arctoides gammaherpesvirus 1 (strain herpesvirus Macaca arctoides): virus sequence, phylogeny and characterisation of virus-transformed macaque and rabbit cell lines. Med Microbiol Immunol 2018; 208:109-129. [PMID: 30291474 DOI: 10.1007/s00430-018-0565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Herpesvirus Macaca arctoides (HVMA) has the propensity to transform macaque lymphocytes to lymphoblastoid cells (MAL-1). Inoculation of rabbits with cell-free virus-containing supernatant resulted in the development of malignant lymphomas and allowed isolation of immortalised HVMA-transformed rabbit lymphocytes (HTRL). In this study, the HVMA genome sequence (approx. 167 kbp), its organisation, and novel aspects of virus latency are presented. Ninety-one open reading frames were identified, of which 86 were non-repetitive. HVMA was identified as a Lymphocryptovirus closely related to Epstein-Barr virus, suggesting the designation as 'Macaca arctoides gammaherpesvirus 1' (MarcGHV-1). In situ lysis gel and Southern blot hybridisation experiments revealed that the MAL-1 cell line contains episomal and linear DNA, whereas episomal DNA is predominantly present in HTRL. Integration of viral DNA into macaque and rabbit host cell genomes was demonstrated by fluorescence in situ hybridisation on chromosomal preparations. Analysis of next-generation sequencing data confirmed this finding. Approximately 400 read pairs represent the overlap between macaque and MarcGHV-1 DNA. Both, MAL-1 cells and HTRL show characteristics of a polyclonal tumour with B- and T-lymphocyte markers. Based on analysis of viral gene expression and immunohistochemistry, the persistence of MarcGHV-1 in MAL-1 cells resemble the latency type III, whereas the expression pattern observed in HTRL was more comparable with latency type II. There was no evidence of the presence of STLV-1 proviral DNA in MAL-1 and HTRL. Due to the similarity to EBV-mediated cell transformation, MarcGHV-1 expands the available in vitro models by simian and rabbit cell lines.
Collapse
|
7
|
Kim DE, Jung S, Ryu HW, Choi M, Kang M, Kang H, Yuk HJ, Jeong H, Baek J, Song JH, Kim J, Kang H, Han SB, Oh SR, Cho S. Selective oncolytic effect in Epstein-Barr virus (EBV)-associated gastric carcinoma through efficient lytic induction by Euphorbia extracts. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
Kato A, Imai K, Sato H, Ogata Y. Prevalence of Epstein-Barr virus DNA and Porphyromonas gingivalis in Japanese peri-implantitis patients. BMC Oral Health 2017; 17:148. [PMID: 29233156 PMCID: PMC5727789 DOI: 10.1186/s12903-017-0438-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022] Open
Abstract
Background Peri-implantitis (PI) is an inflammatory reaction associated with functional deterioration of supporting bones around the dental implant. Recent studies suggested Epstein–Barr virus (EBV) is involved in the pathogenesis of periodontitis. We investigated the association between EBV and Porphyromonas gingivalis in Japanese PI patients. Methods Fifteen periodontally healthy individuals, 15 healthy implant patients and 15 PI patients were recruited. Forty five subgingival plaque samples were collected from the deepest probing pocket depth (PPD) site from each patient. Real-time PCR was used to detect EBV DNA and P. gingivalis. Results EBV and P. gingivalis were detected in 7 and 3 PPD sites of the healthy controls, in 9 and 4 PPD sites of the healthy implants, and in 13 and 14 PPD sites of the PI patients. P. gingivalis and coexistence of EBV and P. gingivalis were detected significantly higher in the PI patients than healthy controls and healthy implant patients. EBV was detected significantly higher in the PI patients than healthy controls. Conclusions Higher levels of EBV and P. gingivalis were detected in PPD sites of PI patients. These results suggest that coexistence of EBV and P. gingivalis may serve pathogenic factors cause for PI in Japanese dental patients.
Collapse
Affiliation(s)
- Ayako Kato
- Yorimasa Ogata, Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Skakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Kenichi Imai
- Department of Microbiology, Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, 102-8310, Japan
| | - Hiroki Sato
- Yorimasa Ogata, Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Skakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Yorimasa Ogata
- Yorimasa Ogata, Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Skakaecho-nishi, Matsudo, Chiba, 271-8587, Japan.
| |
Collapse
|
9
|
Huang HH, Chen CS, Wang WH, Hsu SW, Tsai HH, Liu ST, Chang LK. TRIM5α Promotes Ubiquitination of Rta from Epstein-Barr Virus to Attenuate Lytic Progression. Front Microbiol 2017; 7:2129. [PMID: 28105027 PMCID: PMC5214253 DOI: 10.3389/fmicb.2016.02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 12/04/2022] Open
Abstract
Replication and transcription activator (Rta), a key protein expressed by Epstein–Barr virus (EBV) during the immediate-early stage of the lytic cycle, is responsible for the activation of viral lytic genes. In this study, GST-pulldown and coimmunoprecipitation assays showed that Rta interacts in vitro and in vivo with TRIM5α, a host factor known to be involved in the restriction of retroviral infections. Confocal microscopy results revealed that Rta colocalizes with TRIM5α in the nucleus during lytic progression. The interaction involves 190 amino acids in the N-terminal of Rta and the RING domain in TRIM5α, and it was further found that TRIM5α acts as an E3 ubiquitin ligase to promote Rta ubiquitination. Overexpression of TRIM5α reduced the transactivating capabilities of Rta, while reducing TRIM5α expression enhanced EBV lytic protein expression and DNA replication. Taken together, these results point to a critical role for TRIM5α in attenuating EBV lytic progression through the targeting of Rta for ubiquitination, and suggest that the restrictive capabilities of TRIM5α may go beyond retroviral infections.
Collapse
Affiliation(s)
- Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Chien-Sin Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Wen-Hung Wang
- Department of Internal Medicine, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Hsiao-Han Tsai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University Taoyuan, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| |
Collapse
|
10
|
Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies. PLoS One 2015; 10:e0145994. [PMID: 26717578 PMCID: PMC4696655 DOI: 10.1371/journal.pone.0145994] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV lytic cycle reactivation from latency.
Collapse
|
11
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
12
|
Nothias-Scaglia LF, Pannecouque C, Renucci F, Delang L, Neyts J, Roussi F, Costa J, Leyssen P, Litaudon M, Paolini J. Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication. JOURNAL OF NATURAL PRODUCTS 2015; 78:1277-1283. [PMID: 25970561 DOI: 10.1021/acs.jnatprod.5b00073] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recently, new daphnane, tigliane, and jatrophane diterpenoids have been isolated from various Euphorbiaceae species, of which some have been shown to be potent inhibitors of chikungunya virus (CHIKV) replication. To further explore this type of compound, the antiviral activity of a series of 29 commercially available natural diterpenoids was evaluated. Phorbol-12,13-didecanoate (11) proved to be the most potent inhibitor, with an EC50 value of 6.0 ± 0.9 nM and a selectivity index (SI) of 686, which is in line with the previously reported anti-CHIKV potency for the structurally related 12-O-tetradecanoylphorbol-13-acetate (13). Most of the other compounds exhibited low to moderate activity, including an ingenane-type diterpene ester, compound 28, with an EC50 value of 1.2 ± 0.1 μM and SI = 6.4. Diterpene compounds are known also to inhibit HIV replication, so the antiviral activities of compounds 1-29 were evaluated also against HIV-1 and HIV-2. Tigliane- (4β-hydroxyphorbol analogues 10, 11, 13, 15, 16, and 18) and ingenane-type (27 and 28) diterpene esters were shown to inhibit HIV replication in vitro at the nanomolar level. A Pearson analysis performed with the anti-CHIKV and anti-HIV data sets demonstrated a linear relationship, which supported the hypothesis made that PKC may be an important target in CHIKV replication.
