1
|
Wang X, Zhang J, Huo S, Zhang Y, Wu F, Cui D, Yu H, Zhong F. Development of a monoclonal antibody against canine parvovirus NS1 protein and investigation of NS1 dynamics and localization in CPV-infected cells. Protein Expr Purif 2020; 174:105682. [PMID: 32502709 DOI: 10.1016/j.pep.2020.105682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Canine parvovirus (CPV) non-structural protein-1 (NS1) plays crucial roles in CPV replication and transcription, as well as pathogenic effects to the host. However, the mechanism was not fully understood. Lack of NS1 antibody is one of the restricting factors for NS1 function investigation. To prepare NS1 monoclonal antibody (mAb), the NS1 epitope (AA461 ~ AA650) gene was amplified by PCR, and inserted into pGEX-4T-1vector to construct the prokaryotic expression vector of GST-tag-fused NS1 epitope gene. The NS1 fusion protein was expressed in E. coli, and purified with GSH-magnetic beads, and then used to immunize BALB/c mice. The mouse splenic lymphocytes were isolated and fused with myeloma cells (SP 2/0) to generate hybridoma cells. After several rounds of screening by ELISA, a hybridoma cell clone (1B8) stably expressing NS1 mAb was developed. A large amount of NS1 mAb was prepared from mouse ascites fluid. The isotype of NS1 mAb was identified as IgG1, which can specifically bind NS1 protein in either CPV-infected cells or NS1 vector-transfected cells, indicating the NS1 mAb is effective in detecting NS1 protein. Meanwhile, we used the NS1 mAb to investigate NS1 dynamic changes by qRT-PCR and location by confocal imaging in CPV-infected host cells and showed that NS1 began to appear in the cells at 12 h after CPV infection and reached the highest level at 42 h, NS1 protein was mainly located in nucleus of the cells. This study provided a necessary condition for further investigation on molecular mechanism of NS1 function and pathogenicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Cell Line
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Female
- Mice
- Mice, Inbred BALB C
- Parvoviridae Infections/immunology
- Parvoviridae Infections/metabolism
- Parvovirus, Canine/chemistry
- Parvovirus, Canine/genetics
- Parvovirus, Canine/immunology
- Parvovirus, Canine/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Xing Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; Rinpu (Baoding) Biological Pharmaceutical Co., LTD, Baoding, 071004, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Hongwei Yu
- Rinpu (Baoding) Biological Pharmaceutical Co., LTD, Baoding, 071004, China.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
2
|
The 5' Untranslated Region of the Capsid Protein 2 Gene of Mink Enteritis Virus Is Essential for Its Expression. J Virol 2018; 92:JVI.00787-18. [PMID: 29976664 DOI: 10.1128/jvi.00787-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Mink enteritis virus (MEV), as a parvovirus, is among the smallest of the animal DNA viruses. The limited genome leads to multifunctional sequences and complex gene expression regulation. Here, we show that the expression of viral capsid protein 2 (VP2) of MEV requires its 5' untranslated regions (5' UTR) which promote VP2 gene expression at both transcriptional and translational levels. The expression of VP2 was inhibited in several common eukaryotic expression vectors. Our data showed that the 5' UTR of VP2 enhanced capsid gene transcription but not increased stability or promotes nucleocytoplasmic export of VP2 mRNA. Analysis of the functions of 5' UTR fragments showed that the proximal region (nucleotides [nt] 1 to 270; that is, positions +1 to +270 relative to the transcription initiation site, nt 2048 to 2317 of MEV-L) of 5' UTR of VP2 was necessary for VP2 transcription and also promoted the activity of P38 promoter. Unexpectedly, further analysis showed that deletion of the distal region (nt 271 to 653) of the 5' UTR of VP2 almost completely abolished VP2 translation in the presence of P38, whereas the transcription was still induced significantly. Furthermore, using a luciferase reporter bicistronic system, we identified that the 5' UTR had an internal ribosome entry site-like function which could be enhanced by NS1 via the site at nt 382 to 447. Mutation of the 5' UTR in the MEV full-length clones further showed that the 5' UTR was required for VP2 gene expression. Together, our data reveal an undiscovered function of 5' UTR of MEV VP2 in regulating viral gene expression.IMPORTANCE MEV, a parvovirus, causes acute enteritis in mink. In the present report, we describe an untranslated sequence-dependent mechanism by which MEV regulates capsid gene expression. Our results highlight the roles of untranslated sequences in regulating the transcriptional activity of P38 promoter and translation of capsid genes. These data also reveal the possibility of an unusual translation mechanism in capsid protein expression and the multiple functions of nonstructural protein. A better understanding of the gene expression regulation mechanism of this virus will help in the design of new vaccines and targets for antiviral agents against MEV.
Collapse
|
3
|
The MVMp P4 promoter is a host cell-type range determinant in vivo. Virology 2017; 506:141-151. [PMID: 28391161 DOI: 10.1016/j.virol.2017.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy.
Collapse
|
4
|
Structural proteins of Helicoverpa armigera densovirus 2 enhance transcription of viral genes through transactivation. Arch Virol 2017; 162:1745-1750. [PMID: 28210815 DOI: 10.1007/s00705-017-3253-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Herein, we report the identification of putative promoters for the non-structural proteins (NS) and capsid structural proteins (VP) of Helicoverpa armigera densovirus (HaDV2) as well as a potential mechanism for how these promoters might be regulated. For the first time, we report that VP is able to transactivate the VP promoter and, to a lesser degree, the NS promoter in densoviruses. In addition to this, another promoter-like sequence designated P2, when co-transfected with the VP gene, enhanced luciferase activity by approximately 35 times compared to a control. This suggests that there are two promoters for VP in HaDV2 and that the VP of parvoviruses might play a more important role in viral transcription than previously appreciated.
