1
|
Leiendecker L, Neumann T, Jung PS, Cronin SM, Steinacker TL, Schleiffer A, Schutzbier M, Mechtler K, Kervarrec T, Laurent E, Bachiri K, Coyaud E, Murali R, Busam KJ, Itzinger-Monshi B, Kirnbauer R, Cerroni L, Calonje E, Rütten A, Stubenrauch F, Griewank KG, Wiesner T, Obenauf AC. Human Papillomavirus 42 Drives Digital Papillary Adenocarcinoma and Elicits a Germ Cell-like Program Conserved in HPV-Positive Cancers. Cancer Discov 2023; 13:70-84. [PMID: 36213965 PMCID: PMC9827110 DOI: 10.1158/2159-8290.cd-22-0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 01/13/2023]
Abstract
The skin is exposed to viral pathogens, but whether they contribute to the oncogenesis of skin cancers has not been systematically explored. Here we investigated 19 skin tumor types by analyzing off-target reads from commonly available next-generation sequencing data for viral pathogens. We identified human papillomavirus 42 (HPV42) in 96% (n = 45/47) of digital papillary adenocarcinoma (DPA), an aggressive cancer occurring on the fingers and toes. We show that HPV42, so far considered a nononcogenic, "low-risk" HPV, recapitulates the molecular hallmarks of oncogenic, "high-risk" HPVs. Using machine learning, we find that HPV-driven transformation elicits a germ cell-like transcriptional program conserved throughout all HPV-driven cancers (DPA, cervical carcinoma, and head and neck cancer). We further show that this germ cell-like transcriptional program, even when reduced to the top two genes (CDKN2A and SYCP2), serves as a fingerprint of oncogenic HPVs with implications for early detection, diagnosis, and therapy of all HPV-driven cancers. SIGNIFICANCE We identify HPV42 as a uniform driver of DPA and add a new member to the short list of tumorigenic viruses in humans. We discover that all oncogenic HPVs evoke a germ cell-like transcriptional program with important implications for detecting, diagnosing, and treating all HPV-driven cancers. See related commentary by Starrett et al., p. 17. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Lukas Leiendecker
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
- Quantro Therapeutics, Vienna, Austria
| | - Pauline S. Jung
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shona M. Cronin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas L. Steinacker
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Michael Schutzbier
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- The Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences (GMI), Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- The Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences (GMI), Vienna BioCenter (VBC), Vienna, Austria
| | - Thibault Kervarrec
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France
| | - Estelle Laurent
- PRISM INSERM U1192, Université de Lille, Villeneuve d'Ascq, France
| | - Kamel Bachiri
- PRISM INSERM U1192, Université de Lille, Villeneuve d'Ascq, France
| | - Etienne Coyaud
- PRISM INSERM U1192, Université de Lille, Villeneuve d'Ascq, France
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Klaus J. Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas’ Hospital, London, United Kingdom
| | - Arno Rütten
- Dermatopathology Friedrichshafen, Friedrichshafen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Klaus G. Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg, German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Anna C. Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
2
|
Kühnle S, Martínez-Noël G, Leclere F, Hayes SD, Harper JW, Howley PM. Angelman syndrome-associated point mutations in the Zn 2+-binding N-terminal (AZUL) domain of UBE3A ubiquitin ligase inhibit binding to the proteasome. J Biol Chem 2018; 293:18387-18399. [PMID: 30257870 PMCID: PMC6254356 DOI: 10.1074/jbc.ra118.004653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Deregulation of the HECT ubiquitin ligase UBE3A/E6AP has been implicated in Angelman syndrome as well as autism spectrum disorders. We and others have previously identified the 26S proteasome as one of the major UBE3A-interacting protein complexes. Here, we characterize the interaction of UBE3A and the proteasomal subunit PSMD4 (Rpn10/S5a). We map the interaction to the highly conserved Zn2+-binding N-terminal (AZUL) domain of UBE3A, the integrity of which is crucial for binding to PSMD4. Interestingly, two Angelman syndrome point mutations that affect the AZUL domain show an impaired ability to bind PSMD4. Although not affecting the ubiquitin ligase or the estrogen receptor α-mediated transcriptional regulation activities, these AZUL domain mutations prevent UBE3A from stimulating the Wnt/β-catenin signaling pathway. Taken together, our data indicate that impaired binding to the 26S proteasome and consequential deregulation of Wnt/β-catenin signaling might contribute to the functional defect of these mutants in Angelman syndrome.
Collapse
Affiliation(s)
- Simone Kühnle
- From the Departments of Microbiology and Immunobiology and
| | | | | | | | - J Wade Harper
- Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Peter M Howley
- From the Departments of Microbiology and Immunobiology and.
| |
Collapse
|
3
|
Zhao C, Lasses T, Bako L, Kong D, Zhao B, Chanda B, Bombarely A, Cruz-Ramírez A, Scheres B, Brunner AM, Beers EP. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED. THE NEW PHYTOLOGIST 2017; 216:76-89. [PMID: 28742236 DOI: 10.1111/nph.14704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.
Collapse
Affiliation(s)
- Chengsong Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Theres Lasses
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87, Umeå, Sweden
| | - Laszlo Bako
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87, Umeå, Sweden
| | - Danyu Kong
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bidisha Chanda
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, CINVESTAV, Irapuato, Guanajuato, 36821, México
| | - Ben Scheres
- Plant Developmental Biology, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 772:23-35. [PMID: 28528687 DOI: 10.1016/j.mrrev.2016.08.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
|
5
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
6
|
β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation. PLoS Pathog 2015; 11:e1004687. [PMID: 25803638 PMCID: PMC4372404 DOI: 10.1371/journal.ppat.1004687] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Recent work has explored a putative role for the E6 protein from some β-human papillomavirus genus (β-HPVs) in the development of non-melanoma skin cancers, specifically β-HPV 5 and 8 E6. Because these viruses are not required for tumor maintenance, they are hypothesized to act as co-factors that enhance the mutagenic capacity of UV-exposure by disrupting the repair of the resulting DNA damage. Supporting this proposal, we have previously demonstrated that UV damage signaling is hindered by β-HPV 5 and 8 E6 resulting in an increase in both thymine dimers and UV-induced double strand breaks (DSBs). Here we show that β-HPV 5 and 8 E6 further disrupt the repair of these DSBs and provide a mechanism for this attenuation. By binding and destabilizing a histone acetyltransferase, p300, β-HPV 5 and 8 E6 reduce the enrichment of the transcription factor at the promoter of two genes critical to the homology dependent repair of DSBs (BRCA1 and BRCA2). The resulting diminished BRCA1/2 transcription not only leads to lower protein levels but also curtails the ability of these proteins to form repair foci at DSBs. Using a GFP-based reporter, we confirm that this reduced foci formation leads to significantly diminished homology dependent repair of DSBs. By deleting the p300 binding domain of β-HPV 8 E6, we demonstrate that the loss of robust repair is dependent on viral-mediated degradation of p300 and confirm this observation using a combination of p300 mutants that are β-HPV 8 E6 destabilization resistant and p300 knock-out cells. In conclusion, this work establishes an expanded ability of β-HPV 5 and 8 E6 to attenuate UV damage repair, thus adding further support to the hypothesis that β-HPV infections play a role in skin cancer development by increasing the oncogenic potential of UV exposure. Human Papillomaviruses are a family of viruses with over 100 different members that infect mucous membranes and skin. Infections with some of these viruses are linked to cancers of the cervix and oropharynx. In this work, we explore the question of whether other members of this virus family may also contribute to skin cancer by inhibiting the ability of cells to repair the damage caused from UV exposure. Here, we build on our previous work showing that the E6 protein from two of these viruses (β-HPV 5 and 8) reduces the cellular response to UV damage by decreasing the abundance of two cellular proteins (p300 and ATR) involved in repairing the UV-damaged DNA, leading to more double strand DNA breaks following UV exposure. Here we show that the loss of p300 has further deleterious consequences, specifically that it results in diminished expression of two proteins (BRCA1 and BRCA2) involved in the repair of double strand breaks. Our data shows that this results in fewer BRCA1 and BRCA2 repair foci forming at sites of damage and ultimately in attenuated repair of these lesions. Together, this work provides further support for a link between β-HPV infections and skin cancer.
Collapse
|
7
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
8
|
Pang CL, Thierry F. Human papillomavirus proteins as prospective therapeutic targets. Microb Pathog 2012; 58:55-65. [PMID: 23164805 DOI: 10.1016/j.micpath.2012.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPV) are the causative agents of a subset of cervical cancers that are associated with persistent viral infection. The HPV genome is an ∼8 kb circle of double-stranded DNA that encodes eight viral proteins, among which the products of the E6 and E7 open reading frames are recognized as being the primary HPV oncogenes. E6 and E7 are expressed in pre-malignant lesions as well as in cervical cancers; hence these proteins have been extensively studied as potential targets for HPV therapies and novel vaccines. Here we review the expression and functions of E6 and E7 in the viral vegetative cycle and in oncogenesis. We also explore the expression and functions of other HPV proteins, including those with oncogenic properties, and discuss the potential of these molecules as alternative therapeutic targets.
