1
|
Hillung J, Olmo-Uceda MJ, Muñoz-Sánchez JC, Elena SF. Accumulation Dynamics of Defective Genomes during Experimental Evolution of Two Betacoronaviruses. Viruses 2024; 16:644. [PMID: 38675984 PMCID: PMC11053736 DOI: 10.3390/v16040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - María J. Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Juan C. Muñoz-Sánchez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Yao S, Narayanan A, Majowicz SA, Jose J, Archetti M. A synthetic defective interfering SARS-CoV-2. PeerJ 2021; 9:e11686. [PMID: 34249513 PMCID: PMC8255065 DOI: 10.7717/peerj.11686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Viruses thrive by exploiting the cells they infect, but in order to replicate and infect other cells they must produce viral proteins. As a result, viruses are also susceptible to exploitation by defective versions of themselves that do not produce such proteins. A defective viral genome with deletions in protein-coding genes could still replicate in cells coinfected with full-length viruses. Such a defective genome could even replicate faster due to its shorter size, interfering with the replication of the virus. We have created a synthetic defective interfering version of SARS-CoV-2, the virus causing the Covid-19 pandemic, assembling parts of the viral genome that do not code for any functional protein but enable the genome to be replicated and packaged. This synthetic defective genome replicates three times faster than SARS-CoV-2 in coinfected cells, and interferes with it, reducing the viral load of infected cells by half in 24 hours. The synthetic genome is transmitted as efficiently as the full-length genome, suggesting the location of the putative packaging signal of SARS-CoV-2. A version of such a synthetic construct could be used as a self-promoting antiviral therapy: by enabling replication of the synthetic genome, the virus would promote its own demise.
Collapse
Affiliation(s)
- Shun Yao
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Anoop Narayanan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America
| | - Sydney A Majowicz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America
| | - Joyce Jose
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, United States of America
| | - Marco Archetti
- Department of Biology, Pennsylvania State University, University Park, United States of America.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, United States of America
| |
Collapse
|
3
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
V'kovski P, Gerber M, Kelly J, Pfaender S, Ebert N, Braga Lagache S, Simillion C, Portmann J, Stalder H, Gaschen V, Bruggmann R, Stoffel MH, Heller M, Dijkman R, Thiel V. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. eLife 2019; 8:42037. [PMID: 30632963 PMCID: PMC6372286 DOI: 10.7554/elife.42037] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention. Coronaviruses can infect the nose and throat and are a main cause of the common cold. Infections are usually mild and short-lived, but sometimes they can turn nasty. In 2002 and 2012, two dangerous new coronaviruses emerged and caused diseases known as SARS and MERS. These viruses caused much more serious symptoms and in some cases proved deadly. The question is, why are some coronaviruses more dangerous than others? Scientists know that the body's response to virus infection can make a difference to whether someone had mild or severe disease. So, to understand why some coronaviruses cause a cold and others kill, they also need to learn how people react to virus infection. Coronaviruses hijack membranes inside cells and turn them into virus factories. Within these factories, the viruses build molecular machinery called replicase complexes to copy their genetic code, which is needed for the next generation of virus particles. The viruses steal and repurpose proteins from their host cell that will assist in the copying process. However, scientists do not yet know which host proteins are essential for the virus to multiply. So, to find out, V’kovski et al. developed a way to tag any host protein that came near the virus factories. The new technique involved attaching an enzyme called a biotin ligase to the replicase complex. This enzyme acts as a molecular label gun, attaching a chemical tag to any protein that comes within ten nanometres. The label gun revealed that more than 500 different proteins come into contact with the replicase complex. To find out what these proteins were doing, the next step was to switch off their genes one by one. This revealed the key cell machinery that coronaviruses hijack when they are replicating. It included the cell's cargo transport system, the waste disposal system, and the protein production system. Using these systems allows the viruses to copy their genetic code next to machines that can turn it straight into viral proteins. These new results provide clues about which proteins viruses actually need from their host cells. They also do not just apply to coronaviruses. Other viruses use similar strategies to complete their infection cycle. These findings could help researchers to understand more generally about how viruses multiply. In the future, this knowledge could lead to new ways to combat virus infections.
Collapse
Affiliation(s)
- Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna Kelly
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Stephanie Pfaender
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sophie Braga Lagache
- Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Chujo T, Ishibashi K, Miyashita S, Ishikawa M. Functions of the 5'- and 3'-untranslated regions of tobamovirus RNA. Virus Res 2015; 206:82-9. [PMID: 25683511 DOI: 10.1016/j.virusres.2015.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
Abstract
The tobamovirus genome is a 5'-m(7)G-capped RNA that carries a tRNA-like structure at its 3'-terminus. The genomic RNA serves as the template for both translation and negative-strand RNA synthesis. The 5'- and 3'-untranslated regions (UTRs) of the genomic RNA contain elements that enhance translation, and the 3'-UTR also contains the elements necessary for the initiation of negative-strand RNA synthesis. Recent studies using a cell-free viral RNA translation-replication system revealed that a 70-nucleotide region containing a part of the 5'-UTR is bound cotranslationally by tobacco mosaic virus (TMV) replication proteins translated from the genomic RNA and that the binding leads the genomic RNA to RNA replication pathway. This mechanism explains the cis-preferential replication of TMV by the replication proteins. The binding also inhibits further translation to avoid a fatal ribosome-RNA polymerase collision, which might arise if translation and negative-strand synthesis occur simultaneously on a single genomic RNA molecule. Therefore, the 5'- and 3'-UTRs play multiple important roles in the life cycle of tobamovirus.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiro Ishibashi
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shuhei Miyashita
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masayuki Ishikawa
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
7
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
8
|
Saxena P, Lomonossoff GP. Virus infection cycle events coupled to RNA replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:197-212. [PMID: 24906127 DOI: 10.1146/annurev-phyto-102313-050205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Replication, the process by which the genetic material of a virus is copied to generate multiple progeny genomes, is the central part of the virus infection cycle. For an infection to be productive, it is essential that this process is coordinated with other aspects of the cycle, such as translation of the viral genome, encapsidation, and movement of the genome between cells. In the case of positive-strand RNA viruses, this represents a particular challenge, as the infecting genome must not only be replicated but also serve as an mRNA for the production of the replication-associated proteins. In recent years, it has become apparent that in positive-strand RNA plant viruses all the aspects of the infection cycle are intertwined. This article reviews the current state of knowledge regarding replication-associated events in such viruses.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; ,
| | | |
Collapse
|
9
|
Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol 2014; 88:5217-27. [PMID: 24574404 DOI: 10.1128/jvi.03193-13] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering (DI) RNAs are highly deleted forms of the infectious genome that are made by most families of RNA viruses. DI RNAs retain replication and packaging signals, are synthesized preferentially over infectious genomes, and are packaged as DI virus particles which can be transmitted to susceptible cells. Their ability to interfere with the replication of infectious virus in cell culture and their potential as antivirals in the clinic have long been known. However, until now, no realistic formulation has been described. In this review, we consider the early evidence of antiviral activity by DI viruses and, using the example of DI influenza A virus, outline developments that have led to the production of a cloned DI RNA that is highly active in preclinical studies not only against different subtypes of influenza A virus but also against heterologous respiratory viruses. These data suggest the timeliness of reassessing the potential of DI viruses as a novel class of antivirals that may have general applicability.