Collapse
|
5
|
Promoter-Targeted Histone Acetylation of Chromatinized Parvoviral Genome Is Essential for the Progress of Infection. J Virol 2016; 90:4059-4066. [PMID: 26842481 DOI: 10.1128/jvi.03160-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/31/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging andin situproximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene expression and the completion of the viral life cycle. IMPORTANCE Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epigenetic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposition of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regulation of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy.
Collapse
|
6
|
Mutations in DNA binding and transactivation domains affect the dynamics of parvovirus NS1 protein. J Virol 2013; 87:11762-74. [PMID: 23986577 DOI: 10.1128/jvi.01678-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional replication protein of autonomous parvoviruses, NS1, is vital for viral genome replication and for the control of viral protein production. Two DNA-interacting domains of NS1, the N-terminal and helicase domains, are necessary for these functions. In addition, the N and C termini of NS1 are required for activation of viral promoter P38. By comparison with the structural and biochemical data from other parvoviruses, we identified potential DNA-interacting amino acid residues from canine parvovirus NS1. The role of the identified amino acids in NS1 binding dynamics was studied by mutagenesis, fluorescence recovery after photobleaching, and computer simulations. Mutations in the predicted DNA-interacting amino acids of the N-terminal and helicase domains increased the intranuclear binding dynamics of NS1 dramatically. A substantial increase in binding dynamics was also observed for NS1 mutants that targeted the metal ion coordination site in the N terminus. Interestingly, contrary to other mutants, deletion of the C terminus resulted in slower binding dynamics of NS1. P38 transactivation was severely reduced in both N-terminal DNA recognition and in C-terminal deletion mutants. These data suggest that the intranuclear dynamics of NS1 are largely characterized by its sequence-specific and -nonspecific binding to double-stranded DNA. Moreover, binding of NS1 is equally dependent on the N-terminal domain and conserved β-loop of the helicase domain.
Collapse
|
7
|
Huang Q, Deng X, Best SM, Bloom ME, Li Y, Qiu J. Internal polyadenylation of parvoviral precursor mRNA limits progeny virus production. Virology 2012; 426:167-77. [PMID: 22361476 DOI: 10.1016/j.virol.2012.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
Aleutian Mink Disease Virus (AMDV) is the only virus in the genus Amdovirus of family Parvoviridae. In adult mink, AMDV causes a persistent infection associated with severe dysfunction of the immune system. Cleavage of AMDV capsid proteins has been previously shown to play a role in regulating progeny virus production (Fang Cheng et al., J. Virol. 84:2687-2696, 2010). The present study shows that AMDV has evolved a second strategy to limit expression of capsid proteins by preventing processing of the full-length capsid protein-encoding mRNA transcripts. Characterization of the cis-elements of the proximal polyadenylation site [(pA)p] in the infectious clone of AMDV revealed that polyadenylation at the (pA)p site is controlled by an upstream element (USE) of 200 nts in length, the AAUAAA signal, and a downstream element (DSE) of 40 nts. A decrease in polyadenylation at the (pA)p site, either by mutating the AAUAAA signal or the DSE, which does not affect the encoding of amino acids in the infectious clone, increased the expression of capsid protein VP1/VP2 and thereby increased progeny virus production approximately 2-3-fold. This increase was accompanied by enhanced replication of the AMDV genome. Thus, this study reveals correlations among internal polyadenylation, capsid production, viral DNA replication and progeny virus production of AMDV, indicating that internal polyadenylation is a limiting step for parvovirus replication and progeny virus production.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
8
|
Dhar AK, Kaizer KN, Lakshman DK. Transcriptional analysis of Penaeus stylirostris densovirus genes. Virology 2010; 402:112-20. [PMID: 20381108 DOI: 10.1016/j.virol.2010.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/03/2010] [Accepted: 03/01/2010] [Indexed: 11/16/2022]
Abstract
Penaeus stylirostris densovirus (PstDNV) genome contains three open reading frames (ORFs), left, middle, and right, which encode a non-structural (NS) protein, an unknown protein, and a capsid protein (CP), respectively. Transcription mapping revealed that P2, P11 and P61 promoters transcribe the left, middle and right ORFs. NS transcript uses the D1/A1 donor/acceptor sites for splicing and has two alternate transcription termination sites (TTS) that were different from the previously predicted TTS. The transcription initiation site (TIS) and the TTS for the middle and the right ORFs conform to predicted sites. PstDNV transcript quantification in infected shrimp revealed that the NS and CP transcripts were expressed at an equivalent level and significantly higher than the middle ORF transcript. In vitro assay showed that P2 had the highest promoter activity followed by P11 and P61. Transcription mapping data provided new insights into PstDNV gene expression strategy.
Collapse
Affiliation(s)
- Arun K Dhar
- Viracine Therapeutics Corporation, 7155-H Columbia Gateway Dr., Columbia, MD 21046, USA.
| | | | | |
Collapse
|
9
|
Abstract
The replication protein NS1 is essential for genome replication and protein production in parvoviral infection. Many of its functions, including recognition and site-specific nicking of the viral genome, helicase activity, and transactivation of the viral capsid promoter, are dependent on ATP. An ATP-binding pocket resides in the middle of the modular NS1 protein in a superfamily 3 helicase domain. Here we have identified key ATP-binding amino acid residues in canine parvovirus (CPV) NS1 protein and mutated amino acids from the conserved A motif (K406), B motif (E444 and E445), and positively charged region (R508 and R510). All mutations prevented the formation of infectious viruses. When provided in trans, all except the R508A mutation reduced infectivity in a dominant-negative manner, possibly by hindering genome replication. These results suggest that the conserved R510 residue, but not R508, is the arginine finger sensory element of CPV NS1. Moreover, fluorescence recovery after photobleaching (FRAP), complemented by computer simulations, was used to assess the binding properties of mutated fluorescent fusion proteins. These experiments identified ATP-dependent and -independent binding modes for NS1 in living cells. Only the K406M mutant had a single binding site, which was concluded to indicate ATP-independent binding. Furthermore, our data suggest that DNA binding of NS1 is dependent on its ability to both bind and hydrolyze ATP.