Collapse
Affiliation(s)
- Louis-Félix Nothias-Scaglia
- †Laboratoire de Chimie de Produits Naturels, UMR CNRS SPE 6134, University of Corsica, 20250, Corte, France
- ‡Institut de Chimie des Substances Naturelles CNRS-ICSN UPR 2301, University Paris-Sud, LabEx CEBA, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Christophe Pannecouque
- §Laboratory for Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Franck Renucci
- †Laboratoire de Chimie de Produits Naturels, UMR CNRS SPE 6134, University of Corsica, 20250, Corte, France
| | - Leen Delang
- §Laboratory for Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Johan Neyts
- §Laboratory for Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Fanny Roussi
- ‡Institut de Chimie des Substances Naturelles CNRS-ICSN UPR 2301, University Paris-Sud, LabEx CEBA, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Jean Costa
- †Laboratoire de Chimie de Produits Naturels, UMR CNRS SPE 6134, University of Corsica, 20250, Corte, France
| | - Pieter Leyssen
- §Laboratory for Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Marc Litaudon
- ‡Institut de Chimie des Substances Naturelles CNRS-ICSN UPR 2301, University Paris-Sud, LabEx CEBA, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Julien Paolini
- †Laboratoire de Chimie de Produits Naturels, UMR CNRS SPE 6134, University of Corsica, 20250, Corte, France
| |
Collapse
|
13
|
Gonnella R, Granato M, Farina A, Santarelli R, Faggioni A, Cirone M. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1586-95. [PMID: 25827954 DOI: 10.1016/j.bbamcr.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 01/14/2023]
Abstract
PKC activation by combining TPA with sodium butyrate (T/B) represents the most effective and widely used strategy to induce the Epstein-Barr virus (EBV) lytic cycle. The results obtained in this study show that novel PKCθ is involved in such process and that it acts through the activation of p38 MAPK and autophagy induction. Autophagy, a mechanism of cellular defense in stressful conditions, is manipulated by EBV to enhance viral replication. Besides promoting the EBV lytic cycle, the activation of p38 and autophagy resulted in a pro-survival effect, as indicated by p38 or ATG5 knocking down experiments. However, this pro-survival role was counteracted by a pro-death activity of PKCθ, due to the dephosphorylation of AKT. In conclusion, this study reports, for the first time, that T/B activates a PKCθ-p38 MAPK axis in EBV infected B cells, that promotes the viral lytic cycle and cell survival and dephosphorylates AKT, balancing cell life and cell death.
Collapse
Affiliation(s)
- Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| |
Collapse
|
14
|
Hanaki Y, Yanagita RC, Sugahara T, Aida M, Tokuda H, Suzuki N, Irie K. Synthesis and biological activities of the amide derivative of aplog-1, a simplified analog of aplysiatoxin with anti-proliferative and cytotoxic activities. Biosci Biotechnol Biochem 2015; 79:888-95. [PMID: 25612633 DOI: 10.1080/09168451.2014.1002452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aplog-1 is a simplified analog of the tumor-promoting aplysiatoxin with anti-proliferative and cytotoxic activities against several cancer cell lines. Our recent findings have suggested that protein kinase Cδ (PKCδ) could be one of the target proteins of aplog-1. In this study, we synthesized amide-aplog-1 (3), in which the C-1 ester group was replaced with an amide group, to improve chemical stability in vivo. Unfortunately, 3 exhibited seventy-fold weaker binding affinity to the C1B domain of PKCδ than that of aplog-1, and negligible anti-proliferative and cytotoxic activities even at 10(-4) M. A conformational analysis and density functional theory calculations indicated that the stable conformation of 3 differed from that of aplog-1. Since 27-methyl and 27-methoxy derivatives (1, 2) without the ability to bind to PKC isozymes exhibited marked anti-proliferative and cytotoxic activities at 10(-4) M, 3 may be an inactive control to identify the target proteins of aplogs.
Collapse
Affiliation(s)
- Yusuke Hanaki
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol 2014; 89:1731-43. [PMID: 25410866 DOI: 10.1128/jvi.02781-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) maintains a lifelong latent infection within a subset of its host's memory B cells, while lytic EBV replication takes place in plasma cells and differentiated epithelial cells. Therefore, cellular transcription factors, such as BLIMP1, that are key mediators of differentiation likely contribute to the EBV latent-to-lytic switch. Previous reports showed that ectopic BLIMP1 expression induces reactivation in some EBV-positive (EBV(+)) B-cell lines and transcription from Zp, with all Z(+) cells in oral hairy leukoplakia being BLIMP1(+). Here, we examined BLIMP1's role in inducing EBV lytic gene expression in numerous EBV(+) epithelial and B-cell lines and activating transcription from Rp. BLIMP1 addition was sufficient to induce reactivation in latently infected epithelial cells derived from gastric cancers, nasopharyngeal carcinomas, and normal oral keratinocytes (NOK) as well as some, but not all B-cell lines. BLIMP1 strongly induced transcription from Rp as well as Zp, with there being three or more synergistically acting BLIMP1-responsive elements (BRE) within Rp. BLIMP1's DNA-binding domain was required for reactivation, but BLIMP1 did not directly bind the nucleotide (nt) -660 Rp BRE. siRNA knockdown of BLIMP1 inhibited 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced lytic reactivation in NOK-Akata cells, cells that can be reactivated by R, but not Z. Thus, we conclude that BLIMP1 expression is both necessary and sufficient to induce EBV lytic replication in many (possibly all) EBV(+) epithelial-cell types, but in only a subset of EBV(+) B-cell types; it does so, at least in part, by strongly activating expression of both EBV immediately early genes, BZLF1 and BRLF1. IMPORTANCE This study is the first one to show that the cellular transcription factor BLIMP1, a key player in both epithelial and B-cell differentiation, induces reactivation of the oncogenic herpesvirus Epstein-Barr virus (EBV) out of latency into lytic replication in a variety of cancerous epithelial cell types as well as in some, but not all, B-cell types that contain this virus in a dormant state. The mechanism by which BLIMP1 does so involves strongly turning on expression of both of the immediate early genes of the virus, probably by directly acting upon the promoters as part of protein complexes or indirectly by altering the expression or activities of some cellular transcription factors and signaling pathways. The fact that EBV(+) cancers usually contain mostly undifferentiated cells may be due in part to these cells dying from lytic EBV infection when they differentiate and express wild-type BLIMP1.
Collapse
|
17
|
Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol 2014; 88:8028-44. [PMID: 24807711 DOI: 10.1128/jvi.00722-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process.
Collapse
|
18
|
MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 2014; 9:e90698. [PMID: 24598729 PMCID: PMC3944714 DOI: 10.1371/journal.pone.0090698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/03/2014] [Indexed: 01/25/2023] Open
Abstract
Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, which are involved in the transcriptional activation of EBV lytic genes. This study sought to elucidate the mechanism by which Rta activates transcription of the Zta-encoding gene, BZLF1, through the ZII element in the gene promoter. In a DNA affinity precipitation assay, ATF2 was found to associate with an Rta-interacting protein, MCAF1, at the ZII element. The interaction between Rta, MCAF1, and ATF2 at the same site in the ZII region was further verified in vivo by chromatin immunoprecipitation assay. The complex appears to be crucial for the activation of BZLF1 transcription, as the overexpression of two ATF2-dominant negative mutants, or the introduction of MCAF1 siRNA into 293T cells, were both found to substantially reduce Rta-mediated transcription levels of BZLF1. Moreover, this study also found that the Rta-MCAF1-ATF2 complex binds to a typical AP-1 binding sequence on the promoter of BMRF2, a key viral gene for EBV infection. Mutation of this sequence decreased Rta-mediated promoter activity significantly. Taken together, these results indicate a critical role for MCAF1 in AP-1-dependent Rta activation of BZLF1 transcription.