Collapse
|
10
|
Wang J, Yeh HH, Falk BW. cis preferential replication of Lettuce infectious yellows virus (LIYV) RNA 1: the initial step in the asynchronous replication of the LIYV genomic RNAs. Virology 2009; 386:217-23. [PMID: 19181359 DOI: 10.1016/j.virol.2009.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/30/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
A series of Lettuce infectious yellows virus (LIYV) RNA 1 mutants was created to evaluate their ability to replicate in tobacco protoplasts. Mutants DeltaEcoRI, DeltaE-LINK, and Delta1B, having deletions in open reading frames (ORFs) 1A and 1B, did not replicate when individually inoculated to protoplasts or when co-inoculated with wild-type RNA1 as a helper virus. A fragment of the green fluorescent protein (GFP) gene was inserted into the RNA 1 ORF 2 (P34) in order to provide a unique sequence tag. This mutant, P34-GFP TAG, was capable of independent replication in protoplasts. Mutants derived from P34-GFP TAG having frameshift mutations in the ORF 1A or 1B were unable to replicate in protoplasts alone or in trans when co-inoculated with wild-type RNA1 as a helper virus. Taken together, these data strongly suggest that LIYV RNA 1 replication is cis-preferential.
Collapse
Affiliation(s)
- Jinbo Wang
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
11
|
Tzeng WP, Frey TK. C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage. Virology 2006; 356:198-207. [PMID: 16938325 PMCID: PMC2694048 DOI: 10.1016/j.virol.2006.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/23/2006] [Accepted: 07/13/2006] [Indexed: 10/26/2022]
Abstract
Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, it was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.
Collapse
Affiliation(s)
- Wen-Pin Tzeng
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | |
Collapse
|
12
|
Abstract
In addition to the SARS coronavirus (treated separately elsewhere in this volume), the complete genome sequences of six species in the coronavirus genus of the coronavirus family [avian infectious bronchitis virus-Beaudette strain (IBV-Beaudette), bovine coronavirus-ENT strain (BCoV-ENT), human coronavirus-229E strain (HCoV-229E), murine hepatitis virus-A59 strain (MHV-A59), porcine transmissible gastroenteritis-Purdue 115 strain (TGEV-Purdue 115), and porcine epidemic diarrhea virus-CV777 strain (PEDV-CV777)] have now been reported. Their lengths range from 27,317 nt for HCoV-229E to 31,357 nt for the murine hepatitis virus-A59, establishing the coronavirus genome as the largest known among RNA viruses. The basic organization of the coronavirus genome is shared with other members of the Nidovirus order (the torovirus genus, also in the family Coronaviridae, and members of the family Arteriviridae) in that the nonstructural proteins involved in proteolytic processing, genome replication, and subgenomic mRNA synthesis (transcription) (an estimated 14–16 end products for coronaviruses) are encoded within the 5′-proximal two-thirds of the genome on gene 1 and the (mostly) structural proteins are encoded within the 3′-proximal one-third of the genome (8–9 genes for coronaviruses). Genes for the major structural proteins in all coronaviruses occur in the 5′ to 3′ order as S, E, M, and N. The precise strategy used by coronaviruses for genome replication is not yet known, but many features have been established. This chapter focuses on some of the known features and presents some current questions regarding genome replication strategy, the cis-acting elements necessary for genome replication [as inferred from defective interfering (DI) RNA molecules], the minimum sequence requirements for autonomous replication of an RNA replicon, and the importance of gene order in genome replication.
Collapse
Affiliation(s)
- D A Brian
- Departments of Microbiology and Pathobiology, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996-0845, USA.
| | | |
Collapse
|
13
|
Spagnolo JF, Hogue BG. Requirement of the poly(A) tail in coronavirus genome replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:467-74. [PMID: 11774509 DOI: 10.1007/978-1-4615-1325-4_68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- J F Spagnolo
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
14
|
Molenkamp R, Rozier BC, Greve S, Spaan WJ, Snijder EJ. Characterization of an arterivirus defective interfering RNA. Replication and homologous recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:519-25. [PMID: 11774517 DOI: 10.1007/978-1-4615-1325-4_75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- R Molenkamp
- Department of Virology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Brian DA. Nidovirus genome replication and subgenomic mRNA synthesis. Pathways followed and cis-acting elements required. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:415-28. [PMID: 11774502 DOI: 10.1007/978-1-4615-1325-4_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- D A Brian
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
16
|
Abstract
Naturally occurring defective interfering RNAs have been found in 4 of 14 coronavirus species. They range in size from 2.2 kb to approximately 25 kb, or 80% of the 30-kb parent virus genome. The large DI RNAs do not in all cases appear to require helper virus for intracellular replication and it has been postulated that they may on their own function as agents of disease. Coronavirus DI RNAs appear to arise by internal deletions (through nonhomologous recombination events) on the virus genome or on DI RNAs of larger size by a polymerase strand-switching (copy-choice) mechanism. In addition to their use in the study of virus RNA replication and virus assembly, coronavirus DI RNAs are being used in a major way to study the mechanism of a high-frequency, site-specific RNA recombination event that leads to leader acquisition during virus replication (i.e., the leader fusion event that occurs during synthesis of subgenomic mRNAs, and the leader-switching event that can occur during DI RNA replication), a distinguishing feature of coronaviruses (and arteriviruses). Coronavirus DI RNAs are also being engineered as vehicles for the generation of targeted recombinants of the parent virus genome.
Collapse
Affiliation(s)
- David A Brian
- Department of Microbiology, College of Veterinary Medicine, M409 Walters Life Sciences Building, University of Tennessee, Knoxville, Tennessee, 37996-0845
| | - Willy J M Spaan
- Department of Virology, Institute of Medical Microbiology, Leiden University, 2300, RC Leiden, The Netherlands
| |
Collapse
|
17
|
Liu Q, Johnson RF, Leibowitz JL. Secondary structural elements within the 3' untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 2001; 75:12105-13. [PMID: 11711601 PMCID: PMC116106 DOI: 10.1128/jvi.75.24.12105-12113.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previously, we characterized two host protein binding elements located within the 3'-terminal 166 nucleotides of the mouse hepatitis virus (MHV) genome and assessed their functions in defective-interfering (DI) RNA replication. To determine the role of RNA secondary structures within these two host protein binding elements in viral replication, we explored the secondary structure of the 3'-terminal 166 nucleotides of the MHV strain JHM genome using limited RNase digestion assays. Our data indicate that multiple stem-loop and hairpin-loop structures exist within this region. Mutant and wild-type DIssEs were employed to test the function of secondary structure elements in DI RNA replication. Three stem structures were chosen as targets for the introduction of transversion mutations designed to destroy base pairing structures. Mutations predicted to destroy the base pairing of nucleotides 142 to 136 with nucleotides 68 to 74 exhibited a deleterious effect on DIssE replication. Destruction of base pairing between positions 96 to 99 and 116 to 113 also decreased DI RNA replication. Mutations interfering with the pairing of nucleotides 67 to 63 with nucleotides 52 to 56 had only minor effects on DIssE replication. The introduction of second complementary mutations which restored the predicted base pairing of positions 142 to 136 with 68 to 74 and nucleotides 96 to 99 with 116 to 113 largely ameliorated defects in replication ability, restoring DI RNA replication to levels comparable to that of wild-type DIssE RNA, suggesting that these secondary structures are important for efficient MHV replication. We also identified a conserved 23-nucleotide stem-loop structure involving nucleotides 142 to 132 and nucleotides 68 to 79. The upstream side of this conserved stem-loop is contained within a host protein binding element (nucleotides 166 to 129).