Collapse
|
10
|
The capsid proteins of Aleutian mink disease virus activate caspases and are specifically cleaved during infection. J Virol 2009; 84:2687-96. [PMID: 20042496 DOI: 10.1128/jvi.01917-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37 degrees C but not at 31.8 degrees C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV.
Collapse
|
11
|
Qiu J, Cheng F, Pintel D. The abundant R2 mRNA generated by aleutian mink disease parvovirus is tricistronic, encoding NS2, VP1, and VP2. J Virol 2007; 81:6993-7000. [PMID: 17428872 PMCID: PMC1933312 DOI: 10.1128/jvi.00244-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundant R2 mRNA encoded by the single left-end promoter of Aleutian mink disease parvovirus is tricistronic; it not only expresses the capsid proteins VP1 and VP2 but is also the major source for the nonstructural protein NS2. A cis-acting sequence within the NS2 gene was shown to be required for efficient capsid protein production, and its effect displayed a distinct location dependence. Ribosome transit through the upstream NS2 gene region was necessary for efficient VP1 and VP2 expression; however, neither ablation nor improvement of the NS2 initiating AUG had an effect on capsid protein production, suggesting that the translation of the NS2 protein per se had little influence on VP1 and VP2 expression. Thus, proper control of the alternative translation of the tricistronic R2 mRNA, a process critical for viral replication, is governed in a complex manner.
Collapse
Affiliation(s)
- Jianming Qiu
- Life Sciences Center, University of Missouri--Columbia, 1201 Rollins Rd., Columbia, MO 65212, USA
| | | | | |
Collapse
|
12
|
A cryptic promoter in potato virus X vector interrupted plasmid construction. BMC Mol Biol 2007; 8:17. [PMID: 17338823 PMCID: PMC1831784 DOI: 10.1186/1471-2199-8-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 03/05/2007] [Indexed: 11/25/2022] Open
Abstract
Background Potato virus X has been developed into an expression vector for plants. It is widely used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned into the vector. The constructed plasmid needs to be amplified. Usually, during amplification stage, the foreign genes are not expressed. However, if the foreign gene is expressed, the construction work could be interrupted. Two different viral genes were sub-cloned into the vector, but only one foreign gene was successfully sub-cloned. The other foreign gene, canine parvovirus type 2 (CPV-2) VP1 could not be sub-cloned into the vector and amplified without mutation (frame shift mutation). Results A cryptic promoter in the PVX vector was discovered with RT-PCR. The promoter activity was studied with Northern blots and Real-time RT-PCR. Conclusion It is important to recognize the homologous promoter sequences in the vector when a virus is developed as an expression vector. During the plasmid amplification stage, an unexpected expression of the CPV-2 VP1 gene (not in the target plants, but in E. coli) can interrupt the downstream work.
Collapse
|
13
|
Qiu J, Cheng F, Burger LR, Pintel D. The transcription profile of Aleutian mink disease virus in CRFK cells is generated by alternative processing of pre-mRNAs produced from a single promoter. J Virol 2006; 80:654-62. [PMID: 16378968 PMCID: PMC1346859 DOI: 10.1128/jvi.80.2.654-662.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A reevaluation of the transcription profile of Aleutian mink disease parvovirus (AMDV)-infected CRFK cells at either 32 degrees C or 37 degrees C has determined that strain AMDV-G encodes six species of mRNAs produced by alternative splicing and alternative polyadenylation of a pre-mRNA generated by a single promoter at the left end of the genome. Three different splicing patterns are used, and each type is found polyadenylated at either the 3' end of the genome (the distal site) or at a site in the center of the genome (the proximal site). All spliced species accumulate similarly over the course of infection, with the R2 RNA predominant throughout. The R2 RNA, which contains and can express the NS2 coding region, encodes the viral capsid proteins VP1 and VP2.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Life Sciences Center, 1201 E. Rollins Rd., Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
14
|
Park GS, Best SM, Bloom ME. Two mink parvoviruses use different cellular receptors for entry into CRFK cells. Virology 2005; 340:1-9. [PMID: 16040076 DOI: 10.1016/j.virol.2005.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/02/2005] [Accepted: 06/16/2005] [Indexed: 12/01/2022]
Abstract
Mink enteritis virus (MEV) and Aleutian mink disease parvovirus (ADV) are two mink parvoviruses that replicate permissively in Crandell feline kidney (CRFK) cells. We have used this cell model to examine if these two mink parvoviruses use the same cellular receptor. Whereas the cellular receptor for MEV is expected to be the transferrin receptor (TfR), the cellular receptor for ADV has not been clearly identified. We used short hairpin RNAs (shRNAs) produced from plasmids to trigger RNA interference (RNAi), specifically and effectively reducing TfR expression in CRFK cells. TfR expression was reduced to levels undetectable by immunofluorescence in the majority of cells. In viral infection assays, we show that TfR expression was necessary for MEV infection but was not required for ADV infection. Thus, our results demonstrate that TfR is the cellular receptor for MEV, but not the cellular receptor for ADV. The use of two different receptors by MEV and ADV to infect the same cell line is yet another difference between these two parvoviruses that may contribute to their unique pathogenesis in mink.