Collapse
|
19
|
Liu YR, Huang SY, Chen JY, Wang LHC. Microtubule depolymerization activates the Epstein–Barr virus lytic cycle through protein kinase C pathways in nasopharyngeal carcinoma cells. J Gen Virol 2013; 94:2750-2758. [DOI: 10.1099/vir.0.058040-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of antibodies against Epstein–Barr virus (EBV) and the presence of viral DNA in plasma are reliable biomarkers for the diagnosis of nasopharyngeal carcinoma (NPC) in high-prevalence areas, such as South-East Asia. The presence of these viral markers in the circulation suggests that a minimal level of virus reactivation may have occurred in an infected individual, although the underlying mechanism of reactivation remains to be elucidated. Here, we showed that treatment with nocodazole, which provokes the depolymerization of microtubules, induces the expression of two EBV lytic cycle proteins, Zta and EA-D, in EBV-positive NPC cells. This effect was independent of mitotic arrest, as viral reactivation was not abolished in cells synchronized at interphase. Notably, the induction of Zta by nocodazole was mediated by transcriptional upregulation via protein kinase C (PKC). Pre-treatment with inhibitors for PKC or its downstream signalling partners p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) abolished the nocodazole-mediated induction of Zta and EA-D. Interestingly, the effect of nocodazole, as well as colchicine and vinblastine, on lytic gene expression occurred only in NPC epithelial cells but not in cells derived from lymphocytes. These results establish a novel role of microtubule integrity in controlling the EBV life cycle through PKC and its downstream pathways, which represents a tissue-specific mechanism for controlling the life-cycle switch of EBV.
Collapse
Affiliation(s)
- Yi-Ru Liu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
20
|
Tsai MH, Raykova A, Klinke O, Bernhardt K, Gärtner K, Leung CS, Geletneky K, Sertel S, Münz C, Feederle R, Delecluse HJ. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep 2013; 5:458-70. [PMID: 24120866 DOI: 10.1016/j.celrep.2013.09.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) is found in a variety of tumors whose incidence greatly varies around the world. A poorly explored hypothesis is that particular EBV strains account for this phenomenon. We report that M81, a virus isolated from a Chinese patient with nasopharyngeal carcinoma (NPC), shows remarkable similarity to other NPC viruses but is divergent from all other known strains. M81 exhibited a reversed tropism relative to common strains with a reduced ability to infect B cells and a high propensity to infect epithelial cells, which is in agreement with its isolation from carcinomas. M81 spontaneously replicated in B cells in vitro and in vivo at unusually high levels, in line with the enhanced viral replication observed in NPC patients. Spontaneous replication and epitheliotropism could be partly ascribed to polymorphisms within viral proteins. We suggest considering M81 and its closely related isolates as an EBV subtype with enhanced pathogenic potential.
Collapse
Affiliation(s)
- Ming-Han Tsai
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany; Inserm Unit U1074, DKFZ, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang YC, Yoshikai Y, Hsu SW, Saitoh H, Chang LK. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 2013; 288:12866-79. [PMID: 23504328 DOI: 10.1074/jbc.m112.413393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes a transcription factor, Rta, which is required to activate the transcription of EBV lytic genes. This study demonstrates that treating P3HR1 cells with a proteasome inhibitor, MG132, causes the accumulation of SUMO-Rta and promotes the expression of EA-D. GST pulldown and coimmunoprecipitation studies reveal that RNF4, a RING-domain-containing ubiquitin E3 ligase, interacts with Rta. RNF4 also targets SUMO-2-conjugated Rta and promotes its ubiquitination in vitro. Additionally, SUMO interaction motifs in RNF4 are important to the ubiquitination of Rta because the RNF4 mutant with a mutation at the motifs eliminates ubiquitination. The mutation of four lysine residues on Rta that abrogated SUMO-3 conjugation to Rta also decreases the enhancement of the ubiquitination of Rta by RNF4. This finding demonstrates that RNF4 is a SUMO-targeted ubiquitin E3 ligase of Rta. Finally, knockdown of RNF4 enhances the expression of Rta and EA-D, subsequently promoting EBV lytic replication and virions production. Results of this study significantly contribute to efforts to elucidate a SUMO-targeted ubiquitin E3 ligase that regulates Rta ubiquitination to influence the lytic development of EBV.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Yang YC, Chang LK. Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 2013; 8:e54075. [PMID: 23326574 PMCID: PMC3542328 DOI: 10.1371/journal.pone.0054075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes. This protein usually binds to Rta-response elements or interacts with Sp1 or Zta via a mediator protein, MCAF1, to activate transcription. Rta is also known to interact with TBP and TFIIB to activate transcription. This study finds that Rta interacts with TAF4, a component of TFIID complex, in vitro and in vivo, and on the TATA sequence in the BcLF1 promoter. Rta also interacts with TAF4 and Sp1 on Sp1-binding sequences on TATA-less promoters, including those of BNLF1, BALF5, and the human androgen receptor. These interactions are important to the transcriptional activation of these genes by Rta since introducing TAF4 shRNA substantially reduces the ability of Rta to activate these promoters. This investigation reveals how Rta interacts with TFIID to stimulate transcription.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Protein kinase inhibitors that inhibit induction of lytic program and replication of Epstein-Barr virus. Antiviral Res 2012; 96:296-304. [PMID: 23058855 DOI: 10.1016/j.antiviral.2012.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023]
Abstract
Signaling pathways mediating Epstein-Barr virus (EBV) reactivation by Ag-bound B-cell receptor (BCR) were analyzed using a panel of 80 protein kinase inhibitors. Broad range protein kinase inhibitors Staurosporine, K252A, and PKC-412 significantly reduced the EBV genome copy numbers measured 48 h after reactivation perhaps due to their higher toxicity. In addition, selected inhibitors of the phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways, glycogen synthase kinase 3β (GSK-3β), platelet-derived growth factor receptor-associated tyrosine kinase (PDGFRK), and epidermal growth factor receptor-associated tyrosine kinase (EGFRK) significantly reduced the EBV genome copy numbers. Of those, only U0126 and Erbstatin analog, which inhibit MAPK pathway and EGFRK, respectively, did not inhibit viral reactivation assessed by expression of the EBV early protein, EA-D. None of the tested compounds, except for K252A, affected the activity of the EBV-encoded protein kinase in vitro. These results show that EBV reactivation induced by BCR signaling is mainly mediated through PI3K and PKC, whereas MAPK might be involved in later stages of viral replication.
Collapse
|
24
|
Mannucci S, Luzzi A, Carugi A, Gozzetti A, Lazzi S, Malagnino V, Simmonds M, Cusi MG, Leoncini L, van den Bosch CA, De Falco G. EBV Reactivation and Chromosomal Polysomies: Euphorbia tirucalli as a Possible Cofactor in Endemic Burkitt Lymphoma. Adv Hematol 2012; 2012:149780. [PMID: 22593768 PMCID: PMC3347697 DOI: 10.1155/2012/149780] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 11/21/2022] Open
Abstract
Burkitt lymphoma is endemic in the Equatorial Belt of Africa, its molecular hallmark is an activated, MYC gene mostly due to a chromosomal translocation. Especially in its endemic clinical variant, Burkitt lymphoma is associated with the oncogenic Epstein-Barr virus (EBV), and holoendemic malaria acts as an amplifier. Environmental factors may also cooperate in Burkitt lymphomagenesis in the endemic regions, such as plants used as traditional herbal remedies. Euphorbia tirucalli, a plant known to possess EBV-activating substances, has a similar geographical distribution to endemic Burkitt's Lymphoma and is used as a hedge, herbal remedy and toy in the Lymphoma BeltI. In this study we aimed at determining if exposure to Euphorbia tirucalli could contribute to lymphomagenesis, and at which extent. Lymphoblastoid and cord blood-derived cell lines were treated with plant extracts, and the expression of EBV-coded proteins was checked, to assess EBV reactivation. The occurrence of chromosomal translocations was then investigated by FISH. Our preliminary results suggest that E. tirucalli is able to reactivate EBV and determine chromosomal alterations, which leads to c-MYC altered expression. The existence of genomic alterations might determine the accumulation of further genetic alteration, which could eventually lead to a transformed phenotype.