Collapse
Affiliation(s)
- Q Liu
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
18
|
Banerjee S, Repass JF, Makino S. Enhanced accumulation of coronavirus defective interfering RNA from expressed negative-strand transcripts by coexpressed positive-strand RNA transcripts. Virology 2001; 287:286-300. [PMID: 11531407 PMCID: PMC7133719 DOI: 10.1006/viro.2001.1047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of negative-strand murine coronavirus mouse hepatitis virus (MHV) defective interfering (DI) RNA transcripts in MHV-infected cells results in the accumulation of positive-strand DI RNAs (M. Joo et al., 1996, J. Virol. 70, 5769-5776). However, the expressed negative-strand DI RNA transcripts are poor templates for positive-strand DI RNA synthesis. The present study demonstrated that DI RNA accumulation from the expressed negative-strand DI RNA transcripts in MHV-infected cells was enhanced by the coexpression of complementary RNA transcripts that correspond to the 5' region of positive-strand DI RNA. The positive-strand RNA transcripts corresponding to the 5' end-most 0.7-2.0 kb DI RNA had a similar enhancement effect. The coexpressed positive-strand RNA transcripts lacking the leader sequence or those containing only the leader sequence failed to demonstrate this enhancement effect, demonstrating that the presence of the leader sequence in the coexpressed positive-strand RNA transcripts was necessary, but not sufficient, for the enhancement of DI RNA accumulation from the coexpressed negative-strand DI RNA transcripts. Negative-strand DI RNA transcripts that were coexpressed with the partial-length positive-strand RNA transcripts were no more stable than those expressed alone, suggesting that a higher stability of the expressed negative-strand RNA transcripts was an unlikely reason for the higher DI RNA accumulation in cells coexpressing two complementary DI RNA transcripts. Sequence analyses unexpectedly demonstrated that the leader sequence of the majority of accumulated DI RNAs switched to helper virus derived leader sequence, suggesting that enhancement of DI RNA accumulation was mediated by the efficient utilization of helper virus derived leader sequence for DI RNA synthesis. Furthermore, our data suggested that this leader switching, a type of homologous RNA-RNA recombination, occurred during positive-strand DI RNA synthesis and that MHV positive-strand RNA synthesis mechanism may have a preference toward recognizing double-stranded RNA structures over single-stranded negative-strand RNA to produce positive-strand DI RNAs.
Collapse
Affiliation(s)
- S Banerjee
- Department of Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
19
|
Liang Y, Gillam S. Rubella virus RNA replication is cis-preferential and synthesis of negative- and positive-strand RNAs is regulated by the processing of nonstructural protein. Virology 2001; 282:307-19. [PMID: 11289813 DOI: 10.1006/viro.2001.0862] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rubella virus (RV) genome encodes nonstructural protein (NSP) in a large open reading frame at its 5' end. It is translated into p200 and further processed into p150 and p90. The NSPs are responsible for viral RNA replication, during which a full-length negative-strand RNA serves as the intermediate for the replication of positive-strand genomic RNA and the transcription of subgenomic RNA. Using complementation experiments, we demonstrated that RV negative-strand RNA is synthesized preferentially in cis while positive-strand RNAs can be synthesized both in cis and in trans but with higher efficiency in cis. During virus infection, negative-strand RNA accumulates until 10 hours postinfection (hpi) and remains nearly constant thereafter. In contrast, positive-strand RNAs (both genomic and subgenomic RNA) do not increase much before 10 hpi and accumulate rapidly thereafter. Previously we demonstrated that p200 synthesizes negative- but not positive-strand RNA, whereas cleavage products p150/p90 are required for efficient production of positive-strand RNAs. In this study, we present evidence demonstrating that a higher concentration of p150/p90 is associated with lower production of negative-strand RNA. Our data support the hypothesis that p200 is the principal replicase for negative-strand RNA, as is p150/p90 for positive-strand RNA. The switch from the synthesis of negative- to positive-strand RNA is thus regulated by NSP processing, which not only activates the efficient production of positive-strand RNA, but also disables negative-strand RNA synthesis. A mechanism for NSP translation, processing, and regulation of RV RNA synthesis is proposed.
Collapse
Affiliation(s)
- Y Liang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | |
Collapse
|
20
|
Yuan W, Hillman BI. In vitro translational analysis of genomic, defective, and satellite RNAs of Cryphonectria hypovirus 3-GH2. Virology 2001; 281:117-23. [PMID: 11222102 DOI: 10.1006/viro.2000.0806] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryphonectria hypovirus 3-GH2 (CHV3-GH2) is a member of the fungal virus family Hypoviridae that differs from previously characterized members in having a single large open reading frame with the potential to encode a protein of 326 kDa from its 9.8-kb genome. The N-terminal portion of the ORF contains sequence motifs that are somewhat similar to papain-like proteinases identified in other hypoviruses. Translation of the ORF is predicted to release autocatalytically a 32.5-kDa protein. A defective RNA, predicted to encode a 91.6-kDa protein representing most of the N-terminal proteinase fused to the entire putative helicase domain, and two satellite RNAs, predicted to encode very small proteins, also are associated with CHV3-GH2 infected fungal cultures. We performed in vitro translation experiments to examine expression of these RNAs. Translation of three RT-PCR clones representing different lengths of the amino-terminal portion of the ORF of the genomic RNA resulted in autocatalytic release of the predicted 32.5-kDa protein. Site-directed mutagenesis was used to map the processing site between Gly(297) and Thr(298). In vitro translation of multiple independent cDNA clones of CHV3-GH2-defective RNA 2 resulted in protein products of approximately 92 kDa, predicted to be the full-length translation product, 32 kDa, predicted to represent the N-terminal proteinase, and 60 kDa, predicted to represent the C-terminal two-thirds of the full-length product. In vitro translation of cDNA clones representing satellite RNA 4 resulted in products of slightly less than 10 kDa, consistent with the predicted 9.4 kDa product.
Collapse
Affiliation(s)
- W Yuan
- Department of Plant Pathology, Cook College, Foran Hall, Rutgers University, 59 Dudley Rd., New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
21
|
Cologna R, Spagnolo JF, Hogue BG. Identification of nucleocapsid binding sites within coronavirus-defective genomes. Virology 2000; 277:235-49. [PMID: 11080472 PMCID: PMC7131401 DOI: 10.1006/viro.2000.0611] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus nucleocapsid (N) protein is a major structural component of virions that associates with the genomic RNA to form a helical nucleocapsid. N appears to be a multifunctional protein since data also suggest that the protein may be involved in viral RNA replication and translation. All of these functions presumably involve interactions between N and viral RNAs. As a step toward understanding how N interacts with viral RNAs, we mapped high-efficiency N-binding sites within BCV- and MHV-defective genomes. Both in vivo and in vitro assays were used to study binding of BCV and MHV N proteins to viral and nonviral RNAs. N-viral RNA complexes were detected in bovine coronavirus (BCV)-infected cells and in cells transiently expressing the N protein. Filter binding was used to map N-binding sites within Drep, a BCV-defective genome that is replicated and packaged in the presence of helper virus. One high-efficiency N-binding site was identified between nucleotides 1441 and 1875 at the 3' end of the N ORF within Drep. For comparative purposes N-binding sites were also mapped for the mouse hepatitis coronavirus (MHV)-defective interfering (DI) RNA MIDI-C. Binding efficiencies similar to those for Drep were measured for RNA transcripts of a region encompassing the MHV packaging signal (nts 3949-4524), as well as a region at the 3' end of the MHV N ORF (nts 4837-5197) within MIDI-C. Binding to the full-length MIDI-C transcript (approximately 5500 nts) and to an approximately 1-kb transcript from the gene 1a region (nts 935-1986) of MIDI-C that excluded the packaging signal were both significantly higher than that measured for the smaller transcripts. This is the first identification of N-binding sequences for BCV. It is also the first report to demonstrate that N interacts in vitro with sequences other than the packaging signal and leader within the MHV genome. The data clearly demonstrate that N binds coronavirus RNAs more efficiently than nonviral RNAs. The results have implications with regard to the multifunctional role of N.