Collapse
Affiliation(s)
- Chai Ling Pang
- Singapore Immunology Network, 8A Biomedical Grove, #4-06 Immunos, A*STAR, Singapore 138648, Singapore
| | | |
Collapse
|
9
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
10
|
Caberg JHD, Hubert PM, Begon DY, Herfs MF, Roncarati PJ, Boniver JJ, Delvenne PO. Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis 2008; 29:1441-7. [PMID: 18566017 DOI: 10.1093/carcin/bgn145] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human papillomavirus (HPV) infection, particularly type 16, is causally associated with cancer of the uterine cervix. The persistence or progression of cervical lesions suggests that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most squamous intra-epithelial lesions show quantitative and functional alterations of Langerhans cells (LCs). Moreover, E-cadherin-dependent adhesion of LC to keratinocytes (KCs) is defective in cervical HPV16-associated (pre)neoplastic lesions. The possible role of viral oncoprotein E7 in the reduced levels of cell surface E-cadherin was investigated by silencing HPV16 E7 by RNA interference (siRNA). This treatment induced an increased cell surface E-cadherin expression in HPV16-positive KC and a significant adhesion of LC to these squamous cells. The E-cadherin re-expression following HPV16 E7 silencing was associated with increased detection levels of retinoblastoma protein and the activating protein (AP)-2alpha transcription factor. These data suggest that HPV16 E7-induced alterations of LC/KC adhesion may play a role in the defective immune response during cervical carcinogenesis.
Collapse
Affiliation(s)
- Jean-Hubert D Caberg
- Department of Pathology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, B23, University of Liege, Centre Hospitalier Universitaire Sart Tilman, 4000 Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
11
|
Balsitis S, Dick F, Dyson N, Lambert PF. Critical roles for non-pRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis. Cancer Res 2007; 66:9393-400. [PMID: 17018593 PMCID: PMC2858286 DOI: 10.1158/0008-5472.can-06-0984] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV) encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. In vivo, HPV-16 E7 has been shown to induce multiple phenotypes in the context of transgenic mice, including cervical cancer. E7 is a multifunctional protein known best for its ability to inactivate the tumor suppressor pRb. To determine the importance of pRb inactivation by E7 in cervical cancer, we pursued studies with genetically engineered mice. E7 expression in estrogen-treated murine cervix induced dysplasia and invasive cancers as reported previously, but targeted Rb inactivation in cervical epithelium was not sufficient to induce any cervical dysplasia or neoplasia. Furthermore, E7 induced cervical cancer formation even when the E7-pRb interaction was disrupted by the use of a knock-in mouse carrying an E7-resistant mutant Rb allele. pRb inactivation was necessary but not sufficient for E7 to overcome differentiation-induced or DNA damage-induced cell cycle arrest, and expression patterns of the E2F-responsive genes Mcm7 and cyclin E indicate that other E2F regulators besides pRb are important targets of E7. Together, these data indicate that non-pRb targets of E7 play critical roles in cervical carcinogenesis.
Collapse
Affiliation(s)
- Scott Balsitis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin
| | - Fred Dick
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin
| |
Collapse
|
12
|
Collins AS, Nakahara T, Do A, Lambert PF. Interactions with pocket proteins contribute to the role of human papillomavirus type 16 E7 in the papillomavirus life cycle. J Virol 2006; 79:14769-80. [PMID: 16282477 PMCID: PMC1287546 DOI: 10.1128/jvi.79.23.14769-14780.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs), most commonly the HPV16 genotype, are the principle etiological determinant for cervical cancer, a common cancer worldwide resulting in over 200,000 deaths annually. The oncogenic properties of HPVs are attributable in part to the virally encoded protein E7, best known for its ability to bind to and induce the degradation of the retinoblastoma tumor suppressor, pRb, and related "pocket proteins" p107 and p130. Previously, we defined a role for E7 in the productive stage of the HPV16 life cycle, which takes place in stratified squamous epithelia. HPV perturbs the normal processes of cell growth and differentiation of stratified squamous epithelia. HPVs reprogram cells to support continued DNA synthesis and inhibit their differentiation in the suprabasal compartment of the epithelia, where cells normally have withdrawn from the cell cycle and initiated a well-defined pattern of terminal differentiation. These virus-induced perturbations, which contribute to the production of progeny HPVs, are dependent on E7. In this study, we define the mechanism of action by which E7 contributes to the productive stage of the HPV16 life cycle. We found that the ability of HPV16 to reprogram suprabasal cells to support DNA synthesis correlates with E7's ability to bind pocket proteins but not its ability to induce their degradation. In contrast, the ability of HPV16 to perturb differentiation correlated with both E7's binding to and degradation of pocket proteins. These data indicate that different hallmarks of the productive stage of the HPV16 life cycle rely upon different sets of requirements for E7.
Collapse
Affiliation(s)
- Asha S Collins
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Ave., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
13
|
Zhang B, Chen W, Roman A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci U S A 2005; 103:437-42. [PMID: 16381817 PMCID: PMC1326189 DOI: 10.1073/pnas.0510012103] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-risk human papillomaviruses (HPVs) (e.g., HPV-16) cause anogenital and head and neck cancers, and low-risk HPVs (e.g., HPV-6) cause benign hyperproliferative disease. The E7 protein of HPV-16 binds all retinoblastoma tumor suppressor protein (pRB) family members with higher affinity than HPV-6E7. The HPV-16 E7 protein has been reported to target pRB family members for degradation and to immortalize cells. Here we tested the hypothesis that the low-risk E7 protein has an intrinsic ability to decrease expression of pRB family members. First, we introduced a high-affinity pRB-binding site into HPV-6 E7 (6E7G22D) and showed that, in human foreskin keratinocytes, HPV-6 E7G22D decreased the level of pRB protein but not pRB mRNA. Second, we analyzed the ability of wild-type HPV-6 E7 to destabilize the other pRB family members, p107 and p130. HPV-6 E7, like HPV-16 E7, decreased the level of p130 protein. This decrease was inhibited by MG132, a proteasome inhibitor. Binding of HPV-6 E7 to p130 was necessary but not sufficient to decrease the level of p130. Furthermore, the destabilization of p130 correlated with a decrease in the expression of involucrin, a differentiation marker. We suggest that the shared activity of HPV-16 E7 and HPV-6 E7 to destabilize p130 and decrease or delay differentiation may be related to the role of E7 in the HPV life cycle. The added ability of HPV-16 E7 to regulate pRB and p107 may be related to oncogenic activity.
Collapse
Affiliation(s)
- Benyue Zhang
- Department of Microbiology and Immunology and The Walther Oncology Center, Indiana University School of Medicine and The Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
14
|
Balsitis S, Dick F, Lee D, Farrell L, Hyde RK, Griep AE, Dyson N, Lambert PF. Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J Virol 2005; 79:11392-402. [PMID: 16103190 PMCID: PMC1193607 DOI: 10.1128/jvi.79.17.11392-11402.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomaviruses encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. Although E7 protein is best known for its ability to inactivate the retinoblastoma tumor suppressor protein, pRb, many other activities for E7 have been proposed in in vitro studies. Herein, we describe studies that allowed us to define unambiguously the pRb-dependent and -independent activities of E7 for the first time in vivo. In these studies, we crossed mice transgenic for human papillomavirus 16 E7 to knock-in mice genetically engineered to express a mutant form of pRb (pRb(DeltaLXCXE)) that is selectively defective for binding E7. pRb inactivation was necessary for E7 to induce DNA synthesis and to overcome differentiation-dependent cell cycle withdrawal and DNA damage-induced cell cycle arrest. While most of E7's effects on epidermal differentiation were found to require pRb inactivation, a modest delay in terminal differentiation with resulting hyperplasia was observed in E7 mice on the Rb(DeltaLXCXE) mutant background. E7-induced p21 upregulation was also pRb dependent, and genetic Rb inactivation was sufficient to reproduce this effect. While E7-mediated p21 induction was partially p53 dependent, neither p53 nor p21 induction by E7 required p19(ARF). These data show that E7 upregulates the expression of p53 and p21 via pRb-dependent mechanisms distinct from the proposed p19-Mdm2 pathway. These results extend our appreciation of the importance of pRb as a relevant target for high-risk E7 oncoproteins.