Collapse
Affiliation(s)
- Gregory S Park
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
15
|
Davis C, Segev-Amzaleg N, Rotem I, Mincberg M, Amir N, Sivan S, Gitelman I, Tal J. The P4 promoter of the parvovirus minute virus of mice is developmentally regulated in transgenic P4-LacZ mice. Virology 2003; 306:268-79. [PMID: 12642100 DOI: 10.1016/s0042-6822(02)00020-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the minute virus of mice (MVM) P4 promoter is a key step in the life cycle of the virus and is completely dependent on host transcription factors. Since transcription-factor composition varies widely in different cell types, there is the possibility that only some cell types in the host organism have the capacity to initiate expression from the P4 promoter and therefore that the promoter may be a factor in determining the tropism of MVM. In this study, the ability of various cell types to activate P4, independent of the other virus-host interactions, was examined in transgenic mouse lines bearing a beta-galactosidase reporter sequence driven by the P4 promoter. It was found that lacZ was expressed during embryogenesis and in the adult in a cell-type-specific and differentiation-dependent pattern. The data are consistent with cell-type and stage-specific activation of the P4 promoter having a role in determining the host cell-type range of MVM. The ability of some parvoviruses to replicate in, and kill oncogenically transformed cells, and to destroy induced tumors in laboratory animals is the basis of recent approaches to use MVM-based vectors in cancer gene therapy. Since these vectors rely on the activation of the P4 promoter by the target tissues, understanding the promoter dependence on cell-type and differentiation status is important for their design and potential use.
Collapse
Affiliation(s)
- Claytus Davis
- Department of Molecular Genetics of Development, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ward TW, Kimmick MW, Afanasiev BN, Carlson JO. Characterization of the structural gene promoter of Aedes aegypti densovirus. J Virol 2001; 75:1325-31. [PMID: 11152505 PMCID: PMC114038 DOI: 10.1128/jvi.75.3.1325-1331.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 11/10/2000] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti densonucleosis virus (AeDNV) has two promoters that have been shown to be active by reporter gene expression analysis (B. N. Afanasiev, Y. V. Koslov, J. O. Carlson, and B. J. Beaty, Exp. Parasitol. 79:322-339, 1994). Northern blot analysis of cells infected with AeDNV revealed two transcripts 1,200 and 3,500 nucleotides in length that are assumed to express the structural protein (VP) gene and nonstructural protein genes, respectively. Primer extension was used to map the transcriptional start site of the structural protein gene. Surprisingly, the structural protein gene transcript began at an initiator consensus sequence, CAGT, 60 nucleotides upstream from the map unit 61 TATAA sequence previously thought to define the promoter. Constructs with the beta-galactosidase gene fused to the structural protein gene were used to determine elements necessary for promoter function. Deletion or mutation of the initiator sequence, CAGT, reduced protein expression by 93%, whereas mutation of the TATAA sequence at map unit 61 had little effect. An additional open reading frame was observed upstream of the structural protein gene that can express beta-galactosidase at a low level (20% of that of VP fusions). Expression of the AeDNV structural protein gene was shown to be stimulated by the major nonstructural protein NS1 (Afanasiev et al., Exp. parasitol., 1994). To determine the sequences required for transactivation, expression of structural protein gene-beta-galactosidase gene fusion constructs differing in AeDNV genome content was measured with and without NS1. The presence of NS1 led to an 8- to 10-fold increase in expression when either genomic end was present, compared to a 2-fold increase with a construct lacking the genomic ends. An even higher (37-fold) increase in expression occurred with both genomic ends present; however, this was in part due to template replication as shown by Southern blot analysis. These data indicate the location and importance of various elements necessary for efficient protein expression and transactivation from the structural protein gene promoter of AeDNV.
Collapse
Affiliation(s)
- T W Ward
- Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
17
|
Pearson JL, Pintel DJ. Recombination within the nonstructural genes of the parvovirus minute virus of mice (MVM) generates functional levels of wild-type NS1, which can be detected in the absence of selective pressure following transfection of nonreplicating plasmids. Virology 2000; 269:128-36. [PMID: 10725205 DOI: 10.1006/viro.2000.0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences.
Collapse
Affiliation(s)
- J L Pearson
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
18
|
Christensen J, Cotmore SF, Tattersall P. Two new members of the emerging KDWK family of combinatorial transcription modulators bind as a heterodimer to flexibly spaced PuCGPy half-sites. Mol Cell Biol 1999; 19:7741-50. [PMID: 10523663 PMCID: PMC84824 DOI: 10.1128/mcb.19.11.7741] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initially recognized as a HeLa factor essential for parvovirus DNA replication, parvovirus initiation factor (PIF) is a site-specific DNA-binding complex consisting of p96 and p79 subunits. We have cloned and sequenced the human cDNAs encoding each subunit and characterized their products expressed from recombinant baculoviruses. The p96 and p79 polypeptides have 40% amino acid identity, focused particularly within a 94-residue region containing the sequence KDWK. This motif, first described for the Drosophila homeobox activator DEAF-1, identifies an emerging group of metazoan transcriptional modulators. During viral replication, PIF critically regulates the viral nickase, but in the host cell it probably modulates transcription, since each subunit is active in promoter activation assays and the complex binds to previously described regulatory elements in the tyrosine aminotransferase and transferrin receptor promoters. Within its recognition site, PIF binds coordinately to two copies of the tetranucleotide PuCGPy, which, remarkably, can be spaced from 1 to 15 nucleotides apart, a novel flexibility that we suggest may be characteristic of the KDWK family. Such tetranucleotides are common in promoter regions, particularly in activating transcription factor/cyclic AMP response element-binding protein (ATF/CREB) and E-box motifs, suggesting that PIF may modulate the transcription of many genes.
