1
|
Schreiber A, Oberberg N, Ambrosy B, Rodner F, Kumar S, Caliskan DM, Brunotte L, Beer M, Ludwig S. Influenza H5Nx viruses are susceptible to MEK1/2 inhibition by zapnometinib. Emerg Microbes Infect 2025; 14:2471022. [PMID: 39976482 PMCID: PMC11915740 DOI: 10.1080/22221751.2025.2471022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 02/18/2025] [Indexed: 03/18/2025]
Abstract
Highly pathogenic avian influenza A viruses (HPAIV) pose a significant threat to both animal and human health. These viruses have the potential to cause severe respiratory and systemic infections in birds and several mammalian species. The recent global outbreak of the H5N1 clade 2.3.4.4b spread in wild and domestic birds is now considered to be a panzoonosis. Spillover events in dairy cattle farms in the U.S. have highlighted the urgent need for effective antiviral therapies, especially in view of human infections. This study investigates the selective MEK1/2 inhibitor zapnometinib (ZMN) as a potential antiviral agent against HPAIVs. Our in vitro experiments demonstrate that ZMN significantly impairs viral replication across multiple HPAIV strains, including H5N1 clade 2.3.4.4b in cell lines and primary bronchial epithelial cells. The mechanism of action is based on the nuclear retention of newly produced viral ribonucleoprotein complexes (vRNP), when the MEK/ERK/RSK1 kinase cascade is inhibited. We furthermore could show, that ZMN not only acts antiviral in a standalone treatment but has synergistic potential when used in combination with direct-acting antivirals like oseltamivir or baloxavir. Therefore, ZMN treatment offers a promising strategy for future antiviral development.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Nicole Oberberg
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Benjamin Ambrosy
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Franziska Rodner
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Sriram Kumar
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Linda Brunotte
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
de Bruin ACM, Lamers MM, Haagmans BL, Leijten LM, Fouchier RAM, Richard M. Long-term culture of chicken tracheal organoids for the purpose of avian influenza virus research. Virol J 2025; 22:99. [PMID: 40234888 PMCID: PMC11998437 DOI: 10.1186/s12985-025-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
There is an increasing need for reproducible long-term in vitro primary cell culture systems that are representative of the avian respiratory tract to study pathogens like highly pathogenic avian influenza viruses (HPAIVs), which threaten poultry, wildlife, and human health. Self-renewing organoid cultures allow for long-term culture, due to the presence of tissue-resident stem cells, and can approximate the in vivo cellular diversity and organization of tissues. Efforts to establish avian organoid cultures have been limited to the intestinal tract. Here, we describe the isolation and long-term culture of chicken tracheal organoids (CTOs). The CTO cultures were passaged for three to four months and cryopreserved at different stages. Mucociliary differentiation of CTOs was promoted by culture at air-liquid-interface, after which the pseudostratified epithelial cell layer of the avian trachea was recapitulated, including ciliated, goblet, and basal cells. Inoculation of CTO-derived 2D cultures with low pathogenic avian influenza viruses (LPAIVs) and HPAIVs showed that the appropriate receptors, as confirmed by virus histochemistry, and proteases to sustain multi-cycle replication of LPAIVs were expressed and that HPAIVs preferentially disseminated to the endothelium of epithelial/endothelial co-culture systems. Taken together, CTOs represent a useful tool for research on the avian respiratory tract, and their application will generate new insights into host-pathogen interactions, including HPAIV tropism.