Collapse
Affiliation(s)
- Scott Balsitis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Stewart D, Ghosh A, Matlashewski G. Involvement of nuclear export in human papillomavirus type 18 E6-mediated ubiquitination and degradation of p53. J Virol 2005; 79:8773-83. [PMID: 15994771 PMCID: PMC1168768 DOI: 10.1128/jvi.79.14.8773-8783.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E6 protein from high-risk human papillomaviruses (HPVs) targets the p53 tumor suppressor for degradation by the proteasome pathway. This ability contributes to the oncogenic potential of these viruses. However, several aspects concerning the mechanism of E6-mediated p53 degradation at the cellular level remain to be clarified. This study therefore examined the role of cell localization and ubiquitination in the E6-mediated degradation of p53. As demonstrated within, following coexpression both p53 and high-risk HPV type 18 (HPV-18) E6 (18E6) shuttle from the nucleus to the cytoplasm. Mutation of the C-terminal nuclear export signal (NES) of p53 or treatment with leptomycin B inhibited the 18E6-mediated nuclear export of p53. Impairment of nuclear export resulted in only a partial reduction in 18E6-mediated degradation, suggesting that both nuclear and cytoplasmic proteasomes can target p53 for degradation. This was also consistent with the observation that 18E6 mediated the accumulation of polyubiquitinated p53 in the nucleus. In comparison, a p53 isoform that localizes predominantly to the cytoplasm was not targeted for degradation by 18E6 in vivo but could be degraded in vitro, arguing that nuclear p53 is the target for E6-mediated degradation. This study supports a model in which (i) E6 mediates the accumulation of polyubiquitinated p53 in the nucleus, (ii) E6 is coexported with p53 from the nucleus to the cytoplasm via a CRM1 nuclear export mechanism involving the C-terminal NES of p53, and (iii) E6-mediated p53 degradation can be mediated by both nuclear and cytoplasmic proteasomes.
Collapse
Affiliation(s)
- Deborah Stewart
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Room 511, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
16
|
Miura TA, Li H, Morris K, Ryan S, Hembre K, Cook JL, Routes JM. Expression of an E1A/E7 chimeric protein sensitizes tumor cells to killing by activated macrophages but not NK cells. J Virol 2004; 78:4646-54. [PMID: 15078947 PMCID: PMC387719 DOI: 10.1128/jvi.78.9.4646-4654.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 12/31/2003] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) E1A and human papillomavirus (HPV) E7 express homologous conserved regions (CRs) that mediate their shared biological functions. Despite their similarities, the expression of E1A sensitizes tumor cells to killing by NK cells and macrophages but the expression of E7 does not, a factor that may contribute to the dissimilar oncogenicities of Ad and HPV. This study was undertaken to define molecular differences between E1A and E7 that are responsible for the ability of E1A and the inability of E7 to sensitize cells to killing by NK cells and macrophages. Genetic mapping studies using human fibrosarcoma cells (H4) that stably expressed mutant forms of E1A showed that only those forms of E1A that interacted with the transcriptional coadaptor protein p300 sensitized cells to killing by NK cells and macrophages. E7 lacks the N-terminal p300-binding region present in E1A. Therefore, a chimeric E1A/E7 gene was constructed that included the N terminus and the CR1 (p300-binding) domain of E1A fused to CR2 and the C-terminal sequences of E7. The E1A/E7 protein interacted with p300 and pRb and immortalized primary mouse embryo fibroblasts (MEF). The expression of E1A/E7 sensitized H4 and MEF cells to killing by activated macrophages but not to killing by NK cells. Therefore, N-terminal differences between E1A and E7 that map to the E1A-p300 binding region accounted for differences in their abilities to sensitize cells to killing by macrophages. However, regions in addition to the E1A-p300 binding region are required to sensitize cells to killing by NK cells.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Balsitis SJ, Sage J, Duensing S, Münger K, Jacks T, Lambert PF. Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol Cell Biol 2004; 23:9094-103. [PMID: 14645521 PMCID: PMC309665 DOI: 10.1128/mcb.23.24.9094-9103.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the human papillomavirus (HPV) E7 oncogene is known to contribute to the development of human cervical cancer, the mechanisms of its carcinogenesis are poorly understood. The first identified and most recognized function of E7 is its binding to and inactivation of the retinoblastoma tumor suppressor (pRb), but at least 18 other biological activities have also been reported for E7. Thus, it remains unclear which of these many activities contribute to the oncogenic potential of E7. We used a Cre-lox system to abolish pRb expression in the epidermis of transgenic mice and compared the outcome with the effects of E7 expression in the same tissue at early ages. Mice lacking pRb in epidermis showed epithelial hyperplasia, aberrant DNA synthesis, and improper differentiation. In addition, Rb-deleted epidermis (i.e., epidermis composed of cells with Rb deleted) exhibited centrosomal abnormalities and failed to arrest the cell cycle in response to ionizing radiation. Transgenic mice expressing E7 in skin display the same range of phenotypes. In sum, few differences were detected between Rb-deleted epidermis and E7-expressing epidermis in young mice. However, when both E7 was expressed and Rb was deleted in the same tissue, increased hyperplasia and dysplasia were observed. These findings indicate that inactivation of the Rb pathway can largely account for E7's phenotypes at an early age, but that pRb-independent activities of E7 are detectable in vivo.
Collapse
Affiliation(s)
- Scott J Balsitis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, 1400 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 2002; 277:2923-30. [PMID: 11713253 DOI: 10.1074/jbc.m109113200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human papillomavirus (HPV) E7 oncoprotein can immortalize primary human cells and induce tumor formation. These properties of E7 depend on its ability to inhibit the activity of retinoblastoma protein (pRB), which in turn affects E2F function. E2F proteins control the expression of genes involved in differentiation, development, cell proliferation, and apoptosis. By using genetic and biochemical approaches, the present study shows that E7 binds to E2F1 in vivo and in vitro and that both proteins co-localize in the nucleus. Importantly, the binding of the high risk group HPV E7 to E2F1 is tighter than the binding of the low risk group HPV E7 to E2F1. Although E7 of the high risk group HPVs activates E2F1-dependent transcription strongly in C33A or 293T cells, E7 of the low risk group HPVs activates transcription only weakly. By using electrophoretic mobility shift assay, we also showed that E7 binds to E2F1-DNA complexes. Furthermore, we show that these activities of E7 are independent of pRB by using E7 and E2F1 mutants that cannot bind to pRB. Taken together, these data suggest that E7 contributes to the deregulation of pRB-dependent E2F1 repression and to the further activation of E2F1 independently of pRB.
Collapse
Affiliation(s)
- Sun Gwan Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
19
|
Balagué C, Noya F, Alemany R, Chow LT, Curiel DT. Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes. J Virol 2001; 75:7602-11. [PMID: 11462032 PMCID: PMC114995 DOI: 10.1128/jvi.75.16.7602-7611.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells.
Collapse
Affiliation(s)
- C Balagué
- Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
20
|
Razani B, Altschuler Y, Zhu L, Pestell RG, Mostov KE, Lisanti MP. Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry 2000; 39:13916-24. [PMID: 11076533 DOI: 10.1021/bi001489b] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Squamous cell carcinomas of the lung and cervix arise by neoplastic transformation of their respective tissue epithelia. In the case of cervical carcinomas, an increasing body of evidence implicates the human papillomavirus, HPV (types 16 and 18), as playing a pivotal role in this malignant transformation process. The HPV early genes E6 and E7 are known to inactivate the tumor suppressors p53 and Rb, respectively; this leads to disruption of cell cycle regulation, predisposing cells to a cancerous phenotype. However, the role of caveolin-1 (a putative tumor suppressor) in this process remains unknown. Here, we show that caveolin-1 protein expression is consistently reduced in a panel of lung and cervical cancer derived cell lines and that this reduction is not due to hyperactivation of p42/44 MAP kinase (a known negative regulator of caveolin-1 transcription). Instead, we provide evidence that this down-regulation event is due to expression of the HPV E6 viral oncoprotein, as stable expression of E6 in NIH 3T3 cells is sufficient to dramatically reduce caveolin-1 protein levels. Furthermore, we demonstrate that p53-a tumor suppressor inactivated by E6-is a positive regulator of caveolin-1 gene transcription and protein expression. SiHa cells are derived from a human cervical squamous carcinoma, harbor a fully integrated copy of the HPV 16 genome (including E6), and show dramatically reduced levels of caveolin-1 expression. We show here that adenoviral-mediated gene transfer of the caveolin-1 cDNA to SiHa cells restores caveolin-1 protein expression and abrogates their anchorage-independent growth in soft agar. Taken together, our results suggest that the HPV oncoprotein E6 down-regulates caveolin-1 via inactivation of p53 and that replacement of caveolin-1 expression can partially revert HPV-mediated cell transformation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antiviral Agents/antagonists & inhibitors
- Antiviral Agents/biosynthesis
- Antiviral Agents/genetics
- Antiviral Agents/physiology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Caveolin 1
- Caveolins/antagonists & inhibitors
- Caveolins/biosynthesis
- Caveolins/genetics
- Caveolins/physiology
- Cell Line, Transformed
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Viral/genetics
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, p53/physiology
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Papillomaviridae/physiology
- Phenotype
- Promoter Regions, Genetic
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/pharmacology
- Repressor Proteins
- Transfection
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/genetics
- Up-Regulation/genetics
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- B Razani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
21
|
Massimi P, Banks L. Differential phosphorylation of the HPV-16 E7 oncoprotein during the cell cycle. Virology 2000; 276:388-94. [PMID: 11040129 DOI: 10.1006/viro.2000.0514] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human papillomavirus type 16 encodes two principal oncoproteins, E6 and E7. The E7 protein has been shown to deregulate the cell cycle through interactions with a variety of proteins involved in cell cycle control and transcriptional regulation. These activities result in E7 being able to cooperate with activated oncogenes in the transformation of primary rodent cells, and with the viral E6 protein during human keratinocyte immortalization. Although a large number of activities have been ascribed to the E7 protein, little is known about its regulation during the cell cycle. We have performed a series of studies to investigate potential changes in E7 phosphorylation during the cell cycle and we show that E7 is indeed differentially phosphorylated. Casein kinase II is the principal kinase during the early part of the cell cycle, but this activity decreases rapidly as cells progress toward S phase. In addition, E7 is transiently phosphorylated at Ser71 in S phase by another, as yet unknown, kinase. These results demonstrate differential regulation of the E7 protein during the cell cycle that most likely represents a means of providing specificity to E7's activities.