Collapse
Affiliation(s)
- J Christensen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
19
|
Takahashi Y, Murai C, Ishii T, Sugamura K, Sasaki T. Human parvovirus B19 in rheumatoid arthritis. Int Rev Immunol 1999; 17:309-21. [PMID: 10036637 DOI: 10.3109/08830189809054408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Viral arthritis occurs transiently in most cases, because the infection is self limiting. The arthropathy associated with human parvovirus B19, however, often lasts for more than 2 years and their clinical symptoms may resemble with those of rheumatoid arthritis. Data have been accumulating for the link of B19 infection with chronic polyarthropathy or rheumatoid arthritis (RA), and we discuss the possible mechanism for the role of B19 in the etiopathology of RA.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Clinical, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
20
|
Lorson C, Pearson J, Burger L, Pintel DJ. An Sp1-binding site and TATA element are sufficient to support full transactivation by proximally bound NS1 protein of minute virus of mice. Virology 1998; 240:326-37. [PMID: 9454706 DOI: 10.1006/viro.1997.8940] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The minute virus of mice (MVM) P38 Sp1-binding site and TATA box, inserted in an otherwise heterologous plasmid background, could be transactivated to high levels by the MVM NS1 protein targeted proximally to these sequences, demonstrating that these core promoter regulatory elements are sufficient to support essentially wild-type levels of NS1-transactivated expression and suggesting that NS1 may act directly or indirectly with Sp1 and or elements of the general transcription machinery. Accordingly, we show that bacterially generated NS1 can interact strongly, independent of nucleic acid bridging, and most likely directly with Sp1 in vitro and can associate, in a nucleic acid-independent manner, with endogenous Sp1 as it exists in a complex transcriptionally active murine nuclear extract NS1 achieves the same fold activation of an isolated TATA element over its low basal level and can also be demonstrated to interact efficiently and specifically with the general transcription factors TBP and TFIIA (alpha, beta) in vitro.
Collapse
Affiliation(s)
- C Lorson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia 65212, USA
| | | | | | | |
Collapse
|
21
|
Storgaard T, Oleksiewicz M, Bloom ME, Ching B, Alexandersen S. Two parvoviruses that cause different diseases in mink have different transcription patterns: transcription analysis of mink enteritis virus and Aleutian mink disease parvovirus in the same cell line. J Virol 1997; 71:4990-6. [PMID: 9188563 PMCID: PMC191731 DOI: 10.1128/jvi.71.7.4990-4996.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The two parvoviruses of mink cause very different diseases. Mink enteritis virus (MEV) is associated with rapid, high-level viral replication and acute disease. In contrast, infection with Aleutian mink disease parvovirus (ADV) is associated with persistent, low-level viral replication and chronic severe immune dysregulation. In the present report, we have compared viral transcription in synchronized CRFK cells infected with either MEV or ADV using a nonradioactive RNase protection assay. The overall level of viral transcription was 20-fold higher in MEV- than in ADV-infected cells. Furthermore, MEV mRNA encoding structural proteins (MEV mRNA R3) was dominant throughout the infectious cycle, comprising approximately 80% of the total viral transcription products. In marked contrast, in ADV-infected cells, transcripts encoding nonstructural proteins (ADV mRNA R1 and R2) comprised more than 84% of the total transcripts at all times after infection, whereas ADV mRNA R3 comprised less than 16%. Thus, the ADV mRNA coding for structural proteins (ADV mRNA R3) was present at a level at least 100-fold lower than the corresponding MEV mRNA R3. These findings paralleled previous biochemical studies analyzing in vitro activities of the ADV and MEV promoters (J. Christensen, T. Storgaard, B. Viuff, B. Aasted, and S. Alexandersen, J. Virol. 67:1877-1886, 1993). The overall low levels of ADV mRNA and the paucity of the mRNA coding for ADV structural proteins may reflect an adaptation of the virus for low-level restricted infection.
Collapse
Affiliation(s)
- T Storgaard
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
22
|
Oleksiewicz MB, Alexandersen S. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus. J Virol 1997; 71:1386-96. [PMID: 8995664 PMCID: PMC191195 DOI: 10.1128/jvi.71.2.1386-1396.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We examined replication of the autonomous parvovirus Aleutian mink disease parvovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cycle arrest occurred exclusively in cells containing de novo-synthesized viral nonstructural (NS) proteins. Production of ADV NS proteins, indicative of ADV replication, was triggered during S-phase traverse. The NS+ cells that were generated during later parts of S phase did not undergo cytokinesis and formed a distinct population, termed population A. Formation of population A was not prevented by VM-26, indicating that these cells were arrested in late S or G2 phase. Cells in population A continued to support high-level ADV DNA replication and production of infectious virus after the normal S phase had ceased. A second, postmitotic, NS+ population (termed population B) arose in G0/G1, downstream of population A. Population B cells were unable to traverse S phase but did exhibit low-level DNA synthesis. Since the nature of this DNA synthesis was not examined, we cannot at present differentiate between G1 and early S arrest in population B. Cells that became NS+ during S phase entered population A, whereas population B cells apparently remained NS- during S phase and expressed high NS levels postmitosis in G0/G1. This suggested that population B resulted from leakage of cells with subthreshold levels of ADV products through the late S/G2 block and, consequently, that the binary pattern of ADV-induced cell cycle arrest may be governed merely by viral replication levels within a single S phase. Flow cytometric analysis of propidium iodide fluorescence and bromodeoxyuridine uptake showed that population A cells sustained significantly higher levels of DNA replication than population B cells during the ADV-induced cell cycle arrest. Therefore, the type of ADV-induced cell cycle arrest was not trivial and could have implications for subsequent viral replication in the target cell.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Department of Pharmacology and Pathobiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | |
Collapse
|
23
|
Corsini J, Afanasiev B, Maxwell IH, Carlson JO. Autonomous parvovirus and densovirus gene vectors. Adv Virus Res 1996; 47:303-51. [PMID: 8895835 DOI: 10.1016/s0065-3527(08)60738-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Corsini
- Department of Microbiology, Colorado State University, Fort Collins 80523, USA
| | | | | | | |
Collapse
|
24
|
Christensen J, Cotmore SF, Tattersall P. Minute virus of mice transcriptional activator protein NS1 binds directly to the transactivation region of the viral P38 promoter in a strictly ATP-dependent manner. J Virol 1995; 69:5422-30. [PMID: 7636987 PMCID: PMC189388 DOI: 10.1128/jvi.69.9.5422-5430.1995] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NS1 polypeptide of minute virus of mice (MVM) is a potent transcriptional activator of the MVM P38 promoter. The minimum region of this promoter required for transactivation has been identified and termed the transactivation region (tar). However, the function of tar and the biochemical steps involved in NS1-mediated transactivation are not well understood. Here we provide evidence that NS1 binds directly and specifically to tar in a strictly ATP-dependent manner. A DNA fragment containing tar was specifically coimmunoprecipitated with purified baculovirus-expressed MVM NS1, using antibodies directed against NS1 amino- or carboxy-terminal peptides. Using this immunoprecipitation assay, we found that the NS1-tar interaction was enhanced approximately 10-fold by ATP, but subsequent incubation at elevated temperatures in the presence, but not the absence, of MgCl2 caused rapid loss of tar binding. This finding suggests that the tar-NS1 complex has a short half-life under assay conditions which favor ATP hydrolysis. Specific binding was efficiently inhibited by self-ligated oligonucleotides containing the core DNA sequence (ACCA)3, but the same nonligated 20- and 21-mer oligonucleotides were unable to compete effectively, indicating that NS1 only binds to its cognate site when this site is presented on DNA fragments of sufficient size. DNase I footprinting experiments performed in the presence of gamma S-ATP revealed that NS1 protects a 43-bp sequence extending asymmetrically from the (ACCA)2 sequence toward the TATA box of the promoter. NS1 footprints obtained at other sites in the MVM genome were similarly large and asymmetric, all extending approximately 31 bp 5' from the core (ACCA)2-3 sequence. Surprisingly, no footprints were obtained in the absence of gamma S-ATP even under low-stringency binding conditions. However, ATP could be omitted from the reactions if NS1 was first incubated with antibodies directed against its 16-amino-acid carboxy-terminal peptide. Since these antibodies probably create intermolecular cross-links, this finding suggests that NS1 may only bind its cognate site efficiently, or perhaps at all, if the transactivator is first induced to form oligomers. From these data, we hypothesize that ATP binding may also induce NS1 to oligomerize and that such assembly is required before the protein can bind effectively to the tar sequence. The functional implications of the NS1-tar interaction will be discussed.
Collapse
Affiliation(s)
- J Christensen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
25
|
Cotmore SF, Christensen J, Nüesch JP, Tattersall P. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3. J Virol 1995; 69:1652-60. [PMID: 7853501 PMCID: PMC188764 DOI: 10.1128/jvi.69.3.1652-1660.1995] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.
Collapse
Affiliation(s)
- S F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
26
|
Christensen J, Pedersen M, Aasted B, Alexandersen S. Purification and characterization of the major nonstructural protein (NS-1) of Aleutian mink disease parvovirus. J Virol 1995; 69:1802-9. [PMID: 7853520 PMCID: PMC188788 DOI: 10.1128/jvi.69.3.1802-1809.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously described the expression of the major nonstructural protein (NS-1) of Aleutian mink disease parvovirus (ADV) in insect cells by using a baculovirus vector (J. Christensen, T. Storgaard, B. Bloch, S. Alexandersen, and B. Aasted, J. Virol. 67:229-238, 1993). To study its biochemical properties, ADV NS-1 was expressed in Sf9 insect cells and purified to apparent homogeneity with a combination of nuclear extraction, Zn2+ ion chromatography, and immunoaffinity chromatography on monoclonal antibodies. The purified protein showed ATP binding and ATPase- and ATP- or dATP-dependent helicase activity requiring either Mg2+ or Mn2+ as a cofactor. The ATPase activity of NS-1 was efficiently stimulated by single-stranded DNA and, to a lesser extent, double-stranded DNA. We also describe the expression, purification, and characterization of a mutant NS-1 protein, in which a lysine in the putative nucleotide binding consensus sequence of the molecule was replaced with serine. The mutated NS-1 was expressed at 10-fold higher levels than wild-type NS-1, but it exhibited no ATP binding. ATPase, or helicase activity. The availability of large amounts of purified functional NS-1 protein will facilitate studies of the biochemistry of ADV replication and gene regulation leading to disease in mink.