Collapse
Affiliation(s)
- R Cologna
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
22
|
Molenkamp R, Greve S, Spaan WJ, Snijder EJ. Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs. J Virol 2000; 74:9062-70. [PMID: 10982351 PMCID: PMC102103 DOI: 10.1128/jvi.74.19.9062-9070.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 07/10/2000] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV), the prototype arterivirus, is an enveloped plus-strand RNA virus with a genome of approximately 13 kb. Based on similarities in genome organization and protein expression, the arteriviruses have recently been grouped together with the coronaviruses and toroviruses in the newly established order Nidovirales. Previously, we reported the construction of pEDI, a full-length cDNA copy of EAV DI-b, a natural defective interfering (DI) RNA of 5.6 kb (R. Molenkamp et al., J. Virol. 74:3156-3165, 2000). EDI RNA consists of three noncontiguous parts of the EAV genome fused in frame with respect to the replicase gene. As a result, EDI RNA contains a truncated replicase open reading frame (EDI-ORF) and encodes a truncated replicase polyprotein. Since some coronavirus DI RNAs require the presence of an ORF for their efficient propagation, we have analyzed the importance of the EDI-ORF in EDI RNA replication. The EDI-ORF was disrupted at different positions by the introduction of frameshift mutations. These were found either to block DI RNA replication completely or to be removed within one virus passage, probably due to homologous recombination with the helper virus genome. Using recombination assays based on EDI RNA and full-length EAV genomes containing specific mutations, the rates of homologous RNA recombination in the 3'- and 5'-proximal regions of the EAV genome were studied. Remarkably, the recombination frequency in the 5'-proximal region was found to be approximately 100-fold lower than that in the 3'-proximal part of the genome.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
23
|
Mawassi M, Satyanarayana T, Albiach-Martí MR, Gowda S, Ayllón MA, Robertson C, Dawson WO. The fitness of citrus tristeza virus defective RNAs is affected by the lengths of their 5'- and 3'-termini and by the coding capacity. Virology 2000; 275:42-56. [PMID: 11017786 DOI: 10.1006/viro.2000.0510] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Populations of the Closterovirus Citrus tristeza virus (CTV) generally contain defective RNAs (dRNAs) that vary in size, abundance, and sequence. The variation in abundance of the different dRNAs in a population suggests selection for those of higher fitness. To examine factors affecting fitness of dRNAs, we investigated a series of in vitro constructed dRNAs for their ability to be amplified in protoplasts by an efficiently replicated CTV deletion mutant. The minimal sequences required for accumulation of the dRNAs were within the genomic 5' proximal approximately 1 kb and the 3' 270 nucleotides. However, other factors were involved, because a dRNA with only the minimal sequences failed to be replicated. Rescue of a nonviable dRNA by insertion of nonviral sequences between the termini suggested that "spacing" between terminal cis-acting signals influenced fitness. A continuous open reading frame (ORF) through most of the sequences derived from the 5' of the genome was a requirement for dRNA amplification. In general, insertions, deletions, or nucleotide substitutions were tolerated in the dRNAs as long as an ORF was retained, whereas dRNAs with mutations that prematurely terminated the ORF were not viable. To discriminate between a requirement for an essential protein and ribosomal travel, perhaps to present replication signals to the replicase complex, mutations were made to modify the potential protein but still maintain an ORF. Deletions, insertions of nonviral sequences, or switching of reading frames that altered the amino acid sequence of the protein, except the N-terminal 161 amino acids, did not destroy the fitness of the dRNAs. Yet termination of the ORF in the middle of nonviral sequences did destroy the ability of the dRNAs to be amplified. These results suggest that even though a continuous ORF was needed for fitness, its protein product did not affect the amplification of the dRNAs.
Collapse
Affiliation(s)
- M Mawassi
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Spagnolo JF, Hogue BG. Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J Virol 2000; 74:5053-65. [PMID: 10799579 PMCID: PMC110857 DOI: 10.1128/jvi.74.11.5053-5065.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1999] [Accepted: 03/01/2000] [Indexed: 11/20/2022] Open
Abstract
RNA viruses have 5' and 3' untranslated regions (UTRs) that contain specific signals for RNA synthesis. The coronavirus genome is capped at the 5' end and has a 3' UTR that consists of 300 to 500 nucleotides (nt) plus a poly(A) tail. To further our understanding of coronavirus replication, we have begun to examine the involvement of host factors in this process for two group II viruses, bovine coronavirus (BCV) and mouse hepatitis coronavirus (MHV). Specific host protein interactions with the BCV 3' UTR [287 nt plus poly(A) tail] were identified using gel mobility shift assays. Competition with the MHV 3' UTR [301 nt plus poly(A) tail] suggests that the interactions are conserved for the two viruses. Proteins with molecular masses of 99, 95, and 73 kDa were detected in UV cross-linking experiments. Less heavily labeled proteins were also detected in the ranges of 40 to 50 and 30 kDa. The poly(A) tail was required for binding of the 73-kDa protein. Immunoprecipitation of UV-cross-linked proteins identified the 73-kDa protein as the cytoplasmic poly(A)-binding protein (PABP). Replication of the defective genomes BCV Drep and MHV MIDI-C, along with several mutants, was used to determine the importance of the poly(A) tail. Defective genomes with shortened poly(A) tails consisting of 5 or 10 A residues were replicated after transfection into helper virus-infected cells. BCV Drep RNA that lacked a poly(A) tail did not replicate, whereas replication of MHV MIDI-C RNA with a deleted tail was detected after several virus passages. All mutants exhibited delayed kinetics of replication. Detectable extension or addition of the poly(A) tail to the mutants correlated with the appearance of these RNAs in the replication assay. RNAs with shortened poly(A) tails exhibited less in vitro PABP binding, suggesting that decreased interactions with the protein may affect RNA replication. The data strongly indicate that the poly(A) tail is an important cis-acting signal for coronavirus replication.
Collapse
Affiliation(s)
- J F Spagnolo
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Molenkamp R, Rozier BC, Greve S, Spaan WJ, Snijder EJ. Isolation and characterization of an arterivirus defective interfering RNA genome. J Virol 2000; 74:3156-65. [PMID: 10708432 PMCID: PMC111816 DOI: 10.1128/jvi.74.7.3156-3165.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 01/05/2000] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV), the type member of the family Arteriviridae, is a single-stranded RNA virus with a positive-stranded genome of approximately 13 kb. EAV uses a discontinuous transcription mechanism to produce a nested set of six subgenomic mRNAs from which its structural genes are expressed. We have generated the first documented arterivirus defective interfering (DI) RNAs by serial undiluted passaging of a wild-type EAV stock in BHK-21 cells. A cDNA copy of the smallest DI RNA (5.6 kb) was cloned. Upon transfection into EAV-infected BHK-21 cells, transcripts derived from this clone (pEDI) were replicated and packaged. Sequencing of pEDI revealed that the DI RNA was composed of three segments of the EAV genome (nucleotides 1 to 1057, 1388 to 1684, and 8530 to 12704) which were fused in frame with respect to the replicase reading frame. Remarkably, this DI RNA has retained all of the sequences encoding the structural proteins. By insertion of the chloramphenicol acetyltransferase reporter gene in the DI RNA genome, we were able to delimitate the sequences required for replication/DI-based transcription and packaging of EAV DI RNAs and to reduce the maximal size of a replication-competent EAV DI RNA to approximately 3 kb.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Abstract
A region of the bovine coronavirus (BCV) genome that functions as a packaging signal has been cloned. The 291-nucleotide clone shares 72% homology with the region of mouse hepatitis coronavirus (MHV) gene 1b that contains the packaging signal. RNA transcripts were packaged into both BCV and MHV virions when the cloned region was appended to a noncoronavirus RNA. This is the first identification of a BCV packaging signal. The data demonstrate that the BCV genome contains a sequence that is conserved at both the sequence and functional levels, thus broadening our insight into coronavirus packaging.