Collapse
Affiliation(s)
- Susanna Mannucci
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | - Anna Luzzi
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | - Alessandro Carugi
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | | | - Stefano Lazzi
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | - Valeria Malagnino
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | | | - Maria Grazia Cusi
- Department Biotechnology, Section of Microbiology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | | | - Giulia De Falco
- Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| |
Collapse
|
25
|
Li Z, Chen X, Li L, Liu S, Yang L, Ma X, Tang M, Bode AM, Dong Z, Sun L, Cao Y. EBV encoded miR-BHRF1-1 potentiates viral lytic replication by downregulating host p53 in nasopharyngeal carcinoma. Int J Biochem Cell Biol 2012; 44:275-9. [DOI: 10.1016/j.biocel.2011.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022]
|
26
|
Interplay between PKCδ and Sp1 on histone deacetylase inhibitor-mediated Epstein-Barr virus reactivation. J Virol 2010; 85:2373-85. [PMID: 21159880 DOI: 10.1128/jvi.01602-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epstein-Barr virus (EBV) undergoes latent and lytic replication cycles, and its reactivation from latency to lytic replication is initiated by expression of the two viral immediate-early transactivators, Zta and Rta. In vitro, reactivation of EBV can be induced by anti-immunoglobulin, tetradecanoyl phorbol acetate, and histone deacetylase inhibitor (HDACi). We have discovered that protein kinase C delta (PKCδ) is required specifically for EBV reactivation by HDACi. Overexpression of PKCδ is sufficient to induce the activity of the Zta promoter (Zp) but not of the Rta promoter (Rp). Deletion analysis revealed that the ZID element of Zp is important for PKCδ activation. Moreover, the Sp1 putative sequence on ZID is essential for PKCδ-induced Zp activity, and the physiological binding of Sp1 on ZID has been confirmed. After HDACi treatment, activated PKCδ can phosphorylate Sp1 at serine residues and might result in dissociation of the HDAC2 repressor from ZID. HDACi-mediated HDAC2-Sp1 dissociation can be inhibited by the PKCδ inhibitor, Rotterlin. Furthermore, overexpression of HDAC2 can suppress the HDACi-induced Zp activity. Consequently, we hypothesize that HDACi induces PKCδ activation, causing phosphorylation of Sp1, and that the interplay between PKCδ and Sp1 results in the release of HDAC2 repressor from Zp and initiation of Zta expression.
Collapse
|
27
|
Abstract
The capsids of herpesviruses, which comprise major and minor capsid proteins, have a common icosahedral structure with 162 capsomers. An electron microscopic study shows that Epstein-Barr virus (EBV) capsids in the nucleus are immunolabeled by anti-BDLF1 and anti-BORF1 antibodies, indicating that BDLF1 and BORF1 are the minor capsid proteins of EBV. Cross-linking and electrophoresis studies of purified BDLF1 and BORF1 revealed that these two proteins form a triplex that is similar to that formed by the minor capsid proteins, VP19C and VP23, of herpes simplex virus type 1 (HSV-1). Although the interaction between VP23, a homolog of BDLF1, and the major capsid protein VP5 could not be verified biochemically in earlier studies, the interaction between BDLF1 and the EBV major capsid protein, viral capsid antigen (VCA), can be confirmed by glutathione S-transferase (GST) pulldown assay and coimmunoprecipitation. Additionally, in HSV-1, VP5 interacts with only the middle region of VP19C; in EBV, VCA interacts with both the N-terminal and middle regions of BORF1, a homolog of VP19C, revealing that the proteins in the EBV triplex interact with the major capsid protein differently from those in HSV-1. A GST pulldown study also identifies the oligomerization domains in VCA and the dimerization domain in BDLF1. The results presented herein reveal how the EBV capsid proteins interact and thereby improve our understanding of the capsid structure of the virus.
Collapse
|
28
|
Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol 2010; 84:12405-18. [PMID: 20861250 DOI: 10.1128/jvi.01415-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Epstein-Barr virus (EBV) lytic activator genes bzlf1 and brlf1 are conventionally referred to as immediate-early (IE) genes. However, previous studies showed that the earliest expression of these genes was blocked by cycloheximide when the EBV lytic cycle was induced by histone deacetylase (HDAC) inhibitors and protein kinase C agonists. Anti-IgG activates a complex signal transduction pathway that leads to EBV lytic activation in the Akata cell line. Here we demonstrate that in Akata cells, where lytic cycle activation occurs very rapidly after anti-IgG treatment, de novo protein synthesis is also required for induction of bzlf1 and brlf1 expression. New protein synthesis is required up to 1.25 h after application of anti-IgG; bzlf1 and brlf1 mRNAs can be detected 1.5 h after anti-IgG. Five cellular IE genes were shown to be expressed by 1 h after addition of anti-IgG, and their expression preceded that of bzlf1 and brlf1. These include early growth response genes (egr1, egr2, and egr3) and nuclear orphan receptors (nr4a1 and nr4a3). These genes were activated by anti-IgG treatment of Akata cells with and without the EBV genome; therefore, their expression was not dependent on expression of any EBV gene product. EGR1, EGR2, and EGR3 proteins were kinetically upstream of ZEBRA and Rta proteins. Expression of EGR1, ZEBRA, and Rta proteins were inhibited by bisindolylmaleimide X, a selective inhibitor of PKC. The findings suggest a revised model in which the signal transduction cascade activated by cross-linking of the B cell receptor induces expression of cellular IE genes, such as early growth response and nuclear orphan receptor genes, whose products, in turn, regulate bzlf1 and brlf1 expression.
Collapse
|
29
|
Lee YH, Chiu YF, Wang WH, Chang LK, Liu ST. Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol 2008; 89:2437-2446. [PMID: 18796711 DOI: 10.1099/vir.0.2008/003897-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BRCA1-associated protein 2 (BRAP2) is known to interact with the kinase suppressor of Ras 1 (KSR1), inhibiting the ERK signal transduction cascade. This study found that an Epstein-Barr virus (EBV) immediate-early protein, Rta, is a binding partner of BRAP2 in yeast and confirmed the binding in vitro by a glutathione S-transferase pull-down assay and in vivo by co-immunoprecipitation in 293(maxi-EBV) cells. Binding studies also showed that Rta and KSR1 interacted with the C-terminal 202 aa region in BRAP2. Additionally, Rta appeared to prevent the binding of KSR1 to BRAP2, activating the ERK signal transduction pathway and the transcription of an EBV immediate-early gene, BZLF1. Activation of the ERK signal transduction pathway by Rta may be critical for the maintenance of the lytic state of EBV.
Collapse
Affiliation(s)
- Yu-Hsiu Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, 155 Linong Street Section 2, Taipei 112, Taiwan, ROC
| | - Ya-Fang Chiu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Li-Kwan Chang
- Institute of Microbiology and Biochemistry, National Taiwan University, 1 Roosevelt Road Section 4, Taipei 106, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| |
Collapse
|
30
|
Lan K, Verma SC, Murakami M, Bajaj B, Robertson ES. Epstein-Barr Virus (EBV): infection, propagation, quantitation, and storage. ACTA ACUST UNITED AC 2008; Chapter 14:Unit 14E.2. [PMID: 18770612 DOI: 10.1002/9780471729259.mc14e02s6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epstein-Barr virus (EBV) was first reported as the etiological agent of Burkitt's lymphoma in 1964. Since then, EBV has also been associated with nasopharyngeal carcinoma, which is highly prevalent in Southeast Asia, as well as infectious mononucleosis, complications of AIDS, and transplant-related B cell lymphomas. This virus has further been linked with T cell lymphomas and Hodgkin's disease, establishing the concept of a wide spectrum of EBV-associated malignant disorders. So far, there are a number of EBV-infected cell lines established that can be induced for production of infectious viral progeny and that facilitate the study of the mechanism of EBV-related infection, transformation, and oncogenesis. This unit describes procedures for the preparation of EBV virion particles and in vitro infection of cells with EBV. In addition, procedures for quantitation and storage of the virus are provided.