Collapse
Affiliation(s)
- J Christensen
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Legendre D, Rommelaere J. Targeting of promoters for trans activation by a carboxy-terminal domain of the NS-1 protein of the parvovirus minute virus of mice. J Virol 1994; 68:7974-85. [PMID: 7966588 PMCID: PMC237260 DOI: 10.1128/jvi.68.12.7974-7985.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NS-1 gene of the parvovirus minute virus of mice (MVM) (prototype strain, MVMp) was fused in phase with the sequence coding for the DNA-binding domain of the bacterial LexA repressor. The resulting chimeric protein, LexNS-1, was tested for its transcriptional activity by using various target promoters in which multiple LexA operator sequences had been introduced. Under these conditions, NS-1 was shown to stimulate gene expression driven by the modified long terminal repeat promoters (from the retroviruses mouse mammary tumor virus and Rous sarcoma virus) and P38 promoter (from MVMp), indicating that the NS-1 protein is a potent transcriptional activator. It is noteworthy that in the absence of LexA operator-mediated targeting, the genuine mouse mammary tumor virus and Rous sarcoma virus promoters were inhibited by NS-1. Together these data strongly suggest that NS-1 contains an activating region able to induce promoters with which this protein interacts but also to repress transcription from nonrecognized promoters by a squelching mechanism similar to that described for other activators. Deletion mutant analysis led to the identification of an NS-1 domain that exhibited an activating potential comparable to that of the whole polypeptide when fused to the DNA-binding region of LexA. This domain is localized in the carboxy-terminal part of NS-1 and corresponds to one of the two regions previously found to be responsible for toxicity. These results argue for the involvement of the regulatory functions of NS-1 in the cytopathic effect of this parvovirus product.
Collapse
Affiliation(s)
- D Legendre
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode St Genèse, Belgium
| | | |
Collapse
|
28
|
Gottschalck E, Alexandersen S, Storgaard T, Bloom ME, Aasted B. Sequence comparison of the non-structural genes of four different types of Aleutian mink disease parvovirus indicates an unusual degree of variability. Arch Virol 1994; 138:213-31. [PMID: 7998830 DOI: 10.1007/bf01379127] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present work shows that at least four different sequence types of Aleutian mink disease parvovirus (ADV) are present in ADV isolates from mink. We here report the nucleotide sequences of these four types of ADV from nucleotide 123 to 2208 (map unit 3 to 46). This part of the genome encodes three non-structural (NS) proteins of ADV. Comparison of the deduced amino acid sequences of these NS proteins showed that the ADV proteins are much less conserved than the NS proteins from other members of the autonomous group of parvoviruses. In general, we found that the middle region of the ADV NS-1 protein was relatively well conserved among the types, while both the amino- and carboxy-terminal ends of the protein had higher amino acid variability. Interestingly, the putative NS-3 protein from type 3 ADV is truncated in the carboxy-terminal end. The molecular evolutionary relationship among the four types of ADV was examined. This analysis, taken together with the unusually high degree of variability of the ADV types, indicates that the ADV infection in mink is likely to be an old infection compared to the other parvovirus infections or, alternatively, that ADV accumulates sequence changes much faster than other parvoviruses.
Collapse
Affiliation(s)
- E Gottschalck
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
29
|
Viuff B, Aasted B, Alexandersen S. Role of alveolar type II cells and of surfactant-associated protein C mRNA levels in the pathogenesis of respiratory distress in mink kits infected with Aleutian mink disease parvovirus. J Virol 1994; 68:2720-5. [PMID: 8139047 PMCID: PMC236749 DOI: 10.1128/jvi.68.4.2720-2725.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neonatal mink kits infected with Aleutian mink disease parvovirus (ADV) develop an acute interstitial pneumonia with clinical symptoms and pathological lesions that resemble those seen in preterm human infants with respiratory distress syndrome and in human adults with adult respiratory distress syndrome. We have previously suggested that ADV replicates in the alveolar type II epithelial cells of the lung. By using double in situ hybridization, with the simultaneous use of a probe to detect ADV replication and a probe to demonstrate alveolar type II cells, we now confirm this hypothesis. Furthermore, Northern (RNA) blot hybridization showed that the infection caused a significant decrease of surfactant-associated protein C mRNA produced by the alveolar type II cells. We therefore suggest that the severe clinical symptoms and pathological changes characterized by hyaline membrane formation observed in ADV-infected mink kits are caused by a dysfunction of alveolar surfactant similar to that observed in respiratory distress syndrome in preterm infants. However, in the infected mink kits the dysfunction is due to the replication of ADV in the lungs, whereas the dysfunction of surfactant in preterm infants is due to lung immaturity.
Collapse
Affiliation(s)
- B Viuff
- Department of Pharmacology and Pathobiology, Agricultural University of Copenhagen, Frederiksberg C, Denmark
| | | | | |
Collapse
|
30
|
Alexandersen S, Larsen S, Aasted B, Uttenthal A, Bloom ME, Hansen M. Acute interstitial pneumonia in mink kits inoculated with defined isolates of Aleutian mink disease parvovirus. Vet Pathol 1994; 31:216-28. [PMID: 8203085 DOI: 10.1177/030098589403100209] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study addressed the causal role of Aleutian mink disease parvovirus (ADV) in acute interstitial pneumonia in mink kits. All the examined isolates of ADV caused interstitial pneumonia in newborn kits, although the severity of disease and the mortality varied. These findings indicate that ADV is the direct causal agent of this disease in mink kits and that cofactors, which could have been present in the original ADV-K isolate, do not play a role. Acute interstitial pneumonia characterized by hypertrophy and hyperplasia of alveolar type II cells, intranuclear viral inclusions, interstitial edema, and hyaline membrane formation was experimentally reproduced in mink kits infected as newborns with five different isolates of ADV. Four hundred forty-nine newborn mink kits were included in the study, of which 247 were necropsied. The lesions caused by the different isolates were indistinguishable by histopathologic examination, but the incidence (50-100%) and severity (mortality of 30-100%, n = 218) of disease among the mink kits varied. Also, the content of ADV antigens in the lungs of infected kits varied among the groups. According to these features, the examined isolates could be placed in groups of high and low virulence. ADV-K, ADV-Utah I, and ADV-DK were in a highly virulent group producing a mortality of 90-100% (n = 110) in mink inoculated as newborns. ADV-GL and ADV-Pullman belonged to a group of low virulence, with an incidence of clinical disease of 50-70% and a mortality of approximately 30-50% (n = 118) in kits inoculated as newborns. The mortality in the control group receiving a mock inoculum was around 12% (n = 34). The period from infection to development of fatal disease varied from approximately 12 days for the highly virulent isolates up to around 20 days for the isolates of low virulence. The 107 mink kits that survived inoculation with ADV as newborns developed lesions typical of classical Aleutian disease irrespective of the ADV isolate used. The lesions consisted of chronic immune complex-mediated glomerulonephritis and infiltrations with mononuclear cells, including plasma cells in lung, liver, spleen, kidney, mesenteric lymph node, and intestine. Surviving kits also had hypertrophy of the bronchus-associated lymphoid tissue and focal subpleural, intraalveolar accumulations of large cells with foamy cytoplasm, so-called lipid pneumonia.