Collapse
Affiliation(s)
- R Cologna
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
27
|
Compel P, Papp I, Bibó M, Fekete C, Hornok L. Genetic interrelationships and genome organization of double-stranded RNA elements of Fusarium poae. Virus Genes 1999; 18:49-56. [PMID: 10334037 DOI: 10.1023/a:1008069318838] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The similar sized double-stranded RNA (dsRNA) elements present in vegetatively compatible strains of Fusarium poae were always genetically related, while vegetatively incompatible strains of the fungus contained either homologous or non-homologous dsRNAs of the same size. Electron microscopic observations revealed the co-existence of encapsidated and naked dsRNA elements in the same host. A mycovirus, named FUPO-1 was purified from strain A-11 and was found to contain two kinds of dsRNA segments, dsRNA 1 and dsRNA 2. The dsRNA genome of these segments was converted to cDNA clones by reverse transcription and the clones were subjected to sequence analysis. The single long open reading frame deduced from the sequence of dsRNA 1 showed similarities to the putative coat protein genes known from other mycoviruses, while conserved motifs of an RNA-dependent RNA polymerase were identified in the predicted amino acid sequence of dsRNA 2. The genome organization and certain sequence motifs of FUPO-1 show similarities to that of the Atkinsonella hypoxylon 2H virus and the FusoV mycovirus, members of the Partitiviridae family.
Collapse
Affiliation(s)
- P Compel
- Institute for Microbiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
28
|
Yeh TY, Lin BY, Chang YC, Hsu YH, Lin NS. A defective RNA associated with bamboo mosaic virus and the possible common mechanisms for RNA recombination in potexviruses. Virus Genes 1999; 18:121-8. [PMID: 10403698 DOI: 10.1023/a:1008008400653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A naturally occurring 1.1 kb RNA was isolated from purified virions of bamboo mosaic potexvirus isolate S (BaMV-S). This RNA is a defective RNA (D RNA) derived from a single internal deletion of the BaMV genome. A cDNA clone representing the complete nucleotide sequence of the BaMV-S D RNA was generated and its nucleotide sequence was determined. The BaMV D cDNA is 1015 nts in length [excluding the poly(A) tail] and consists of two regions corresponding to 867 nts of the 5' terminus and 148 nts of the 3' terminus of the BaMV genomic RNA. BaMV D cDNA contains a single open reading frame (ORF) encoding a putative 29.7 kDa protein comprised of a fusion of the first 258 amino acids of BaMV ORF 1 and the last 2 amino acids of coat protein. The coding capacity of D RNA was verified by in vitro translation of native BaMV-S D RNA and of 1.1 kb RNA transcribed in vitro from the full-length D cDNA. BaMV D RNA can be reproducibly generated by serial passages of BaMV-S in Nicotiana benthamiana and is the first D RNA in the potexvirus group shown to be generated de novo. Alignments of sequences surrounding the 5' and 3' junction borders of reported potexvirus D RNAs reveal a 65.2-84.6% sequence identity, suggesting that common mechanisms for viral RNA recombination are involved in the generation of potexvirus D RNAs.
Collapse
Affiliation(s)
- T Y Yeh
- Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
29
|
Dalton K, Penzes Z, Wroe C, Stirrups K, Evans S, Shaw K, Brown TD, Britton P, Cavanagh D. Sequence elements involved in the rescue of IBV defective RNA CD-91. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:253-7. [PMID: 9782289 DOI: 10.1007/978-1-4615-5331-1_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Deletion mutagenesis has been used to identify essential regions for rescue of coronavirus defective RNAs (D-RNAs). Using this technique on a cloned IBV D-RNA CD-91, we have identified a region potentially important in its rescue. Comparing the sequence of D-RNAs rescued with those not rescued we have deduced that a 72 base region corresponding to base number 13,824 to 13,896 in the viral genome is required for rescue. This may be an IBV D-RNA packaging signal or a cis-acting element involved in replication. Further experiments and modification of our techniques will be required to differentiate between the two processes.
Collapse
|
30
|
Repass JF, Makino S. Importance of the positive-strand RNA secondary structure of a murine coronavirus defective interfering RNA internal replication signal in positive-strand RNA synthesis. J Virol 1998; 72:7926-33. [PMID: 9733830 PMCID: PMC110123 DOI: 10.1128/jvi.72.10.7926-7933.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 07/14/1998] [Indexed: 11/20/2022] Open
Abstract
The RNA elements that are required for replication of defective interfering (DI) RNA of the JHM strain of mouse hepatitis virus (MHV) consist of three discontinuous genomic regions: about 0.46 to 0.47 kb from both terminal sequences and an internal 58-nucleotide (nt)-long sequence (58-nt region) present at about 0.9 kb from the 5' end of the DI genome. The internal region is important for positive-strand DI RNA synthesis (Y. N. Kim and S. Makino, J. Virol. 69:4963-4971, 1995). We further characterized the 58-nt region in the present study and obtained the following results. (i) The positive-strand RNA structure in solution was comparable with that predicted by computer modeling. (ii) Positive-strand RNA secondary structure, but not negative-strand RNA structure, was important for the biological function of the region. (iii) The biological function had a sequence-specific requirement. We discuss possible mechanisms by which the internal cis-acting signal drives MHV positive-strand DI RNA synthesis.
Collapse
Affiliation(s)
- J F Repass
- Department of Microbiology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
31
|
|
32
|
Hsue B, Masters PS. A bulged stem-loop structure in the 3' untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 1997; 71:7567-78. [PMID: 9311837 PMCID: PMC192104 DOI: 10.1128/jvi.71.10.7567-7578.1997] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.
Collapse
Affiliation(s)
- B Hsue
- Department of Biomedical Sciences, University at Albany, State University of New York, 12201, USA
| | | |
Collapse
|
33
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
34
|
Bos EC, Dobbe JC, Luytjes W, Spaan WJ. A subgenomic mRNA transcript of the coronavirus mouse hepatitis virus strain A59 defective interfering (DI) RNA is packaged when it contains the DI packaging signal. J Virol 1997; 71:5684-7. [PMID: 9188649 PMCID: PMC191817 DOI: 10.1128/jvi.71.7.5684-5687.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In infected cells, only the genomic RNA of the coronavirus mouse hepatitis virus strain A59 (MHV-A59) is packaged into the virions. In this study, we show that a subgenomic (sg) defective interfering (DI) RNA can be packaged into virions when it contains the DI RNA packaging signal (DI RNA-Ps). However, the sg DI RNA is packaged less efficiently than the DI genomic RNA. Thus, while specificity of packaging of RNAs into MHV-A59 virions is determined by the DI RNA-Ps, efficiency of packaging is determined by additional factors.