Collapse
Affiliation(s)
- Ke Lan
- University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
31
|
Lee HH, Chang SS, Lin SJ, Chua HH, Tsai TJ, Tsai K, Lo YC, Chen HC, Tsai CH. Essential role of PKCdelta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells. J Gen Virol 2008; 89:878-883. [PMID: 18343827 DOI: 10.1099/vir.0.83533-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deactylase inhibitors (HDACi) are common chemotherapeutic agents that stimulate Epstein-Barr virus (EBV) reactivation; the detailed mechanism remains obscure. In this study, it is demonstrated that PKCdelta is required for induction of the EBV lytic cycle by HDACi. Inhibition of PKCdelta abrogates HDACi-mediated transcriptional activation of the Zta promoter and downstream lytic gene expression. Nuclear translocation of PKCdelta is observed following HDACi stimulation and its overexpression leads to progression of the EBV lytic cycle. Our study suggests that PKCdelta is a crucial mediator of EBV reactivation and provides a novel insight to study the regulation of the EBV lytic cycle.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Shih-Shin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Sue-Jane Lin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Tze-Jiun Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Kevin Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - You-Chang Lo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Hong-Chen Chen
- Department of Life Science and Graduate Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, ROC
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| |
Collapse
|
32
|
Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 2008; 379:231-42. [PMID: 18455188 DOI: 10.1016/j.jmb.2008.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation.
Collapse
|
33
|
Ye J, Gradoville L, Daigle D, Miller G. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol 2007; 81:9279-91. [PMID: 17596302 PMCID: PMC1951462 DOI: 10.1128/jvi.00982-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle gene expression of the two viruses differs and suggest that EBV but not KSHV requires one or more proteins to be newly synthesized between 4 and 6 h after application of an inducing stimulus.
Collapse
Affiliation(s)
- Jianjiang Ye
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
34
|
Son YO, Choi KC, Lee JC, Kook SH, Lee SK, Takada K, Jang YS. Involvement of caspase activation and mitochondrial stress in taxol-induced apoptosis of Epstein–Barr virus-infected Akata cells. Biochim Biophys Acta Gen Subj 2006; 1760:1894-902. [PMID: 16938399 DOI: 10.1016/j.bbagen.2006.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/22/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
Taxol (paclitaxel) is one of the most potent antimicrotubule agents currently used in cancer chemoprevention and treatment. However, the effects of taxol on the induction of apoptosis in Epstein-Barr virus (EBV)-infected cells are unknown. This study investigated the mechanisms of taxol on cell cycle arrest and apoptosis induction using the EBV-infected cell line, Akata. Taxol treatment sensitively and dose-independently induced growth inhibition, cytotoxicity, and apoptosis in the cells, which was demonstrated by the decreased level of tritium incorporation and cell viability, the increased number of positively stained cells in the trypan blue staining and TUNEL assay, the increased population of cells in the sub-G(0)/G(1) phase in flow cytometric analysis, and ladder formation of the genomic DNA. Treatment with z-VAD-fmk almost completely protected the cells from taxol-induced apoptosis indicating that the taxol-induced apoptosis of Akata cells is caspase-dependent. In addition, taxol-induced apoptosis is proposed to be associated with a lower mitochondrial membrane potential and G(2)/M arrest. However, the tubulin expression level doses not appear to be a direct mediator of taxol-induced apoptosis in cells. The presence of EBV in these cells was not related to the sensitivity of the cells to the induction of apoptosis by taxol. Overall, these results demonstrate that taxol induces apoptosis in EBV-infected Akata cells in a dose-independent manner, and that caspase activation and mitochondrial stress are involved in the induction.
Collapse
Affiliation(s)
- Young-Ok Son
- Laboratory of Cell Biology in Department of Orthodontics, Institute of Oral Biosciences and The Research Center of Bioactive Materials, Chonbuk National University, Chonju, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Maas D, Maret C, Schaade L, Scheithauer S, Ritter K, Kleines M. Reactivation of the Epstein-Barr virus from viral latency by an S-adenosylhomocysteine hydrolase/14-3-3 zeta/PLA2-dependent pathway. Med Microbiol Immunol 2006; 195:217-23. [PMID: 16944201 DOI: 10.1007/s00430-006-0022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Indexed: 10/24/2022]
Abstract
The S-adenosylhomocysteine hydrolase (SAH) and 14-3-3 zeta/phospholipase A2 (PLA2) are transcriptionally activated in parallel to the induction of the Epstein-Barr virus (EBV) lytic cycle by the ganglioside IV(3)NeuAc-nLcOse(4)Cer. For analysis of the initiation of the viral reactivation, SAH and 14-3-3 zeta/PLA2 were overexpressed. Expression of EA-D, BZLF1, and BHRF1 was increased in response to both, SAH- and 14-3-3 zeta/PLA2 overexpression indicating the initiation of the EBV lytic cycle. Expression of 14-3-3 zeta/PLA2 was shown to be increased in SAH overexpressing cells. Additionally, SAH-triggered initiation of viral reactivation could be inhibited by PLA2-specific inhibitors. The phosphorylation status of protein kinase C (PKC) was shown to be increased in SAH-overexpressing cells. PKC-specific inhibitors arrested SAH-triggered initiation of viral reactivation. Surprisingly, 14-3-3 zeta/PLA2-induced initiation of viral reactivation did not correlate with PKC activation. PKC-specific inhibitors were of no influence. SAH initiated EBV reactivation via the BZLF1-Zp and the BZLF1-Rp promoter, whereas 14-3-3 zeta/PLA2 was connected to the promoter Rp only. Our results suggest two routes of viral reactivation involving SAH, one associated with PKC and BZLF1-Zp, the other associated with 14-3-3 zeta/PLA2 and BZLF1-Rp.
Collapse
Affiliation(s)
- Diana Maas
- Division of Virology, Department of Medical Microbiology, UK Aachen, RWTH Aachen 52057, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Son YO, Choi KC, Lee JC, Kook SH, Lee HJ, Jeon YM, Kim JG, Kim J, Lee WK, Jang YS. Involvement of caspase activation and mitochondrial stress in trichostatin A-induced apoptosis of Burkitt's lymphoma cell line, Akata. J Cell Biochem 2006; 99:1420-30. [PMID: 16817225 DOI: 10.1002/jcb.21022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population and has a potential oncogenic nature. Trichostatin A (TSA) has potent antitumor activity, but its exact mechanism on EBV-infected cells is unclear. This study examined the effects of TSA on proliferation and apoptosis of the Burkitt's lymphoma cell line, Akata. TSA treatment inhibited cell growth and induced cytotoxicity in both the EBV-negative and -positive Akata cells. TSA sensitively induced apoptosis in both cells, as demonstrated by the increased number of positively stained cells in the TUNEL assay, the migration of many cells to sub-G1 phase by flow cytometric analysis, and the formation of DNA ladders. This suggests that EBV has no effect on the sensitivity to TSA. Western blot analysis showed that the cleavage of PARP and Bid and the activation of caspases are closely related to the TSA-induced apoptosis of the cells. The reduction in mitochondrial transition potential and the release of apoptosis-inducing factor from mitochondria to cytosol was also observed after the TSA treatment, but was suppressed by treating the cells with a cathepsin B inhibitor. Overall, these findings suggest that besides the caspase-dependent pathway, mitochondrial events are also associated with the TSA-induced apoptosis of Akata cells.