Collapse
Affiliation(s)
- P Massimi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste, I-34012, Italy
| | | |
Collapse
|
22
|
Georgopoulos NT, Proffitt JL, Blair GE. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 2000; 19:4930-5. [PMID: 11039910 DOI: 10.1038/sj.onc.1203860] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have examined the possibility that the E7 proteins of the high-risk human papillomavirus (HPV) type 16 and 18 and the oncogenic adenovirus (Ad) type 12 E1A protein share the ability to down-regulate the expression of components of the antigen processing and presentation pathway, as a common strategy in the evasion of immune surveillance during the induction of cell transformation. Expression of the HPV 18 E7 oncoprotein, like Ad 12 E1A, resulted in repression of the major histocompatibility complex (MHC) class I heavy chain promoter, as well as repression of a bidirectional promoter that regulates expression of the genes encoding the transporter associated with antigen processing subunit 1 (TAP1) and a proteasome subunit, low molecular weight protein 2 (LMP2). HPV 16 E7 also caused a reduction in class I heavy chain promoter activity, however it did not have any significant effect on the activity of the bidirectional promoter. Interestingly, expression of the low-risk HPV 6b E7 protein resulted in an increase in MHC class I heavy chain promoter activity, while repressing the TAP1/LMP2 promoter. Interference with the class I pathway could also explain the ability of low-risk HPVs in inducing benign lesions.
Collapse
Affiliation(s)
- N T Georgopoulos
- School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | |
Collapse
|
23
|
Searching for Antiviral Drugs for Human Papillomaviruses. Antivir Ther 2000. [DOI: 10.1177/135965350000500401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The human papillomaviruses (HPVs) are ubiquitous human pathogens that cause a wide variety of benign and pre-malignant epithelial tumours. Of the almost 100 different types of HPV that have been characterized to date, approximately two dozen specifically infect genital and oral mucosa. Mucosal HPVs are most frequently sexually transmitted and, with an incidence roughly twice that of herpes simplex virus infection, are considered one of the most common sexually transmitted diseases throughout the world. A subset of genital HPVs, termed ‘high-risk’ HPVs, is highly associated with the development of genital cancers including cervical carcinoma. The absence of a simple monolayer cell culture system for analysis and propagation of the virus has substantially retarded progress in the development of diagnostic and therapeutic strategies for HPV infection. In spite of these difficulties, great progress has been made in the elucidation of the molecular controls of virus gene expression, replication and pathogenesis. With this knowledge and some important new tools, there is great potential for the development of improved diagnostic and prognostic tests, prophylactic and therapeutic vaccines, and traditional antiviral medicines.
Collapse
|
24
|
Zwerschke W, Mannhardt B, Massimi P, Nauenburg S, Pim D, Nickel W, Banks L, Reuser AJ, Jansen-Dürr P. Allosteric activation of acid alpha-glucosidase by the human papillomavirus E7 protein. J Biol Chem 2000; 275:9534-41. [PMID: 10734102 DOI: 10.1074/jbc.275.13.9534] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the cellular carbohydrate metabolism are a hallmark of malignant transformation and represent one of the earliest discernible events in tumorigenesis. In the early stages of certain epithelial cancers, a metabolic switch is regularly observed, in which slowly growing glycogenotic cells are converted to highly proliferating basophilic cells. This step is accompanied by a rapid depletion of the intracellular glycogen stores, which in liver carcinogenesis results from the activation of the enzyme acid alpha-glucosidase by an as yet unknown mechanism. We show here that acid alpha-glucosidase is a target for the E7 protein encoded by human papillomavirus type 16, a human tumor virus that plays a key role in the genesis of cervical carcinoma. We show that expression of E7 induces the catalytic activity of acid alpha-glucosidase in vivo and wild type E7, but not transformation-deficient mutants bind directly to acid alpha-glucosidase and increase the catalytic activity of the enzyme in vitro. The data suggest that the E7 protein encoded by human papillomavirus type 16 can act as an allosteric activator of acid alpha-glucosidase.
Collapse
Affiliation(s)
- W Zwerschke
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung F0301, INF 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zwerschke W, Jansen-Dürr P. Cell transformation by the E7 oncoprotein of human papillomavirus type 16: interactions with nuclear and cytoplasmic target proteins. Adv Cancer Res 1999; 78:1-29. [PMID: 10547667 DOI: 10.1016/s0065-230x(08)61022-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The E7 oncoprotein of human papillomavirus type 16 (HPV-16) has long been known as a potent immortalizing and transforming agent. However, the molecular mechanisms underlying cell transformation and immortalization by E7 remain largely unknown. It is believed that E7 exerts its oncogenic function at least in part by modulating cellular growth regulatory pathways. Increasing experimental evidence suggests that cell transformation by E7 is mediated by the physical association of E7 with cellular regulatory proteins, whose functions are specifically altered by E7, as exemplified by the well-known interaction of E7 with the retinoblastoma protein. In this review, we summarize the available data on the interaction of E7 with cellular regulatory factors and functional consequences of these interactions. We will focus the review on a set of recently identified new target proteins for the E7 oncoprotein, which sheds new light on E7 functions required for cell transformation and immortalization. Similar to the case of the E6 protein of HPV-16, whose interaction with p53 was long considered its major activity, it now appears that the interaction of E7 with the retinoblastoma protein represents just one of many distinct interactions that are relevant for cell transformation.
Collapse
Affiliation(s)
- W Zwerschke
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Heidelberg, Germany
| | | |
Collapse
|
26
|
Lüscher-Firzlaff JM, Westendorf JM, Zwicker J, Burkhardt H, Henriksson M, Müller R, Pirollet F, Lüscher B. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 1999; 18:5620-30. [PMID: 10523841 DOI: 10.1038/sj.onc.1202967] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The high risk human papillomavirus (HPV) type 16 E7 protein affects cell growth control and promotes transformation by interfering with functions of cellular proteins. A key target of E7 is the tumor suppressor protein p105RB. Although this interaction is required for E7-dependent transformation, other cellular molecules must also be involved, because some E7 mutants that have reduced transforming abilities still bind to p105RB. In order to identify additional proteins that interact with E7 and that may be responsible to mediate its transforming function, we have used the C-terminal half of E7 in a yeast two-hybrid screen. We identified the fork head domain transcription factor M phase phosphoprotein 2 (MPP2) as an interaction partner of E7. Specific interaction of the two proteins both in vitro and in vivo in mammalian cells was detected. The interaction of MPP2 with E7 is functionally relevant since MPP2 enhances the E7/Ha-Ras co-transformation of rat embryo fibroblasts. In addition HPV16 E7, but neither non-transforming mutants of HPV16 E7 nor low risk HPV6 E7, was able to stimulate MPP2-specific transcriptional activity. Thus, MPP2 is a potentially important target for E7-mediated transformation.
Collapse
Affiliation(s)
- J M Lüscher-Firzlaff
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Smith-McCune K, Kalman D, Robbins C, Shivakumar S, Yuschenkoff L, Bishop JM. Intranuclear localization of human papillomavirus 16 E7 during transformation and preferential binding of E7 to the Rb family member p130. Proc Natl Acad Sci U S A 1999; 96:6999-7004. [PMID: 10359828 PMCID: PMC22035 DOI: 10.1073/pnas.96.12.6999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study intracellular pathways by which the human papillomavirus 16 oncogene E7 participates in carcinogenesis, we expressed an inducible chimera of E7 by fusion to the hormone-binding domain of the estrogen receptor. The chimeric protein (E7ER) transformed rodent fibroblast cell lines and induced DNA synthesis on addition of estradiol. In coimmunoprecipitation experiments, E7ER preferentially bound p130 when compared to p107 and pRb. After estradiol addition, E7ER localization changed to a more intense intranuclear staining. Induction of E7 function was not correlated with binding to p130 or pRb but rather with intranuclear localization and modest induction of binding to p107.