Collapse
Affiliation(s)
- E C Bos
- Department of Virology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
35
|
Zhang L, Homberger F, Spaan W, Luytjes W. Recombinant genomic RNA of coronavirus MHV-A59 after coreplication with a DI RNA containing the MHV-RI spike gene. Virology 1997; 230:93-102. [PMID: 9126265 PMCID: PMC7130785 DOI: 10.1006/viro.1997.8460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1996] [Revised: 01/06/1997] [Accepted: 01/23/1997] [Indexed: 02/04/2023]
Abstract
A strategy for targeted RNA recombination between the spike gene on the genomic RNA of MHV-A59 and a synthetic DI RNA containing the MHV-RI spike gene is described. The MHV-RI spike gene contains several nucleotide differences from the MHV-A59 spike gene that could be used as genetic markers, including a stretch of 156 additional nucleotides starting at nucleotide 1497. The MHV-RI S gene cDNA (from nucleotide 277-termination codon) was inserted in frame into pMIDI, a full-length cDNA clone of an MHV-A59 DI, yielding pDPRIS. Using the vaccinia vTF7.3 system, RNA was transcribed from pDPRIS upon transfection into MHV-A59-infected L cells. DPRIS RNA was shown to be replicated and passaged efficiently. MHV-A59 and the DPRIS DI particle were copassaged several times. Using a highly specific and sensitive RT-PCR, recombinant genomic RNA was detected in intracellular RNA from total lysates of pDPRIS-transfected and MHV-A59-infected cells and among genomic RNA that was agarose gel-purified from these lysates. More significantly, specific PCR products were found in virion RNA from progeny virus. PCR products were absent in control mixes of intracellular RNA from MHV-A59-infected cells and in vitro-transcribed DPRIS RNA. PCR products from intracellular RNA and virion RNA were cloned and 11 independent clones were sequenced. Crossovers between A59 and RI RNA were found upstream of nucleotide 1497 and had occurred between 106 nucleotides from the 5'-border and 73 nucleotides from the 3'-border of sequence homologous between A59 and RI S genes. We conclude that homologous RNA recombination took place between the genomic RNA template and the synthetic DI RNA template at different locations, generating a series of MHV recombinant genomes with chimeric S genes.
Collapse
Affiliation(s)
- L Zhang
- Department of Virology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
36
|
Pogany J, Romero J, Bujarski JJ. Effect of 5' and 3' terminal sequences, overall length, and coding capacity on the accumulation of defective RNAs associated with broad bean mottle bromovirus in planta. Virology 1997; 228:236-43. [PMID: 9123830 DOI: 10.1006/viro.1996.8377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Broad bean mottle bromovirus (BBMV) was shown to accumulate RNA2-derived defective interfering (DI) RNAs [Romero et al., Virology 194, 576-584 (1993); Pogany et al., Virology 212, 574-586 (1995)]. In this work, we utilize three sets of BBMV RNA2-derived artificial DI RNA constructs to determine factors that affect the accumulation of defective RNAs in planta. One set of deletion constructs was used to localize sequences required for efficient accumulation within the 5' 883 nt and the 3' 387 nt of the DI RNAs. The second set had a gradually increasing size of 3' nested deletions to determine the minimal length required for efficient DI RNA accumulation. The smallest DI RNA still accumulating in plants was found to be 1712 nt long. The third set consisted of frameshift mutants which showed that at least 64.4% of BBMV DI RNA sequences must have the 5' portion of the 2a open reading frame to ensure efficient accumulation. The importance of these factors in the selection of DI RNAs is discussed.
Collapse
Affiliation(s)
- J Pogany
- Plant Molecular Biology Center, Northern Illinois University, DeKalb 60115, USA
| | | | | |
Collapse
|
37
|
|
38
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
39
|
Pénzes Z, Wroe C, Brown TD, Britton P, Cavanagh D. Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. J Virol 1996; 70:8660-8. [PMID: 8970992 PMCID: PMC190960 DOI: 10.1128/jvi.70.12.8660-8668.1996] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The construction of a full-length clone of the avian coronavirus infectious bronchitis virus (IBV) defective RNA (D-RNA), CD-91 (9,080 nucleotides [Z. Penzes et al., Virology 203:286-293]), downstream of the bacteriophage T7 promoter is described. Electroporation of in vitro T7-transcribed CD-91 RNA into IBV helper virus-infected primary chick kidney cells resulted in the production of CD-91 RNA as a replicating D-RNA in subsequent passages. Three CD-91 deletion mutants were constructed--CD-44, CD-58, and CD-61--in which 4,639, 3,236, and 2,953 nucleotides, respectively, were removed from CD-91, resulting in the truncation of the CD-91 long open reading frame (ORF) from 6,465 to 1,311, 1,263, or 2,997 nucleotides in CD-44, CD-58, or CD-61, respectively. Electroporation of in vitro T7-transcribed RNA from the three constructs into IBV helper virus-infected cells resulted in the replication and packaging of CD-58 and CD-61 but not CD-44 RNA. The ORF of CD-61 was further truncated by the insertion of stop codons into the CD-61 sequence by PCR mutagenesis, resulting in constructs CD-61T11 (ORF: nucleotides 996 to 1,058, encoding 20 amino acids), CD-61T22 (ORF: nucleotides 996 to 2,294, encoding 432 amino acids), and CD-61T24 (ORF: nucleotides 996 to 2,450, encoding 484 amino acids), all of which were replicated and packaged to the same levels as observed for either CD-61 or CD-91. Analysis of the D-RNAs showed that the CD-91- or CD-61-specific long ORFs had not been restored. Our data indicate that IBV D-RNAs based on the natural D-RNA, CD-91, do not require a long ORF for efficient replication. In addition, a 1.4-kb sequence, corresponding to IBV sequence at the 5' end of the 1b gene, may be involved in the packaging of IBV D-RNAs or form part of a cis-acting replication element.
Collapse
Affiliation(s)
- Z Pénzes
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Joo M, Banerjee S, Makino S. Replication of murine coronavirus defective interfering RNA from negative-strand transcripts. J Virol 1996; 70:5769-76. [PMID: 8709192 PMCID: PMC190590 DOI: 10.1128/jvi.70.9.5769-5776.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The positive-strand defective interfering (DI) RNA of the murine coronavirus mouse hepatitis virus (MHV), when introduced into MHV-infected cells, results in DI RNA replication and accumulation. We studied whether the introduction of negative-strand transcripts of MHV DI RNA would also result in replication. At a location downstream of the T7 promoter and upstream of the human hepatitis delta virus ribozyme domain, we inserted a complete cDNA clone of MHV DI RNA in reverse orientation; in vitro-synthesized RNA from this plasmid yielded a negative-strand RNA copy of the MHV DI RNA. When the negative-strand transcripts of the DI RNA were expressed in MHV-infected cells by a vaccinia virus T7 expression system, positive-strand DI RNAs accumulated in the plasmid-transfected cells. DI RNA replication depended on the expression of T7 polymerase and on the presence of the T7 promoter. Transfection of in vitro-synthesized negative-strand transcripts into MHV-infected cells and serial passage of virus samples from RNA-transfected cells also resulted in accumulation of the DI RNA. Positive-strand DI RNA transcripts were undetectable in sample preparations of the in vitro-synthesized negative-strand DI RNA transcripts, and DI RNA did not accumulate after cotransfection of a small amount of positive-strand DI RNA and truncated-replication-disabled negative-strand transcripts; clearly, the DI RNA replicated from the transfected negative-strand transcripts and not from minute amounts of positive-strand DI RNAs that might be envisioned as artifacts of T7 transcription. Sequence analysis of positive-strand DI RNAs in the cells transfected with negative-strand transcripts showed that DI RNAs maintained the DI-specific unique sequences introduced within the leader sequence. These data indicated that positive-strand DI RNA synthesis occurred from introduced negative-strand transcripts in the MHV-infected cells; this demonstration, using MHV, of DI RNA replication from transfected negative-strand DI RNA transcripts is the first such demonstration among all positive-stranded RNA viruses.