Collapse
Affiliation(s)
- Young-Ok Son
- Division of Biological Sciences, Chonbuk National University, Chonju 561-756, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chang LK, Lee YH, Cheng TS, Hong YR, Lu PJ, Wang JJ, Wang WH, Kuo CW, Li SSL, Liu ST. Post-translational Modification of Rta of Epstein-Barr Virus by SUMO-1. J Biol Chem 2004; 279:38803-12. [PMID: 15229220 DOI: 10.1074/jbc.m405470200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes and the lytic cycle. This work identifies Ubc9 and PIAS1 as binding partners of Rta in a yeast two-hybrid screen. These bindings are verified by glutathione S-transferase pull-down assay, coimmunoprecipitation, and confocal microscopy. The interactions appear to cause Rta sumoylation, because not only can Rta be sumoylated in vitro but also sumoylated Rta can be detected in P3HR1 cells following lytic induction and in 293T cells after transfecting plasmids that express Rta and SUMO-1. Moreover, PIAS1 stimulates conjugation of SUMO-1 to Rta, thus acting as an E3 ligase. Furthermore, transfecting plasmids that express Ubc9, PIAS1, and SUMO-1 increases the capacity of Rta to transactivate the promoter that includes an Rta response element, indicating that the modification by SUMO-1 increases the transactivation activity of Rta. This study reveals that Rta is sumoylated at the Lys-19, Lys-213, and Lys-517 residues and that SUMO-1 conjugation at the Lys-19 residue is crucial for enhancing the transactivation activity of Rta. These results indicate that sumoylation of Rta may be important in EBV lytic activation.
Collapse
Affiliation(s)
- Li-Kwan Chang
- Faculty of Biological Medicine and Environmental Biology and Graduate Institute of Biochemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nagata Y, Inoue H, Yamada K, Higashiyama H, Mishima K, Kizu Y, Takeda I, Mizuno F, Hayashi Y, Saito I. Activation of Epstein-Barr virus by saliva from Sjogren's syndrome patients. Immunology 2004; 111:223-9. [PMID: 15027908 PMCID: PMC1782400 DOI: 10.1111/j.0019-2805.2003.01795.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to examine the mechanism of Epstein-Barr virus (EBV) activation by soluble factors from the inflamed salivary glands of patients with Sjogren's syndrome (SS). Saliva from SS patients was used to examine the regulation of EBV activation by an inflammatory salivary microenvironment. Transient transfection of the EBV-negative salivary gland cell line (HSY) with BZLF1, a trans-activating EBV gene promoter-fusion construct (Zp-luc), was used in this study. The results showed that under conditions where the BZLF1 promoter is activated by potent stimuli, SS saliva (from eight of 12 patients) exerts a significant effect on expression of the luciferase gene. A specific inhibitor of protein kinase C did not affect the SS saliva-induced Zp-luc activity, whereas treatment with inhibitors of calmodulin, calcineurin and IP3, dose-dependently decreased this induction. Transforming growth factor beta1 (TGF-beta1), which is known to be expressed in SS salivary glands, dose-dependently induced Zp-luc activity. Hence, these results demonstrate the activation of EBV by SS saliva and suggest that EBV activation at the inflammatory site may occur in the presence of TGF-beta1 via triggering of the mitogen-activated protein kinase (MAPK) kinase signalling pathway.
Collapse
Affiliation(s)
- Yoshifumi Nagata
- Department of Pathology, Tsurumi University School of Dental MedicineYokohama, Japan
| | - Hiroko Inoue
- Department of Pathology, Tsurumi University School of Dental MedicineYokohama, Japan
| | - Koichi Yamada
- Department of Pathology, Tsurumi University School of Dental MedicineYokohama, Japan
| | - Hiroyuki Higashiyama
- Department of Pathology, Tsurumi University School of Dental MedicineYokohama, Japan
| | - Kenji Mishima
- Department of Pathology, Tsurumi University School of Dental MedicineYokohama, Japan
| | - Yasuhiro Kizu
- Department of Oral Medicine, Tokyo Dental CollegeChiba, Japan
| | - Ienaka Takeda
- Department of Oral Medicine, Tokyo Dental CollegeChiba, Japan
| | - Fumio Mizuno
- Department of Microbiology, Tokyo Medical UniversityTokyo, Japan
| | - Yoshio Hayashi
- Department of Pathology, Tokushima University School of DentistryTokushima, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental MedicineYokohama, Japan
| |
Collapse
|
39
|
Sugano N, Ikeda K, Oshikawa M, Idesawa M, Tanaka H, Sato S, Ito K. Relationship between Porphyromonas gingivalis, Epstein-Barr virus infection and reactivation in periodontitis. J Oral Sci 2004; 46:203-6. [PMID: 15901063 DOI: 10.2334/josnusd.46.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to assess the relationship-between Porphyromonas gingivalis, Epstein-Barr virus (EBV) infection and reactivation in periodontitis using real-time PCR. The mean proportion of P. gingivalis cells to total bacterial cells in the saliva from EBV-positive periodontitis patients was significantly higher than that in saliva from EBV-negative patients. An EBV-positive B-cell line was used to determine whether P. gingivalis sonicate induced reactivation of EBV, using real-time PCR to measure the virus genome in the culture medium. A significant increase in EBV numbers was observed after the stimulation with P. gingivalis sonicate. These findings suggest that the interaction between EBV and P. gingivalis is bi-directional, with EBV reactivation suppressing host defenses and permitting overgrowth of P. gingivalis, and P. gingivalis having the potential to induce EBV reactivation.
Collapse
Affiliation(s)
- Naoyuki Sugano
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In Epstein-Barr virus (EBV)-positive lymphomas, the presence of the EBV genome in virtually all tumor cells, but very few normal cells, suggests that novel, EBV-targeted therapies could be used to treat these malignancies. In this paper, we review a variety of different approaches currently under development that specifically target EBV-infected cells for destruction. EBV-based strategies for treating cancer include prevention of viral oncogene expression, inducing loss of the EBV episome, the purposeful induction of the lytic form of EBV infection, and enhancing the host immune response to virally encoded antigens.
Collapse
Affiliation(s)
- Bruce F Israel
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
41
|
Gradoville L, Kwa D, El-Guindy A, Miller G. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 2002; 76:5612-26. [PMID: 11991990 PMCID: PMC137009 DOI: 10.1128/jvi.76.11.5612-5626.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase C (PKC) pathway has been considered to be essential for activation of latent Epstein-Barr virus (EBV) into the lytic cycle. The phorbol ester tetradecanoyl phorbol acetate (TPA), a PKC agonist, is one of the best understood activators of EBV lytic replication. Zp, the promoter of the EBV immediate-early gene BZLF1, whose product, ZEBRA, drives the lytic cycle, contains several phorbol ester response elements. We investigated the role of the PKC pathway in lytic cycle activation in prototype cell lines that differed dramatically in their response to inducing agents. We determined whether PKC was involved in lytic cycle induction by histone deacetylase (HDAC) inhibitors. Consistent with prevailing views, B95-8 cells were activated into the lytic cycle by the phorbol ester TPA, via a PKC-dependent mechanism. B95-8 was not inducible by HDAC inhibitors such as n-butyrate and trichostatin A (TSA). Bisindolylmaleimide I, a selective PKC inhibitor, blocked lytic cycle activation in B95-8 cells in response to TPA. In marked contrast, in HH514-16 cells, the immediate-early promoters Zp and Rp were simultaneously activated by the HDAC inhibitors; TPA by itself failed to activate lytic gene expression. Inhibition of PKC activity by bisindolylmaleimide I did not block lytic cycle activation in HH514-16 cells by n-butyrate or TSA. In an extensive exploration of the mechanism underlying these different responses we found that the variable role of the PKC pathway in the two cell lines could not be accounted for by significant polymorphisms in the promoters of the immediate-early genes, by differences in the start sites of immediate-early gene transcription, or by differences in the nucleosomal organization of EBV DNA in the region of Zp or Rp. While B95-8 cells contained more total PKC activity than did HH514-16 cells in an in vitro assay, another EBV-transformed marmoset lymphoblastoid cell line, FF41, in which the lytic cycle was not inducible by TPA, contained comparably high levels of PKC activity. Moreover, two marmoset lymphoblastoid cells lines in which the lytic cycle could not be triggered by TPA maintained the same profile of EBV latency proteins as B95-8 cells. Thus, the profile of EBV latency proteins did not account for susceptibility to induction by PKC agonists. PKC activation is neither obligatory nor sufficient for the switch between latency and lytic cycle gene expression of EBV in many cell backgrounds. Lytic cycle induction by HDAC inhibitors proceeds by a PKC-independent mechanism.