Collapse
Affiliation(s)
- K Smith-McCune
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco CA 94115, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Mantovani F, Banks L. Inhibition of E6 induced degradation of p53 is not sufficient for stabilization of p53 protein in cervical tumour derived cell lines. Oncogene 1999; 18:3309-15. [PMID: 10362351 DOI: 10.1038/sj.onc.1202688] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The E6 proteins derived from tumour associated papillomavirus types target the cellular tumour suppressor protein p53 for ubiquitin mediated degradation. In cell lines derived from cervical tumours the p53 protein is present in very low amounts, but it can be activated by appropriate DNA damaging agents, indicating that functional p53 is present within these lines. Recent studies have also shown that different polymorphic forms of the p53 protein are differentially susceptible to E6 mediated degradation. Therefore we have been interested in analysing the effects of different HPV E6 proteins upon p53 levels in a variety of cervical tumour derived cell lines. We show that inhibition of E6 mediated degradation of p53 frequently results in increased levels of p53 expression. However, there are notable exceptions to this where increased p53 levels are only obtained following DNA damage and proteasome inhibition. We also show in E6 expressing cells, that as well as p53 being targeted for degradation, the localization of p53 to the nucleus is also inhibited, consistent with previous observations which indicate that degradation of p53 is not essential for E6 mediated inhibition of p53 function. These results have important implications for any potential therapies which might aim to block E6 mediated degradation of p53.
Collapse
Affiliation(s)
- F Mantovani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | |
Collapse
|
29
|
Abstract
Human papillomaviruses (HPVs) are strictly host-specific and also show a distinct tropism to squamous epithelial cells. Upon HPV infection, only a portion of the virus reaching the nucleus seems to undergo replication, suggesting that HPV replication remains confined to a small number of cells. HPVs critically depend on the cellular machinery for the replication of their genome. Viral replication is restricted to differentiated keratinocytes that are normally growth arrested. Hence, HPVs have developed strategies to subvert cellular growth regulatory pathways and are able to uncouple cellular proliferation and differentiation. Endogenous growth factors and cellular oncogenes modify HPV E (early) and L (late) gene expression and influence on the pathogenesis of HPV infections. HPV oncoproteins (E5, E6, E7) are important proteins not only in cell transformation but also in the regulation of the mitotic cycle of the cell, thus allowing the continuous proliferation of the host cells. Cyclins are important regulators of cell cycle transitions through their ability to bind cyclin-dependent kinases (cdks). Cdks have no kinase activity unless they are associated with a cyclin. Several classes of cyclins exist which are thought to coordinate the timing of different events necessary for cell cycle progression. Each cdk catalytic subunit can associate with different cyclins, and the associated cyclin determines which proteins are phosphorylated by the cdk-cyclin complex. The effects of HPVs on the cell cycle are mediated through the inhibition of antioncogens (mostly p53 and retinoblastoma) and through interference with the cyclins and cdks, resulting in target cell proliferation, their delayed differentiation, and as a side-effect, in malignant transformation.
Collapse
Affiliation(s)
- S M Syrjänen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, University of Turku, Finland.
| | | |
Collapse
|
30
|
Phelps WC, Barnes JA, Lobe DC. Molecular targets for human papillomaviruses: prospects for antiviral therapy. Antivir Chem Chemother 1998; 9:359-77. [PMID: 9875390 DOI: 10.1177/095632029800900501] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A substantial medical need exists for the development of antiviral medicines for the treatment of diseases associated with infection by human papillomaviruses (HPVs). HPVs are associated with various benign and malignant lesions including benign genital condyloma, common skin warts, laryngeal papillomas and anogenital cancer. Since treatment options are limited and typically not very satisfactory, the development of safe and effective antiviral drugs for HPV could have substantial clinical impact. In the last few years, exciting advances have been made in our understanding of papillomavirus replication and the effects that the virus has on growth of the host cell. Although still somewhat rudimentary, techniques have been developed for limited virion production in vitro offering the promise of more rapid advances in the dissection and understanding of the virus life cycle. Of the 8-10 HPV gene products that are made during infection, only one encodes enzymatic activities, the E1 helicase. Successful antiviral therapies have traditionally targeted viral enzymes such as polymerases, kinases and proteases. In contrast, macromolecular interactions which mediate the functions of E6, E7 and E2 are thought to be more difficult targets for small molecule therapy.
Collapse
Affiliation(s)
- W C Phelps
- Department of Virology, Glaxo Wellcome Inc, Research Triangle Park, North Carolina 27709-3398, USA.
| | | | | |
Collapse
|
31
|
Abstract
Cultured cell lines that maintain specific differentiated phenotypes have been indispensable tools in cell biology. Progress in understanding the function of differentiated cells in vivo can be facilitated by creating cell lines via immortalizing gene transduction, if they retain the essential differentiated features of the same cells in vivo. Rodent cells immortalize spontaneously with a frequency of 10(-5) to 10(-6). Thus, it is easy to isolate immortal cells from rodent cell populations even without the transfer of immortalizing genes. Immortalizing genes can be used to increase this frequency to approximately 100%. In contrast, the spontaneous immortalization of human cells is a very rare event; the frequency is thought to be < 10(-12). Immortalizing genes can also be used to increase this frequency. Several genes that promise efficient immortalization of cultured cells have been identified. Immortalizing genes include simian virus 40 large T antigen, papillomaviruses E6 and E7, adenovirus E1A, Epstein-Barr virus, human T-cell leukemia virus, herpesvirus saimiri, oncogenes, and mutant p53 gene. Equally important, innovative means of gene delivery have been developed as well. These immortalizing genes, together with gene transfer methodologies, have provided the means to generate cell lines from cell types that are not abundant or are difficult to obtain in pure form in primary culture, are in short supply as human cells, and/or have brief lifetimes in culture. This chapter focuses primarily on the immortalization method by gene transfection. The chapter is not meant to be comprehensive, but rather to provide an account of the power and usefulness of immortalization methodology.
Collapse
Affiliation(s)
- Y Katakura
- Laboratory of Cellular Regulation Technology, Graduate School of Genetic Resources Technology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
32
|
Fogel S, Riou G. The early HPV16 proteins can regulate mRNA levels of cell cycle genes in human cervical carcinoma cells by p53-independent mechanisms. Virology 1998; 244:97-107. [PMID: 9581783 DOI: 10.1006/viro.1998.9086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cervical carcinoma-associated human papillomavirus type 16 (HPV16) encodes E6 and E7 oncoproteins which inactivate p53 and Rb, respectively, but these interactions are not sufficient to account for the oncogenic potential of the virus. Several viral promoters were shown to be regulated by E6 and E7. To identify genes as cellular targets of the HPV16 early proteins, we transfected a new HPV-negative and p53-mutated cervical carcinoma-derived cell line with either the HPV16 full-length genome or the HPV16 E6 gene. HPV16 clones but not 16E6 clones showed a decreased doubling time that was not related to the viral DNA and mRNA patterns. In exponentially growing cells as well as in cells synchronized by serum starvation, expression of the E6 gene was associated with upregulation of the c-fos and c-jun proto-oncogenes and with downregulation of the c-Ha-ras gene. Furthermore, a viral gene other than E6 may be involved in downregulation of p53 because a reduced mRNA level at the G1/S transition was observed only in HPV16-cells. The present study on natural host cells indicates p53-independent transcriptional modulations of cell cycle regulatory genes related to HPV16 E6 and E7 expression.
Collapse
Affiliation(s)
- S Fogel
- Laboratoire de Pharmacologie Clinique et Moléculaire, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
33
|
Schulze A, Mannhardt B, Zerfass-Thome K, Zwerschke W, Jansen-Dürr P. Anchorage-independent transcription of the cyclin A gene induced by the E7 oncoprotein of human papillomavirus type 16. J Virol 1998; 72:2323-34. [PMID: 9499093 PMCID: PMC109532 DOI: 10.1128/jvi.72.3.2323-2334.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To develop an experimental model for E7-mediated anchorage-independent growth, we studied the ability of E7-expressing NIH 3T3 subclones to enter S phase when they were cultured in suspension. We found that expression of E7 prevents the inhibition of cyclin E-associated kinase and also triggers activation of cyclin A gene expression in suspension cells. A point mutation in the amino terminus of E7 prevented E7-driven rescue of cyclin E-associated kinase activity in suspension cells; however, cells with this mutation retained some ability to activate cyclin A gene expression and promote S-phase entry. Activation of cyclin A gene expression by E7 was correlated with an increased binding of free E2F to a regulatory element in the cyclin A promoter which mediates both repression of cyclin A upon loss of adhesion and its reactivation by E7. Surprisingly, expression of E7 led to a nuclear accumulation of one species of free E2F, namely, an E2F-4-DP-1 heterodimer, that is exclusively cytoplasmic in the absence of E7. Taken together, the data reported here indicate that several different E7-dependent changes of cellular-growth-regulating pathways can cooperate to allow adhesion-independent entry into S phase.