Collapse
Affiliation(s)
- M Joo
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | | | |
Collapse
|
41
|
van Rossum CM, Garcia ML, Bol JF. Accumulation of alfalfa mosaic virus RNAs 1 and 2 requires the encoded proteins in cis. J Virol 1996; 70:5100-5. [PMID: 8764017 PMCID: PMC190464 DOI: 10.1128/jvi.70.8.5100-5105.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNAs 1 and 2 of the tripartite genome of alfalfa mosaic virus (A1MV) encode the replicase proteins P1 and P2, respectively. P1 expressed in transgenic plants (P1 plants) can be used in trans to support replication of A1MV RNAs 2 and 3, and P2 expressed in transgenic plants (P2 plants) can be used in trans to support replication of A1MV RNAs 1 and 3. Wild-type RNA 1 was able to coreplicate with RNAs 2 and 3 in P1 plants, but this ability was abolished by frameshifts or deletions in the P1 gene of RNA 1. Similarly, wild-type RNA 2 coreplicated with RNAs 1 and 3 in P2 plants, but frameshifts or deletions in the P2 gene of RNA 2 interfered with this replication. Apparently, the P1 and P2 genes are required in cis for the accumulation of RNAs 1 and 2, respectively. Point mutations in the GDD motif of the P2 gene in RNA 2 interfered with accumulation of RNA 2 in P2 plants, indicating that replication of RNA 2 is linked to its translation into a functional protein. Plants transformed with both the P1 and P2 genes (P12 plants) accumulate replicase activity that is able to replicate RNA 3 in trans. An analysis of the time course of the accumulation of RNAs 1, 2, and 3 in protoplasts of P12 plants supported the conclusion that translation and replication are tightly coupled for A1MV RNAs 1 and 2 but not for RNA 3.
Collapse
Affiliation(s)
- C M van Rossum
- Institute of Molecular Plant Sciences, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
42
|
Chang RY, Brian DA. cis Requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J Virol 1996; 70:2201-7. [PMID: 8642643 PMCID: PMC190059 DOI: 10.1128/jvi.70.4.2201-2207.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A naturally occurring 2.2-kb defective interfering (DI) RNA of the bovine coronavirus, structurally a simple fusion of the genomic termini, contains a single contiguous open reading frame (ORF) or 1.7 kb composed of the 5'-terminal 288 nucleotides of polymerase gene 1a and all 1,344 nucleotides of the nucleocapsid protein (N) gene. The ORF must remain open throughout most of its sequence for replication to occur. To determine the qualitative importance of the N portion of the chimeric ORF in DI RNA replication, transcripts of mutated reporter-containing constructs were tested for replication in helper virus-infected cells. It was determined that the N ORF could not be replaced by the naturally occurring internal I protein ORF, accomplished by deleting the first base in the N start codon which leads to a +1 frameshift, nor could it be replaced by the chloramphenicol acetyltransferase ORF. Furthermore, 3'-terminal truncations of the N gene leaving less than 85% of its total length were likewise not tolerated. Small in-frame deletions and in-frame foreign sequence insertions of up to 99 nucleotides within certain regions of the N ORF were tolerated, however, but the rate of DI RNA accumulation in these cases was lower. These results indicate that there is a requirement for translation of most if not all of the N protein in cis for optimal replication of the bovine coronavirus DI RNA and suggest that a similar requirement may exist for viral genome replication.
Collapse
Affiliation(s)
- R Y Chang
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | |
Collapse
|
43
|
van Marle G, Luytjes W, van der Most RG, van der Straaten T, Spaan WJ. Regulation of coronavirus mRNA transcription. J Virol 1995; 69:7851-6. [PMID: 7494297 PMCID: PMC189729 DOI: 10.1128/jvi.69.12.7851-7856.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coronaviruses synthesize a nested set of six to eight subgenomic (sg) mRNAs in infected cells. These mRNAs are produced in different, but constant, molar ratios. It is unclear which factors control the different levels of sg mRNAs. To determine whether the intergenic sequence (IS) involved in sg mRNA synthesis could affect the transcription efficiencies of other ISs and in this way regulate transcription levels, we inserted multiple ISs at different positions into a mouse hepatitis virus defective interfering RNA. Quantitation of the sg RNAs produced by identical ISs in different sequence contexts led to the following conclusions: (i) transcription efficiency depends on the location of the IS in the defective interfering virus genome, (ii) downstream ISs have a negative effect on transcription levels from upstream ISs, and (iii) upstream ISs have little or no effect on downstream ISs. The observation that a downstream IS downregulates the amounts of sg RNA produced by an upstream IS explains why the smaller sg RNAs are, in general, produced in larger quantities than the larger sg RNAs. Our data are consistent with coronavirus transcription models in which ISs attenuate transcription. In these models, larger sg RNAs are synthesized in smaller amounts because they encounter more attenuating ISs during their synthesis.
Collapse
Affiliation(s)
- G van Marle
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Kim YN, Makino S. Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal. J Virol 1995; 69:4963-71. [PMID: 7609066 PMCID: PMC189312 DOI: 10.1128/jvi.69.8.4963-4971.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mouse hepatitis virus (MHV) sequences required for replication of the JHM strain of MHV defective interfering (DI) RNA consist of three discontinuous genomic regions: about 0.47 kb from both terminal sequences and a 0.13-kb internal region present at about 0.9 kb from the 5' end of the DI genome. In this study, we investigated the role of the internal 0.13-kb region in MHV RNA replication. Overall sequences of the 0.13-kb regions from various MHV strains were similar to each other, with nucleotide substitutions in some strains; MHV-A59 was exceptional, with three nucleotide deletions. Computer-based secondary-structure analysis of the 0.13-kb region in the positive strand revealed that most of the MHV strains formed the same or a similar main stem-loop structure, whereas only MHV-A59 formed a smaller main stem-loop structure. The RNA secondary structures in the negative strands were much less uniform among the MHV strains. A series of DI RNAs that contained MHV-JHM-derived 5'- and 3'-terminal sequences plus internal 0.13-kb regions derived from various MHV strains were constructed. Most of these DI RNAs replicated in MHV-infected cells, except that MRP-A59, with a 0.13-kb region derived from MHV-A59, failed to replicate. Interestingly, replication of MRP-A59 was temperature dependent; it occurred at 39.5 degrees C but not at 37 or 35 degrees C, whereas a DI RNA with an MHV-JHM-derived 0.13-kb region replicated at all three temperatures. At 37 degrees C, synthesis of MRP-A59 negative-strand RNA was detected in MHV-infected and MRP-A59 RNA-transfected cells. Another DI RNA with the internal 0.13-kb region deleted also synthesized negative-strand RNA in MHV-infected cells. MRP-A59-transfected cells were shifted from 39.5 to 37 degrees C at 5.5 h postinfection, a time when most MHV negative-strand RNAs have already accumulated; after the shift, MRP-A59 positive-strand RNA synthesis ceased. The minimum sequence required for maintenance of the positive-strand major stem-loop structure and biological function of the MHV-JHM 0.13-kb region was about 57 nucleotides. Function was lost in the 50-nucleotide sequence that formed a positive-strand stem-loop structure identical to that of MHV-A59. These studies suggested that the RNA structure made by the internal sequence was important for positive-strand MHV RNA synthesis.