Collapse
Affiliation(s)
- Lyndle Gradoville
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
42
|
Long JP, Hughes JH. Epstein-Barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. In Vitro Cell Dev Biol Anim 2001; 37:223-30. [PMID: 11409687 DOI: 10.1007/bf02577533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rotating-wall vessels (RWVs) allow for the cultivation of cells in simulated microgravity. Previously, we showed that the cultivation of lymphoblastoid cells in simulated microgravity results in the suppression of Epstein-Barr virus (EBV) reactivation. To determine if the suppression generated by simulated microgravity could be reversed by changing to static culture conditions, cells were cultured in an RRWV for 5 d, and then switched to static conditions. Following the switch to static conditions, viral reactivation remained suppressed (significantly lower) relative to static control cultures over a 4-d period. Additionally, experiments were conducted to determine if chemical treatment could induce viral reactivation in cells from simulated-microgravity cultures. Cells were cultured in static flask cultures and in simulated microgravity in RWVs for 4-7 d. The cells were then transferred to 50-cm3 tubes, and treated with 3 mM n-butyrate for 48 h, or 18 ng/ml of phorbol ester, viz., 12-0-tetradecanoylphorbol-13 acetate (TPA) for either 2 or 48 h, under static conditions. Although EBV was inducible, the cells from simulated-microgravity cultures treated with n-butyrate displayed significantly lower levels of viral-antigen expression compared with the treated cells from static cultures. Also, incubation with TPA for 2-3 h, but not for 48 h, reactivated EBV in cells from RWV cultures. In contrast, EBV was inducible in cells from static cultures treated for either 2-3 or 48 h with TPA. TPA reactivation of EBV following a 2-3-h period of treatment indicates that the protein kinase C signal-transduction pathway is not impaired in lymphoblastoid cells cultured in simulated microgravity. However, the exposure of B-lymphoblastoid cells from simulated-microgravity cultures to TPA for more than 3-4 h triggered a lytic event (apoptosis or necrosis), which prevented replication of the virus. Thus, EBV-infected cells in simulated microgravity were negatively selected in the absence of any cytotoxic cells.
Collapse
Affiliation(s)
- J P Long
- Children's Hospital, Columbus, Ohio 43205, USA
| | | |
Collapse
|
43
|
Inman GJ, Binné UK, Parker GA, Farrell PJ, Allday MJ. Activators of the Epstein-Barr virus lytic program concomitantly induce apoptosis, but lytic gene expression protects from cell death. J Virol 2001; 75:2400-10. [PMID: 11160743 PMCID: PMC114823 DOI: 10.1128/jvi.75.5.2400-2410.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Expression of the lytic cycle genes of Epstain-Barr virus (EBV) is induced in type I Burkitt's lymphoma-derived cells by treatment with phorbol esters (e.g., phorbol myristate acetate [PMA]), anti-immunoglobulin, or the cytokine transforming growth factor beta (TGF-beta). Concomitantly, all these agents induce apoptosis as judged by a sub-G1 fluorescence-activated cell sorter (FACS) profile, proteolytic cleavage of poly(ADP-ribose) polymerase (PARP) and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. However, caspase activation is not required for induction of the lytic cycle since the latter is not blocked by the caspase inhibitor ZVAD. Furthermore, not all agents that induce apoptosis in these cultures (for example, cisplatin and ceramide) induce the EBV lytic programme. Although it is closely associated with the lytic cycle, apoptosis is neither necessary nor sufficient for its activation. Multiparameter FACS analysis of cultures treated with PMA, anti-Ig, or TGF-beta revealed BZLF1-expressing cells distributed in different phases of the cell cycle according to which inducer was used. However, BZLF1-positive cells did not appear to undergo apoptosis and accumulate with a sub-G1 DNA content, irrespective of the inducer used. This result, which suggests that lytic gene expression is protective, was confirmed and extended by immunofluorescence staining doubled with TUNEL analysis. BZLF1- and also gp350-expressing cells were almost always shown to be negative for TUNEL staining. Similar experiments using EBV-positive and -negative subclones of Akata BL cells carrying an episomal BZLF1 reporter plasmid confirmed that protection from apoptosis was associated with the presence of the EBV genome. Finally, treatment with phosphonoacetic acid or acyclovir prior to induction with PMA, anti-Ig, or TGF-beta blocked the protective effect in Mutu-I cells. These data suggest that a late gene product(s) may be particularly important for protection against caspase activity and cell death.
Collapse
Affiliation(s)
- G J Inman
- Section of Virology and Cell Biology and Ludwig Institute for Cancer Research, Imperial College of Science Technology and Medicine, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Kanamori M, Tajima M, Satoh Y, Hoshikawa Y, Miyazawa Y, Okinaga K, Kurata T, Sairenji T. Differential effect of TPA on cell growth and Epstein-Barr virus reactivation in epithelial cell lines derived from gastric tissues and B cell line Raji. Virus Genes 2001; 20:117-25. [PMID: 10872872 DOI: 10.1023/a:1008110312661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We characterized the cell growth and Epstein-Barr virus (EBV) reactivation for EBV infected epithelial cell lines, GT38, GT39, and GTC-4 using 12-O-tetradecanoylphorbol-13-acetate (TPA). These cell lines grew similarly in liquid medium, and formed colonies in soft agar. The cell growth was inhibited with TPA, dose-dependently in liquid medium. The colony formation was enhanced with low concentrations of TPA, but was inhibited with high concentrations. The latent EBV was reactivated with high concentrations of TPA as shown by the expression of EBV BZLF1 gene product ZEBRA. The effects of TPA on GTC-4 were compared with a Burkitt's lymphoma cell line Raji. The mode of actions of TPA in GTC-4 was different from Raji in terms of cell growth and EBV reactivation. The effective concentrations of TPA for cell growth inhibition and EBV reactivation were higher in Raji than GTC-4. Cell cycle analysis showed that TPA (20 ng/ml) induced cell cycle arrest to Raji but not to GTC-4; however, the rate of trypan blue stained cells increased in the TPA treated GTC-4 but not Raji. These results demonstrated that TPA affects differentially for the stimulation and inhibition of cell growth, and also EBV reactivation depends on TPA concentrations and cell types.
Collapse
Affiliation(s)
- M Kanamori
- Department of Biosignaling, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fuentes-Pananá EM, Peng R, Brewer G, Tan J, Ling PD. Regulation of the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol 2000; 74:8166-75. [PMID: 10933728 PMCID: PMC112351 DOI: 10.1128/jvi.74.17.8166-8175.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
EBNA2 is an Epstein-Barr virus (EBV)-encoded protein that regulates the expression of viral and cellular genes required for EBV-driven B-cell immortalization. Elucidating the mechanisms by which EBNA2 regulates viral and cellular gene expression is necessary to understand EBV-induced B-cell immortalization and viral latency in humans. EBNA2 targets to the latency C promoter (Cp) through an interaction with the cellular DNA binding protein CBF1 (RBPJk). The EBNA2 enhancer in Cp also binds another cellular factor, C promoter binding factor 2 (CBF2), whose protein product(s) has not yet been identified. Within the EBNA2 enhancer in Cp, we have previously identified the DNA sequence required for CBF2 binding and also determined that this element is required for efficient activation of Cp by EBNA2. In this study, the CBF2 activity was biochemically purified and microsequenced. The peptides sequenced were identical to the hnRNP protein AUF1. Antibodies against AUF1 but not antibodies to related hnRNP proteins reacted with CBF2 in gel mobility shift assays. In addition, stimulation of the cellular cyclic AMP (cAMP)/protein kinase A (PKA) signal transduction pathway results in an increase in detectable CBF2/AUF1 binding activity extracted from stimulated cells. Furthermore, the CBF2 binding site was able to confer EBNA2 responsiveness to a heterologous promoter when transfected cells were treated with compounds that activate PKA or by cotransfection of plasmids expressing a constitutively active catalytic subunit of PKA. EBNA2-mediated stimulation of the latency Cp is also increased in similar cotransfection assays. These results further support an important role for CBF2 in mediating EBNA2 transactivation; they identify the hnRNP protein AUF1 as a major component of CBF2 and are also the first evidence of a cis-acting sequence other than a CBF1 binding element that is able to confer responsiveness to EBNA2.