Collapse
Affiliation(s)
- A Schulze
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Delius H, Saegling B, Bergmann K, Shamanin V, de Villiers EM. The genomes of three of four novel HPV types, defined by differences of their L1 genes, show high conservation of the E7 gene and the URR. Virology 1998; 240:359-65. [PMID: 9454709 DOI: 10.1006/viro.1997.8943] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The DNA genomes of four new human papillomaviruses, HPV 75, HPV 76, HPV 77, and HPV 80, have been cloned, sequenced, and characterized. HPV 75, HPV 76 (both HPV 49-related), and HPV 77 (HPV 29-related) were isolated from benign cutaneous warts and HPV 80 (HPV 15-related) from histologically normal skin. HPV 77 has also been demonstrated in dysplastic warts and squamous cell carcinomas of the skin. The sequence data presented in this study led to a proposed modification of the definition of a new HPV type. The high degree of DNA sequence similarity between the E7 ORF of HPV 77 and HPV 29 (97.7%), as opposed to the E6 (82.8%) and L1 (85.3%) ORFs, might suggest conservation of a specific function or a possible recombinational event. Only the E6 and L1 ORFs of HPV 75 and HPV 76 have a similarity lower than 90%, whereas the DNA sequences of their upstream regulatory regions (URRs) share a similarity of 93%. The E7, E1, and E4 ORFs, as well as the URR of HPV 15 and HPV 80, share sequence similarities higher than 90%. Such a divergence in the similarity between different segments of the virus genomes of closely related HPV types has not been noted to date. A detailed comparative sequence analysis was performed. HPV 75, HPV 76, and HPV 80 revealed features characteristic of truly cutaneous HPV types, whereas HPV 77 shared several characteristics with the mucosal HPV types, some of which may have functional consequences.
Collapse
Affiliation(s)
- H Delius
- Division for Tumorvirus Characterization, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Pützer BM, Rumpf H, Rega S, Brockmann D, Esche H. E1A 12S and 13S of the transformation-defective adenovirus type 12 strain CS-1 inactivate proteins of the RB family, permitting transactivation of the E2F-dependent promoter. J Virol 1997; 71:9538-48. [PMID: 9371617 PMCID: PMC230261 DOI: 10.1128/jvi.71.12.9538-9548.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transformation-defective Vero cell host range mutant CS-1 of the highly oncogenic adenovirus type 12 (Ad12) (Ad12-CS-1) has a 69-bp deletion in the early region 1A (E1A) gene that removes the carboxy-terminal half of conserved region 2 and the amino-terminal half of the Ad12-specific so-called spacer that seems to play a pivotal role in the oncogenicity of the virus. Despite its deficiency in immortalizing and transforming primary rodent cells, we found that the E1A 13S protein of Ad12-CS-1 retains the ability to bind p105-RB, p107, and p130 in nuclear extract binding assays with glutathione S-transferase-E1A fusion proteins and Western blot analysis. Like wild-type E1A, the mutant protein was able to dissociate E2F from retinoblastoma-related protein-containing complexes, as judged from gel shift experiments with purified 12S and 13S proteins from transfection experiments with an E1A expression vector or from infection with the respective virus. Moreover, in transient expression assays, the 12S and 13S products of wild-type Ad12 and Ad12-CS-1 were shown to transactivate the Ad12 E1A promoter containing E2F-1 and E2F-5-motifs, respectively, in a comparable manner. The same results were obtained from transfection assays with the E2F motif-dependent E2 promoter of adenovirus type 5 or the human dihydrofolate reductase promoter. These data suggest that efficient infection by Ad12 and the correlated virus-induced reprogramming of the infected cells, including the induction of cell cycle-relevant mechanisms (e.g. E2F activation), can be uncoupled from the transformation properties of the virus.
Collapse
Affiliation(s)
- B M Pützer
- Institute of Molecular Biology (Cancer Research), University of Essen Medical School, Germany.
| | | | | | | | | |
Collapse
|
36
|
Mavromatis KO, Jones DL, Mukherjee R, Yee C, Grace M, Münger K. The carboxyl-terminal zinc-binding domain of the human papillomavirus E7 protein can be functionally replaced by the homologous sequences of the E6 protein. Virus Res 1997; 52:109-18. [PMID: 9453149 DOI: 10.1016/s0168-1702(97)00090-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carboxyl-terminus is necessary for the functional and structural integrity of the human papillomavirus (HPV) E7 oncoprotein. Since many mutations in this domain of E7 result in the formation of unstable proteins, we have evaluated the importance of this region by replacing it with structurally related domains derived from HPV E6 proteins. Biological analysis of these mutant chimeric E7/E6 proteins showed that they retained E7-specific biological activities including cooperation with the ras oncogene to transform primary baby rat kidney cells and transcriptional activation of an E2F responsive reporter plasmid. One of the chimeric proteins was impaired in its ability to physically disrupt pRB/E2F complexes in vitro suggesting that there are defined molecular determinants in the carboxyl-terminus of E7 for this activity. In contrast, none of these proteins exhibited E6-like properties including binding to p53 and/or degradation of associated proteins.
Collapse
Affiliation(s)
- K O Mavromatis
- Laboratory of Tumor Virus Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gulliver GA, Herber RL, Liem A, Lambert PF. Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice. J Virol 1997; 71:5905-14. [PMID: 9223480 PMCID: PMC191846 DOI: 10.1128/jvi.71.8.5905-5914.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High-risk human papillomavirus type 16 (HPV-16) and HPV-18 are associated with the majority of human cervical carcinomas, and two viral genes, HPV E6 and E7, are commonly found to be expressed in these cancers. The presence of HPV-16 E7 is sufficient to induce epidermal hyperplasia and epithelial tumors in transgenic mice. In this study, we have performed experiments in transgenic mice to determine which domains of E7 contribute to these in vivo properties. The human keratin 14 promoter was used to direct expression of mutant E7 genes to stratified squamous epithelia in mice. The E7 mutants chosen had either an in-frame deletion in the conserved region 2 (CR2) domain, which is required for binding of the retinoblastoma tumor suppressor protein (pRb) and pRb-like proteins, or an in-frame deletion in the E7 CR1 domain. The CR1 domain contributes to cellular transformation at a level other than pRb binding. Four lines of animals transgenic for an HPV-16 E7 harboring a CR1 deletion and five lines harboring a CR2 deletion were generated and were observed for overt and histological phenotypes. A detailed time course analysis was performed to monitor acute effects of wild-type versus mutant E7 on the epidermis, a site of high-level expression. In the transgenic mice with the wild-type E7 gene, age-dependent expression of HPV-16 E7 correlated with the severity of epidermal hyperplasia. Similar age-dependent patterns of expression of the mutant E7 genes failed to result in any phenotypes. In addition, the transgenic mice with a mutant E7 gene did not develop tumors. These experiments indicate that binding and inactivation of pRb and pRb-like proteins through the CR2 domain of E7 are necessary for induction of epidermal hyperplasia and carcinogenesis in mouse skin and also suggest a role for the CR1 domain in the induction of these phenotypes through as-yet-uncharacterized mechanisms.
Collapse
Affiliation(s)
- G A Gulliver
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
38
|
Morozov A, Shiyanov P, Barr E, Leiden JM, Raychaudhuri P. Accumulation of human papillomavirus type 16 E7 protein bypasses G1 arrest induced by serum deprivation and by the cell cycle inhibitor p21. J Virol 1997; 71:3451-3457. [PMID: 9094616 PMCID: PMC191491 DOI: 10.1128/jvi.71.5.3451-3457.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The E7 oncoproteins encoded by the high-risk type of human papillomaviruses (HPVs) interact with the Rb family proteins Rb, p107, and p130. The Rb family proteins associate with the factors of the E2F family to form transcription repressor complexes, which control expression of several genes essential for S-phase entry and DNA replication. The E7 oncoproteins, by interacting with the Rb family proteins, dissociate the repressor complexes involving the factors of the E2F and Rb families, leading to a release of the E2F factors in their activator forms. In this study, we have addressed the mechanism by which the HPV type 16 (HPV16) E7 stimulates the cell cycle. Using a cell line that inducibly expresses the HPV16 E7 protein, we show that an accumulation of E7 induces quiescent cells to enter S phase and that this function of E7 depends on retention of the motif involved in binding to the Rb family proteins. To study the effects of E7 on normal human cells, we generated a recombinant adenovirus that expresses the HPV16 E7 protein. Infection of normal human fibroblasts, which were arrested in G1 phase by serum deprivation, with the E7-expressing virus induced the cells to enter S phase. The E7-induced S phase entry was accompanied by an increase in the activator form of E2F, but no increase in the cyclin-dependent kinase (cdk) activity was detected. Infection of serum-stimulated fibroblasts with a recombinant adenovirus expressing the cdk inhibitor p21 inhibited progression into S phase. Coinfection with the E7-expressing virus abrogated the p21 inhibition of progression into S phase without increasing the cdk activity. These results are consistent with the notion that E7 stimulates entry into S phase through targets downstream of the cdks such as the proteins of the E2F and Rb families.