Collapse
Affiliation(s)
- Anja C M de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Virology, Medical University Innsbruck, Innsbruck, Austria
| | - Mart M Lamers
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lonneke M Leijten
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Kwon T, Artiaga BL, McDowell CD, Whitworth KM, Wells KD, Prather RS, Delhon G, Cigan M, White SN, Retallick J, Gaudreault NN, Morozov I, Richt JA. Gene editing of pigs to control influenza A virus infections. Emerg Microbes Infect 2024; 13:2387449. [PMID: 39083026 PMCID: PMC11346336 DOI: 10.1080/22221751.2024.2387449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Proteolytic activation of the haemagglutinin (HA) glycoprotein by host cellular proteases is pivotal for influenza A virus (IAV) infectivity. Highly pathogenic avian influenza viruses possess the multibasic cleavage site of the HA which is cleaved by ubiquitous proteases, such as furin; in contrast, the monobasic HA motif is recognized and activated by trypsin-like proteases, such as the transmembrane serine protease 2 (TMPRSS2). Here, we aimed to determine the effects of TMPRSS2 on the replication of pandemic H1N1 and H3N2 subtype IAVs in the natural host, the pig. The use of the CRISPR/Cas 9 system led to the establishment of homozygous gene edited (GE) TMPRSS2 knockout (KO) pigs. Delayed IAV replication was demonstrated in primary respiratory cells of KO pigs in vitro. IAV infection in vivo resulted in a significant reduction of virus shedding in the upper respiratory tract, and lower virus titers and pathological lesions in the lower respiratory tract of TMPRSS2 KO pigs as compared to wild-type pigs. Our findings support the commercial use of GE pigs to mitigate influenza A virus infection in pigs, as an alternative approach to prevent zoonotic influenza A transmissions from pigs to humans.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bianca L. Artiaga
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Kristin M. Whitworth
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Kevin D. Wells
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Randall S. Prather
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gustavo Delhon
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | - Jamie Retallick
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
4
|
Spronken MI, Funk M, Gultyaev AP, de Bruin ACM, Fouchier RAM, Richard M. Nucleotide sequence as key determinant driving insertions at influenza A virus hemagglutinin cleavage sites. NPJ VIRUSES 2024; 2:17. [PMID: 40295814 PMCID: PMC11721075 DOI: 10.1038/s44298-024-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/14/2024] [Indexed: 04/30/2025]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) emerge from H5 and H7 low pathogenic avian influenza viruses (LPAIVs), most frequently upon insertions of nucleotides coding for basic amino acids at the cleavage site (CS) of the hemagglutinin (HA). The exact molecular mechanism(s) underlying this genetic change and reasons underlying the restriction to H5 and H7 viruses remain unknown. Here, we developed a novel experimental system based on frame repair through insertions or deletions (indels) of HAs with single nucleotide deletions. Indels were readily detected in a consensus H5 LPAIV CS at low frequency, which was increased upon the introduction of only one substitution leading to a longer stretch of adenines at the CS. In contrast, we only detected indels in H6 when multiple nucleotide substitutions were introduced. These data show that nucleotide sequence is a key determinant of insertions in the HA CS, and reveal novel insights about the subtype-specificity of HPAIV emergence.
Collapse
Affiliation(s)
- Monique I Spronken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Anja C M de Bruin
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Ospina-Jimenez AF, Gomez AP, Osorio-Zambrano WF, Alvarez-Munoz S, Ramirez-Nieto GC. Sequence-based epitope mapping of high pathogenicity avian influenza H5 clade 2.3.4.4b in Latin America. Front Vet Sci 2024; 11:1347509. [PMID: 38746927 PMCID: PMC11091830 DOI: 10.3389/fvets.2024.1347509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 01/06/2025] Open
Abstract
High Pathogenicity Avian Influenza (HPAI) poses a significant threat to public and animal health. Clade 2.3.4.4b recently emerged from the Eastern hemisphere and disseminated globally, reaching the Latin American (LATAM) region in late 2022 for the first time. HPAI in LATAM has resulted in massive mortalities and culling of poultry and wild birds, causing infection in mammals and humans. Despite its meaningful impact in the region, only occasional evidence about the genetic and epitope characteristics of the introduced HPAI is reported. Hence, this study seeks to phylogenetically characterize the molecular features and the source of HPAI in LATAM by evaluating potential antigenic variations. For such a purpose, we analyzed 302 whole genome sequences. All Latin American viruses are descendants of the 2.3.4.4b clade of the European H5N1 subtype. According to genomic constellations deriving from European and American reassortments, the identification of three major subtypes and eight sub-genotypes was achievable. Based on the variation of antigenic motifs at the HA protein in LATAM, we detected three potential antigenic variants, indicating the HA-C group as the dominant variant. This study decidedly contributes to unraveling the origin of the 2.3.4.4b clade in LATAM, its geographic dissemination, and evolutionary dynamics within Latin American countries. These findings offer useful information for public health interventions and surveillance initiatives planned to prevent and manage the transmission of avian influenza viruses.