Collapse
Affiliation(s)
- E M Fuentes-Pananá
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Meyers C, Mane M, Kokorina N, Alam S, Hermonat PL. Ubiquitous human adeno-associated virus type 2 autonomously replicates in differentiating keratinocytes of a normal skin model. Virology 2000; 272:338-46. [PMID: 10873777 DOI: 10.1006/viro.2000.0385] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since its discovery in 1966, adeno-associated virus type 2 (AAV) has been described as a helper-dependent parvovirus. However, in this study we demonstrate that AAV undergoes its complete life cycle, devoid of helper viruses or genotoxic agents, in the organotypic epithelial raft tissue culture system, a model of normal skin. AAV progeny production directly correlated with epithelial differentiation, as nondifferentiating keratinocytes were defective for this activity. Large nuclear virus arrays of particles of approximately 26 nm (parvovirus size) were observed in the granular layers of the raft epithelium by electron microscopy. Additionally, dosage-dependent histologic changes, some of which might be interpreted as cytopathology, were induced in the AAV-infected epithelial tissues. These data suggest a new biological model for AAV; that is, AAV is an epithelial-tropic autonomous parvovirus that can alter normal squamous differentiation.
Collapse
Affiliation(s)
- C Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | | | | | | | | |
Collapse
|
47
|
Fahmi H, Cochet C, Hmama Z, Opolon P, Joab I. Transforming growth factor beta 1 stimulates expression of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway. J Virol 2000; 74:5810-8. [PMID: 10846060 PMCID: PMC112075 DOI: 10.1128/jvi.74.13.5810-5818.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of Epstein-Barr virus (EBV) latency is mediated by ZEBRA, the protein product of the immediate-early EBV gene, BZLF1. In vitro, phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), induces reactivation of EBV. However, the physiological stimuli responsible for the disruption of viral latency are not well characterized. Transforming growth factor beta 1 (TGF-beta1) has also been shown to trigger the reactivation of EBV in Burkitt lymphoma cell lines; however, the effect of TGF-beta1 on ZEBRA expression has not been reported. To further understand this phenomenon, we have investigated the effect of TGF-beta1 on ZEBRA expression. Our results indicate that the treatment of different EBV-positive Burkitt's lymphoma cell lines with TGF-beta1 induces a time-dependent activation of BZLF1 transcription with a corresponding increase in the production of the protein ZEBRA. TGF-beta1 has been shown to exert its effects through a wide range of intracellular routes; in the present study, we have explored these pathways. Transient expression of Smad proteins on their own had no effect on ZEBRA expression. A specific inhibitor of p38 mitogen-activated protein kinase (MAPK), SB203580, did not affect TGF-beta1-induced ZEBRA expression, whereas treatment with the MAPK/ERK kinase inhibitors, PD98059 and U0126, dramatically decreased this induction. This suggests that TGF-beta1 effect on BZLF1 expression requires the MAPK pathway. However, in Raji and B95-8 cells additional routes can be used, as (i) the inhibition of ZEBRA induction by PD98059 or U0126 was incomplete, whereas these inhibitors completely abolished PMA-induced ZEBRA expression, (ii) TGF-beta1 induction of ZEBRA expression occurs in PKC-depleted cells, (iii) in Raji and in B95-8 cells, the effect of TGF-beta1 and PMA are additive. Transient transfection of the EBV-negative B-cell line DG75 with a BZLF1 promoter-fusion construct (Zp-CAT) showed that under conditions where the BZLF1 promoter is activated by PMA treatment, TGF-beta1 had no significant effect on the expression of the chloramphenicol acetyltransferase gene. Furthermore, TGF-beta1 induction of BZLF1 transcripts is dependent on de novo protein synthesis, which suggests that TGF-beta1 induces BZLF1 expression by an indirect mechanism.
Collapse
Affiliation(s)
- H Fahmi
- Laboratoire de Pharmacologie Expérimentale et Clinique, INSERM EPI 99-32, Institut de Génétique Moléculaire, 75010 Paris, France
| | | | | | | | | |
Collapse
|
48
|
Fu Z, Cannon MJ. Functional analysis of the CD4(+) T-cell response to Epstein-Barr virus: T-cell-mediated activation of resting B cells and induction of viral BZLF1 expression. J Virol 2000; 74:6675-9. [PMID: 10864684 PMCID: PMC112180 DOI: 10.1128/jvi.74.14.6675-6679.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the major role played by Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T-cell responses in immunosurveillance, recent studies have offered the apparently paradoxical suggestion that development of EBV-driven human B-cell lymphoproliferative disorders and tumors in SCID/hu mice is dependent on the presence of T cells, in particular CD4(+) T cells. This study presents a functional analysis of the CD4(+) T-cell response to EBV and shows that while CD4(+) T cells may be cytotoxic, they also express Th2 cytokines and CD40 ligand (gp39) and possess B-cell helper function. We show that EBV-specific CD4(+) T cells can provide non-HLA-restricted help for activation of resting B cells via a gp39-CD40-dependent pathway and are able to induce expression of BZLF1, a viral lytic cycle transactivator in latently infected resting B cells, ultimately resulting in rapid outgrowth of transformed B-cell colonies. These results support the proposal that CD4(+) T cells may play a key role in reactivation of latent EBV infection and may thus contribute to the pathogenesis of EBV-driven lymphoproliferative disorders.
Collapse
Affiliation(s)
- Z Fu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
49
|
Fenton M, Sinclair AJ. Divergent requirements for the MAPK(ERK) signal transduction pathway during initial virus infection of quiescent primary B cells and disruption of Epstein-Barr virus latency by phorbol esters. J Virol 1999; 73:8913-6. [PMID: 10482653 PMCID: PMC112920 DOI: 10.1128/jvi.73.10.8913-8916.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quiescent primary B lymphocytes and Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines express components of the extracellular response kinase arm of the mitogen-activated protein kinase (MAPK(ERK)) signal transduction pathway and transmit signals through the pathway when exposed to appropriate stimuli. Although the MAPK(ERK) pathway is activated following infection with EBV, MAPK/ERK kinase (MEK1) activity is not required to drive the proliferation of infected cells. However, MEK1 contributes to EBV latency control.
Collapse
Affiliation(s)
- M Fenton
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, United Kingdom
| | | |
Collapse
|
50
|
Meyers C, Mayer TJ, Ozbun MA. Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. J Virol 1997; 71:7381-6. [PMID: 9311816 PMCID: PMC192083 DOI: 10.1128/jvi.71.10.7381-7386.1997] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lack of a permissive system for the propagation of viral stocks containing abundant human papillomavirus (HPV) particles has hindered the study of infectivity and the early stages of HPV replication. The organotypic (raft) culture system has permitted the study of a number of the differentiation-specific aspects of HPV, including amplification of viral DNA, expression of late genes, and viral morphogenesis. However, these investigations have been limited to a single virus type, namely, HPV type 31 (HPV31). We have artificially introduced linearized HPV18 genomic DNA into primary keratinocytes by electroporation, followed by clonal expansion and induction of epithelial stratification and differentiation in organotypic culture. We report the synthesis of infectious HPV18 virions. Virus particles approximately 50 nm in diameter were observed by electron microscopy. HPV18 virions purified by isopycnic gradient were capable of infecting keratinocytes in vitro, as shown by the expression of multiple HPV18-specific, spliced transcripts.
Collapse
Affiliation(s)
- C Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | |
Collapse
|