Collapse
Affiliation(s)
- Y N Kim
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | |
Collapse
|
45
|
van der Most RG, Luytjes W, Rutjes S, Spaan WJ. Translation but not the encoded sequence is essential for the efficient propagation of the defective interfering RNAs of the coronavirus mouse hepatitis virus. J Virol 1995; 69:3744-51. [PMID: 7745722 PMCID: PMC189091 DOI: 10.1128/jvi.69.6.3744-3751.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The defective interfering (DI) RNA MIDI of mouse hepatitis virus strain A59 (MHV-A59) contains a large open reading frame (ORF) spanning almost its entire genome. This ORF consists of sequences derived from ORF1a, ORF1b, and the nucleocapsid gene. We have previously demonstrated that mutations that disrupt the ORF decrease the fitness of MIDI and its derivatives (R. J. de Groot, R. G. van der Most, and W. J. M. Spaan, J. Virol. 66:5898-5905, 1992). To determine whether translation of the ORF per se is required or whether the encoded polypeptide or a specific sequence is involved, we analyzed sets of related DI RNAs containing different ORFs. After partial deletion of ORF1b and nucleocapsid gene sequences, disruption of the remaining ORF is still lethal; translation of the entire ORF is not essential, however. When a large fragment of the MHV-A59 spike gene, which is not present in any of the MHV-A59 DI RNAs identified so far, was inserted in-frame into a MIDI derivative, translation across this sequence was vital to DI RNA survival. Thus, the translated sequence is irrelevant, indicating that translation per se plays a crucial role in DI virus propagation. Next, it was examined during which step of the viral life cycle translation plays its role. Since the requirement for translation also exists in DI RNA-transfected and MHV-infected cells, it follows that either the synthesis or degradation of DI RNAs is affected by translation.
Collapse
Affiliation(s)
- R G van der Most
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
46
|
Derdeyn CA, Frey TK. Characterization of defective-interfering RNAs of rubella virus generated during serial undiluted passage. Virology 1995; 206:216-26. [PMID: 7831776 PMCID: PMC7130850 DOI: 10.1016/s0042-6822(95)80036-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During serial undiluted passage of rubella virus (RUB) in Vero cells, two species of defective-interfering (DI) RNAs of approximately 7000 and 800 nucleotides (nts) in length were generated (Frey, T. K., and Hemphill, M. L., Virology 164, 22-29, 1988). In this study, these DI RNAs were characterized by molecular cloning, hybridization with probes of defined sequence, and primer extension. The 7000-nt DI RNA species were found to be authentic DI RNAs which contain a single 2500- to 2700-nt deletion in the structural protein open reading frame (ORF) region of the genome. The 800-nt RNAs were found to be subgenomic DI RNAs synthesized from the large DI RNA templates. Analysis of the extent of the deletions using a reverse-transcription-PCR protocol revealed that the 3' end of the deletions did not extend beyond the 3' terminal 244 nts of the genome. The 5' end of the deletions did not extend into the nonstructural protein ORF; however, DI RNAs in which the subgenomic start site was deleted were present. Following serial undiluted passage of seven independent stocks of RUB, this was the only pattern of DI RNAs generated. DI RNAs of 2000 to 3000 nt in length were the majority DI RNA species in a persistently infected line of Vero cells, showing that other types of RUB DI RNAs can be generated and selected. However, when supernatant from the persistently infected cells was passaged, the only DI RNAs present after two passages were 7000 nts in length, indicating that this species has a selective advantage over other types of DI RNAs during serial passage.
Collapse
Affiliation(s)
- C A Derdeyn
- Department of Biology, Georgia State University, Atlanta 30302-4010
| | | |
Collapse
|
47
|
Williams GD, Chang RY, Brian DA. Evidence for a pseudoknot in the 3' untranslated region of the bovine coronavirus genome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:511-4. [PMID: 8830533 DOI: 10.1007/978-1-4615-1899-0_81] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A potential pseudoknot was found in the 3' untranslated region of the bovine coronavirus genome beginning 63 nt downstream from the stop codon of the N gene. Mutation analysis of the pseudoknot in a cloned defective interfering RNA indicated that this structural element is necessary for defective interfering RNA replication.
Collapse
MESH Headings
- Animals
- Base Sequence
- Capsid/genetics
- Cattle
- Cloning, Molecular
- Codon
- Coronavirus, Bovine/genetics
- Coronavirus, Bovine/metabolism
- Defective Viruses/genetics
- Defective Viruses/metabolism
- Genes, Viral
- Genome, Viral
- Models, Structural
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Transmissible gastroenteritis virus/genetics
- Viral Core Proteins/genetics
Collapse
Affiliation(s)
- G D Williams
- Program in Biotechnology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | |
Collapse
|
48
|
Enjuanes L, Smerdou C, Castilla J, Antón IM, Torres JM, Sola I, Golvano J, Sánchez JM, Pintado B. Development of protection against coronavirus induced diseases. A review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:197-211. [PMID: 8830481 DOI: 10.1007/978-1-4615-1899-0_34] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Penzes Z, Tibbles KW, Shaw K, Britton P, Brown TD, Cavanagh D. Generation of a defective RNA of avian coronavirus infectious bronchitis virus (IBV). Defective RNA of coronavirus IBV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:563-9. [PMID: 8830542 DOI: 10.1007/978-1-4615-1899-0_90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Beaudette strain of IBV was passaged 16 times in chick kidney (CK) cells. Total cellular RNA was analyzed by Northern hybridization and was probed with 32P-labeled cDNA probes corresponding to the first 2 kb of the 5' end of the genome, but excluding the leader, and to the last 1.8 kb of the 3' end of the genome. A new, defective IBV RNA species (CD-91) was detected at passage six. The defective RNA, present in total cell extract RNA and in oligo-(dT)30-selected RNA from passage 15, was amplified by the reverse transcription-polymerase chain reaction (RT-PCR) to give four fragments. The oligonucleotides used were selected such that CD-91 RNA, but not the genomic RNA, would be amplified. Cloning and sequencing of the PCR products showed that CD-91 comprises 9.1 kb and has three regions of the genome. It contains 1133 nucleotides from the 5' end of the genome, 6322 from gene 1b corresponding to position 12423 to 18744 in the IBV genome and 1626 from the 3' end of the genome. At position 749 one nucleotide, an adenine residue, was absent from CD-91 RNA. By Northern hybridization CD-91 RNA was detected in virions in higher amounts than the subgenomic mRNAs.
Collapse
Affiliation(s)
- Z Penzes
- Division of Molecular Biology, Institute for Animal Health, Newbury, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Chang RY, Hofmann MA, Sethna PB, Brian DA. A cis-acting function for the coronavirus leader in defective interfering RNA replication. J Virol 1994; 68:8223-31. [PMID: 7966615 PMCID: PMC237289 DOI: 10.1128/jvi.68.12.8223-8231.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To test the hypothesis that the 65-nucleotide (nt) leader on subgenomic mRNAs suffices as a 5'-terminal cis-acting signal for RNA replication, a corollary to the notion that coronavirus mRNAs behave as replicons, synthetic RNA transcripts of a cloned, reporter-containing N mRNA (mRNA 7) of the bovine coronavirus with a precise 5' terminus and a 3' poly(A) of 68 nt were tested for replication after being transfected into helper virus-infected cells. No replication was observed, but synthetic transcripts of a cloned reporter-containing defective interfering (DI) RNA differing from the N mRNA construct by 433 nt of continuous 5'-proximal genomic sequence between the leader and the N open reading frame did replicate and become packaged, indicating the insufficiency of the leader alone as a 5' signal for replication of transfected RNA molecules. The leader was shown to be a necessary part of the cis-acting signal for DI RNA replication, however, since removal of terminal bases that destroyed a predicted intraleader stem-loop also destroyed replicating ability. Surprisingly, when the same stem-loop was disrupted by base substitutions, replication appeared only minimally impaired and the leader was found to have rapidly reverted to wild type during DI RNA replication, a phenomenon reminiscent of high-frequency leader switching in the mouse hepatitis coronavirus. These results suggest that once a minimal structural requirement for leader is fulfilled for initiation of DI RNA replication, the wild-type leader is strongly preferred for subsequent replication. They also demonstrate that, in contrast to reported natural mouse hepatitis coronavirus DI RNAs, the DI RNA of the bovine coronavirus does not require sequence elements originating from discontinuous downstream regions within the polymerase gene for replication or for packaging.
Collapse
Affiliation(s)
- R Y Chang
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845
| | | | | | | |
Collapse
|