Collapse
Affiliation(s)
- A Morozov
- Department of Biochemistry, University of Illinois at Chicago 60612, USA
| | | | | | | | | |
Collapse
|
39
|
Crawford L, Tommasino M. Oncogenes and antioncogenes in the development of HPV associated tumors. Clin Dermatol 1997; 15:207-15. [PMID: 9167905 DOI: 10.1016/s0738-081x(96)00163-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Crawford
- Tumor Virus Group Imperial Cancer Research Fund, London, England
| | | |
Collapse
|
40
|
Dey A, Atcha IA, Bagchi S. HPV16 E6 oncoprotein stimulates the transforming growth factor-beta 1 promoter in fibroblasts through a specific GC-rich sequence. Virology 1997; 228:190-9. [PMID: 9123825 DOI: 10.1006/viro.1996.8363] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human papillomaviruses (HPV) have been etiologically linked to human cervical cancer. Transforming growth factor-beta 1 (TGF-beta 1) is a cytokine which is a potent growth inhibitor of most epithelial, endothelial, lymphoid, and myeloid cells, but is mitogenic for mesenchymal cells and bone cells. In this study, we analyzed the effects of HPV 16 oncoproteins E6 and E7 on the TGF-beta 1 promoter. The results showed that the HPV 16 E6 significantly induced (sixfold) the TGF-beta 1 promoter activity while HPV 16 E7 showed no significant effect. The E6 effect was cell type-specific and was observed only in the fibroblast cell lines, not in epithelial cells. Promoter analysis revealed that a 9-bp sequence, GGGGCGGGG, representing the consensus Sp1-binding site between -109 and -100 of the TGF-beta 1 promoter, was the major target for E6-mediated transactivation. Mutation analysis of the E6 polypeptide showed that the retention of amino acids between 123 and 136 of the HPV 16 E6 protein was critical for the transactivation of the TGF-beta 1 promoter. Previous studies have shown that the adenovirus 12S E1A oncoprotein represses the TGF-beta 1 promoter by targeting an adjacent (-90 to -81) but different GC-rich sequence (TGGGTGGGG). These studies provide evidence that variant GC-rich promoter elements are not functionally identical and are differentially regulated by the DNA virus oncoproteins.
Collapse
Affiliation(s)
- A Dey
- Center for Molecular Biology of Oral Diseases, College of Dentistry (M/C 860), University of Illinois at Chicago 60612, USA
| | | | | |
Collapse
|
41
|
zur Hausen H. Papillomavirus infections--a major cause of human cancers. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F55-78. [PMID: 8876633 DOI: 10.1016/0304-419x(96)00020-0] [Citation(s) in RCA: 525] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The papillomavirus family represents a remarkably heterogeneous group of viruses. At present, 77 distinct genotypes have been identified in humans and partial sequences have been obtained from more than 30 putative novel genotypes. Geographic differences in base composition of individual genotypes are generally small and suggest a low mutation rate and thus an ancient origin of today's prototypes. The relatively small size of the genome permitted an analysis of individual gene functions and of interactions of viral proteins with host cell components. Proliferating cells contain the viral genome in a latent form, large scale viral DNA replication, as well as translation and functional activity of late viral proteins, and viral particle assembly are restricted to differentiating layers of skin and mucosa. In humans papillomavirus infections cause a variety of benign proliferations: warts, epithelial cysts, intraepithelial neoplasias, anogenital, oro-laryngeal and -pharyngeal papillomas, keratoacanthomas and other types of hyperkeratoses. Their involvement in the etiology of some major human cancers is of particular interest: specific types (HPV 16, 18 and several others) have been identified as causative agents of at least 90% of cancers of the cervix and are also linked to more than 50% of other anogenital cancers. These HPV types are considered as 'high risk' infections. Their E6/E7 oncoproteins stimulate cell proliferation by activating cyclins E and A, and interfere with the functions of the cellular proteins RB and p53. The latter interaction appears to be responsible for their mutagenic and aneuploidizing activity as an underlying principle for the progression of these HPV-containing lesions and the role of high risk HPV types as solitary carcinogens. In non-transformed human keratinocytes transcription and function of viral oncoproteins is controlled by intercellular and intracellular signalling cascades, their interruption emerges as a precondition for immortalization and malignant growth. Recently, novel and known HPV types have also been identified in a high percentage of non-melanoma skin cancers (basal and squamous cell carcinomas). Similar to observations in patients with a rare hereditary condition, epidermodysplasia verruciformis, characterized by an extensive verrucosis and development of skin cancer, basal and squamous cell carcinomas develop preferentially in light-exposed sites. This could suggest an interaction between a physical carcinogen (UV-part of the sunlight) and a 'low risk' (non-mutagenic) papillomavirus infection. Reports on the presence of HPV infections in cancers of the oral cavity, the larynx, and the esophagus further emphasize the importance of this virus group as proven and suspected human carcinogens.
Collapse
Affiliation(s)
- H zur Hausen
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
42
|
Moffat GJ, McLaren AW, Wolf CR. Functional characterization of the transcription silencer element located within the human Pi class glutathione S-transferase promoter. J Biol Chem 1996; 271:20740-7. [PMID: 8702826 DOI: 10.1074/jbc.271.34.20740] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously demonstrated enhanced transcriptional activity of the human Pi class glutathione S-transferase (GSTP1) promoter in a multidrug-resistant derivative (VCREMS) of the human mammary carcinoma cell line, MCF7 (Moffat, G. J., McLaren, A. W., and Wolf, C. R. (1994) J. Biol. Chem. 269, 16397-16402). Furthermore, we have identified an essential sequence (C1; -70 to -59) within the GSTP1 promoter that bound a Jun-Fos heterodimer in VCREMS but not in MCF7 cells. These present studies have examined the negative regulatory element (-105 to -86), which acted to suppress GSTP1 transcription in MCF7 cells. Mutational analysis of this silencer element further defined the repressor binding site to be located between nucleotides -97 and -90. In vitro DNA binding assays suggested that the repressor exerted its action by causing displacement of the essential non-AP-1-like MCF7 C1 complex. However, the addition of MCF7 nuclear extract did not disrupt binding of the VCREMS Jun-Fos C1 complex to the GSTP1 promoter. Furthermore, upstream insertion of the GSTP1 silencer element failed to inhibit activity of a heterologous promoter in MCF7 cells. These results highlighted the cell and promoter specificity of the GSTP1 transcriptional repressor and implicated a functional requirement for contact between the repressor and C1 complex. In this regard, the introduction of half-helical turns between the silencer and the C1 element abrogated repressor activity, thus leading to the hypothesis that a direct interaction between the repressor and C1 complex was required to suppress GSTP1 transcription. Moreover, these findings suggest that cell-specific differences in the composition of the C1 nuclear complex may dictate repressor activity.
Collapse
Affiliation(s)
- G J Moffat
- Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kingdom
| | | | | |
Collapse
|
43
|
Antinore MJ, Birrer MJ, Patel D, Nader L, McCance DJ. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J 1996; 15:1950-60. [PMID: 8617242 PMCID: PMC450114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The E7 gene product of human papillomavirus type 16 (HPV16) binds to the retinoblastoma gene product (pRb) and dissociates pRb-E2F complexes. However, the observation that the ability of E7 to bind pRb is not required for the HPV16-induced immortalization of primary keratinocytes prompted a search for other cellular factors bound by E7. Using a glutathione-S-transferase (GST) fusion protein system, we show that E7 complexes with AP1 transcription factors including c-Jun, JunB, JunD and c-Fos. The ability of E7 to complex with c-Jun in vivo is demonstrated by co-immunoprecipitation and the yeast two-hybrid system. An analysis of E7 point mutants in the GST system indicates that the E7 zinc-finger motif, but not the pRb binding domain, is involved in these interactions. Using c-Jun deletion mutants, E7 binding maps between amino acids 224 and 286 of c-Jun. E7 trans-activates c-Jun-induced transcription from a Jun responsive promoter, and this activity correlates with the ability of E7 mutants to bind Jun proteins. Finally, a transcriptionally inactive c-Jun deletion, which can bind E7, interferes with the E7-induced transformation of rat embryo fibroblasts in cooperation with an activated ras, indicating that the Jun-E7 interaction is physiologically relevant and that Jun factors may be targeted in the E7 transformation pathway.