Collapse
Affiliation(s)
- S Alexandersen
- Laboratory of Molecular Pathobiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Alexandersen S, Storgaard T, Kamstrup N, Aasted B, Porter DD. Pathogenesis of Aleutian mink disease parvovirus infection: effects of suppression of antibody response on viral mRNA levels and on development of acute disease. J Virol 1994; 68:738-49. [PMID: 8289377 PMCID: PMC236510 DOI: 10.1128/jvi.68.2.738-749.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We suppressed the B-cell development and antibody response in mink by using treatment with polyclonal anti-immunoglobulin M (anti-IgM) to study the effects of antiviral antibodies on development of Aleutian mink disease parvovirus (ADV)-induced disease in more detail. Newborn mink kits were injected intraperitoneally with 1 mg of either anti-IgM or a control preparation three times a week for 30 to 34 days. At 21 days after birth, groups of mink kits were infected with the highly virulent United isolate of ADV. At selected time points, i.e., postinfection days 9, 13, 29, and 200, randomly chosen mink kits were sacrificed, and blood and tissues were collected for analyses. The efficacy of immunosuppressive treatment was monitored by electrophoretic techniques and flow cytometry. Effects of treatment on viral replication, on viral mRNA levels, and on development of acute or chronic disease were determined by histopathological, immunoelectrophoretic, and molecular hybridization techniques. Several interesting findings emerged from these studies. First, antiviral antibodies decreased ADV mRNA levels more than DNA replication. Second, suppression of B-cell development and antibody response in mink kits infected at 21 days of age resulted in production of viral inclusion bodies in alveolar type II cells. Some of these kits showed mild clinical signs of respiratory disease, and one kit died of respiratory distress; however, clinical signs were seen only after release of immunosuppression, suggesting that the production of antiviral antibodies, in combination with the massive amounts of free viral antigen present, somehow is involved in the induction of respiratory distress. It is suggested that the antiviral antibody response observed in mink older than approximately 14 days primarily, by a yet unknown mechanism, decreases ADV mRNA levels which, if severe enough, results in restricted levels of DNA replication and virion production. Furthermore, such a restricted ADV infection at low levels paves the way for a persistent infection leading to immunologically mediated disease. The potential mechanisms of antibody-mediated restriction of viral mRNA levels and mechanisms of disease induction are discussed.
Collapse
Affiliation(s)
- S Alexandersen
- Department of Pharmacology and Pathobiology, Royal Veterinary and Agricultural University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
32
|
Storgaard T, Christensen J, Aasted B, Alexandersen S. cis-acting sequences in the Aleutian mink disease parvovirus late promoter important for transcription: comparison to the canine parvovirus and minute virus of mice. J Virol 1993; 67:1887-95. [PMID: 8383216 PMCID: PMC240256 DOI: 10.1128/jvi.67.4.1887-1895.1993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We are currently investigating the regulation of transcription of the Aleutian mink disease parvovirus (ADV). ADV causes a chronic immune complex-mediated condition known as classical Aleutian disease, characterized by slow viral replication. This slow replication is an intrinsic property of ADV and distinguishes it from the more prototypic parvoviruses such as minute virus of mice (MVM) and canine parvovirus (CPV). We have previously suggested a role for the weak ADV promoters in the slow replication and thereby the absence of acute cytopathology and instead establishment of persistent ADV infection with progressive immune complex-mediated chronic lesions. In this study, we have mapped the cis-acting sequences around the ADV P36 promoter responsible for both constitutive transcription and transactivation mediated by the nonstructural protein 1. The mapping was performed by using endpoint deletions of the ADV P36 promoter and by making chimeras between the ADV P36 and MVM P38 promoters. We found the weak constitutive activity of the ADV P36 promoter to be caused by suboptimal promoter proximal sequences, while the low level of transactivation was caused mainly by an upstream region including sequences with homology to the transactivation responsive element (tar) of the H-1 parvovirus (M.-L. Gu, F.-X. Chen, and S. L. Rhode, Virology 187:10-17, 1992). We also found the corresponding regions in the MVM and CPV P38 promoters to be important for transactivation of these promoters by making 5' deletions of the promoter region. In addition, it was found that MVM tar-like and upstream sequences could transfer high nonstructural protein 1 responsiveness to the ADV promoter even though the distance between the tar-like element and the TATA box was significantly changed. On the basis of comparative data for ADV, MVM, CPV, and H-1, a new clustered motif (TTGGTT) is proposed to be the responsive cis-acting element for transactivation. Homology comparison of the specific transcriptional elements of the ADV P36, MVM P38, and CPV P38 promoters suggests that few, but crucial, changes in the ADV P36 promoter and upstream region are responsible for the weak constitutive activity and low level of transactivation of the ADV P36 promoter.
Collapse
Affiliation(s)
- T Storgaard
- Department of Pharmacology and Pathobiology, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | |
Collapse
|