Collapse
Affiliation(s)
- M J Antinore
- Department of Microbiology and Immunology, University of Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
44
|
Herber R, Liem A, Pitot H, Lambert PF. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 1996; 70:1873-81. [PMID: 8627712 PMCID: PMC190015 DOI: 10.1128/jvi.70.3.1873-1881.1996] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human papillomavirus type 16 (HPV-16) genome is commonly present in human cervical carcinoma, in which a subset of the viral genes, E6 and E7, are expressed. The HPV-16 E6 and E7 gene products can associated with and inactivate the tumor suppressor proteins p53 and Rb (the retinoblastoma susceptibility gene product), and in tissue culture cells, these viral genes display oncogenic properties. These findings have led to the hypothesis that E6 and E7 contribute to cervical carcinogenesis. This hypothesis has recently been tested by using transgenic mice as an animal model. HPV-16 E6 and E7 together were found to induce cancers in multiple tissues in which they were expressed, including squamous cell carcinoma, the cancer type most commonly associated with HPV-16 in the human cervix. We have extended these studies to investigate the in vivo activities of HPV-16 E7 when expressed in squamous epithelia of transgenic mice. Grossly, E7 transgenic mice had multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair on neonates, thickened ears, and loss of hair in adults. In lines of mice expressing higher levels of E7, we observed stunted growth and mortality at an early age, potentially caused by an incapacity to feed. Histological analysis demonstrated that E7 causes epidermal hyperplasia in multiple transgenic lineages with high penetrance. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and an expansion of the keratin 10-positive layer of cells and was associated with hyperkeratosis. Hyperplasia was found at multiple sites in the animals in addition to the skin, including the mouth palate, esophagus, forestomach, and exocervix. In multiple transgenic lineages, adult animals developed skin tumors late in life with low penetrance. These tumors arose from the squamous epithelia and from sebaceous glands and were characterized histologically to be highly differentiated, locally invasive, and aggressive in their growth properties. On the basis of these phenotypes, we conclude that HPV-16 E7 can alter epithelial cell growth parameters sufficiently to potentiate tumorigenesis in mice.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Differentiation
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- DNA, Viral
- Epithelium/pathology
- Epithelium/virology
- Gene Expression Regulation, Viral
- Humans
- Hyperplasia/pathology
- Hyperplasia/virology
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Papillomaviridae/genetics
- Papillomaviridae/physiology
- Papillomavirus E7 Proteins
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Skin/pathology
- Skin/virology
Collapse
Affiliation(s)
- R Herber
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- CG Ullman
- Department of Biochemistry, Royal Free Hospital School of Medicine, Rowland Hill Street, Hampstead NW3 2QG, UK
| | | |
Collapse
|
46
|
Wong HK, Ziff EB. The human papillomavirus type 16 E7 protein complements adenovirus type 5 E1A amino-terminus-dependent transactivation of adenovirus type 5 early genes and increases ATF and Oct-1 DNA binding activity. J Virol 1996; 70:332-40. [PMID: 8523545 PMCID: PMC189822 DOI: 10.1128/jvi.70.1.332-340.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously shown that conserved region 1 (CR1) of the adenovirus type 5 (Ad5) E1A protein synergizes with CR3 in the transactivation of Ad5 early genes (H.K. Wong and E. B. Ziff, J. Virol. 68:4910-4920, 1994). CR1 lies within the E1A amino terminus and binds host regulatory proteins such as the RB protein, p107, p130, and p300. Since simian virus 40 (SV40) large T antigen and human papillomavirus type 16 (HPV16) E7 protein also bind host regulatory factors, we investigated whether these viral proteins can complement E1A mutants which are defective in early gene activation. We show that the HPV16 E7 protein but not SV40 T antigen can complement mutations in the Ad5 E1A CR1 in the transactivation of viral early promoters. The inability of SV40 T antigen to complement suggests that RB binding on its own is not sufficient for early promoter transactivation by the E1A amino terminus. Nuclear runoff assays show that complementation by HPV16 E7 restores the ability of the E1A mutants to stimulate early gene expression at the level of transcription. Furthermore, nuclear extracts from the E7-transformed cells show increased binding activity of ATF and Oct-1, factors that can recognize the elements of Ad5 early genes, consistent with gene activation by E1A and E7 at the transcriptional level.
Collapse
Affiliation(s)
- H K Wong
- Department of Biochemistry, Howard Hughes Medical Institute, Kaplan Cancer Center, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
47
|
Hiraiwa A, Kiyono T, Suzuki S, Ohashi M, Ishibashi M. E7 proteins of four groups of human papillomaviruses, irrespective of their tissue tropism or cancer association, possess the ability to transactivate transcriptional promoters E2F site dependently. Virus Genes 1996; 12:27-35. [PMID: 8879118 DOI: 10.1007/bf00369998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In an experimental system in which an expression vector including the E7 gene of a given human papillomavirus (HPV), together with a luciferase reporter plasmid including the adenovirus E2 (Ad E2) promoter, was transiently transfected into cultured mouse NIH3T3 fibroblastic cells, we obtained the signal indicating that E7 proteins of HPV type 5, 12, 14, 20, 21, 25, and 47, which are associated with epidermodysplasia verruciformis (EV), can transactivate the Ad E2 promoter, as previously reported for E7 proteins of other HPVs. Because the underlying mechanism of the transactivation had not been analyzed, except for transactivation by E7 gene of cervical cancer-associated HPV-16, we compared the E7 genes of representatives of three other groups of HPVs (HPV-1, -11, and -47) with that of HPV-16 with regard to their transactivating activity toward artificially constructed promoters. The experiment with a shortened AdE2 promoter carrying only the E2F sites and TATA box provided evidence that all four E7 proteins can transactivate the shortened promoter and that this phenomenon is E2F site dependent. Further experiments with the reporter gene constructs carrying basal promoters or more complex forms with or without linked E2F sites, (a) confirmed previous finding by others that in cells producing no transactivator, the transcriptional level from promoters linked to E2F sites is rather repressed in comparison with the level of the corresponding promoters that are not linked to the E2F sites, and (b) demonstrated, for the first time, that in cells expected to produce the E7 protein of any one of the four HPVs, transcription from the promoter linked to the E2F sites was released from repression. In other words, the present results reveal that E7 proteins of any of the four HPVs can remove the E2F site-dependent repression, probably by modulating E2F complexes from repressing forms to activating ones.
Collapse
Affiliation(s)
- A Hiraiwa
- Laboratory of Viral Oncology, Aichi Cancer Center, Nagoya, Japan
| | | | | | | | | |
Collapse
|
48
|
Abstract
In many ways, cervical cancer behaves as a sexually transmitted disease. The major risk factors are multiple sexual partners and early onset of sexual activity. Although high-risk types of human papillomaviruses (HPV) play an important role in the development of nearly all cases of cervical cancer, other sexually transmitted infectious agents may be cofactors. Herpes simplex virus type 2 (HSV-2) is transmitted primarily by sexual contact and therefore has been implicated as a risk factor. Several independent studies suggest that HSV-2 infections correlate with a higher than normal incidence of cervical cancer. In contrast, other epidemiological studies have concluded that infection with HSV-2 is not a major risk factor. Two separate transforming domains have been identified within the HSV-2 genome, but continued viral gene expression apparently is not necessary for neoplastic transformation. HSV infections lead to unscheduled cellular DNA synthesis, chromosomal amplifications, and mutations. These observations suggest that HSV-2 is not a typical DNA tumor virus. It is hypothesized that persistent or abortive infections induce permanent genetic alterations that interfere with differentiation of cervical epithelium and subsequently induce abnormal proliferation. Thus, HSV-2 may be a cofactor in some but not all cases of cervical cancer.
Collapse
Affiliation(s)
- C Jones
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583, USA
| |
Collapse
|
49
|
Tommasino M, Crawford L. Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. Bioessays 1995; 17:509-18. [PMID: 7575492 DOI: 10.1002/bies.950170607] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous clinical, epidemiological and molecular findings link some types of Human Papillomaviruses (HPV) with cancer of the genital tract. They share a common pathway of transformation with a number of DNA tumour viruses, such as Adenovirus and SV40. Although all these viruses are termed 'DNA tumour viruses' and have similar in vitro transforming activities, Human Papillomavirus is the only one so far clearly involved in human cancer. Extensive studies on HPV E6 and E7 proteins have demonstrated their involvement in malignant transformation. E6 and E7 bind the products of tumour suppressor genes, p53 and Rb1, respectively, modifying or inactivating their normal functions. The Rb1 and p53 genes are deleted or mutated in several cancers and both proteins regulate the transcription of genes involved in cell cycle progression control. The E6/p53 and E7/Rb1 interactions result in a deregulation of the cell cycle with loss of control of crucial cellular events, such as DNA replication, DNA repair and apoptosis.
Collapse
Affiliation(s)
- M Tommasino
- Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
50
|
Affiliation(s)
- E J Androphy
- Department of Dermatology, New England Medical Center, Boston, MA
| |
Collapse
|