Collapse
Affiliation(s)
| | | | | | | | - Gloria C. Ramirez-Nieto
- Microbiology and Epidemiology Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Graziosi G, Lupini C, Gobbo F, Zecchin B, Quaglia G, Pedrazzoli S, Lizzi G, Dosa G, Martini G, Terregino C, Catelli E. Genetic Diversity of Avian Influenza Viruses Detected in Waterbirds in Northeast Italy Using Two Different Sampling Strategies. Animals (Basel) 2024; 14:1018. [PMID: 38612257 PMCID: PMC11010841 DOI: 10.3390/ani14071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian influenza viruses (AIVs), which circulate endemically in wild aquatic birds, pose a significant threat to poultry and raise concerns for their zoonotic potential. From August 2021 to April 2022, a multi-site cross-sectional study involving active AIV epidemiological monitoring was conducted in wetlands of the Emilia-Romagna region, northern Italy, adjacent to densely populated poultry areas. A total of 129 cloacal swab samples (CSs) and 407 avian faecal droppings samples (FDs) were collected, with 7 CSs (5.4%) and 4 FDs (1%) testing positive for the AIV matrix gene through rRT-PCR. A COI-barcoding protocol was applied to recognize the species of origin of AIV-positive FDs. Multiple low-pathogenic AIV subtypes were identified, and five of these were isolated, including an H5N3, an H1N1, and three H9N2 in wild ducks. Following whole-genome sequencing, phylogenetic analyses of the hereby obtained strains showed close genetic relationships with AIVs detected in countries along the Black Sea/Mediterranean migratory flyway. Notably, none of the analyzed gene segments were genetically related to HPAI H5N1 viruses of clade 2.3.4.4b isolated from Italian poultry during the concurrent 2021-2022 epidemic. Overall, the detected AIV genetic diversity emphasizes the necessity for ongoing monitoring in wild hosts using diverse sampling strategies and whole-genome sequencing.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Bianca Zecchin
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Gabriele Lizzi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), 40026 Imola, BO, Italy; (G.D.); (G.M.)
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), 40026 Imola, BO, Italy; (G.D.); (G.M.)
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| |
Collapse
|
7
|
Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Baldinelli F, Delacourt R, Georganas A, Kohnle L. Avian influenza overview December 2023-March 2024. EFSA J 2024; 22:e8754. [PMID: 38550271 PMCID: PMC10977096 DOI: 10.2903/j.efsa.2024.8754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.
Collapse
|
8
|
Elbohy OA, Iqbal M, Daly JM, Dunham SP. Development of Virus-like Particle Plant-Based Vaccines against Avian H5 and H9 Influenza A Viruses. Vet Sci 2024; 11:93. [PMID: 38393111 PMCID: PMC10891754 DOI: 10.3390/vetsci11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza A virus (AIV) is a significant cause of mortality in poultry, causing substantial economic loss, particularly in developing countries, and has zoonotic potential. For example, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been circulating in Egypt for around two decades. In the last decade, H5N1 viruses of clade 2.2.1 have been succeeded by the antigenically distinct H5N8 clade 2.3.4.4b viruses. Furthermore, H9N2 viruses co-circulate with the H5N8 viruses in Egyptian poultry. It is widely recognised that effective vaccination against IAV requires a close antigenic match between the vaccine and viruses circulating in the field. Therefore, approaches to develop cost-effective vaccines that can be rapidly adapted to local virus strains are required for developing countries such as Egypt. In this project, the haemagglutinin (HA) proteins of Egyptian H5 and H9 viruses were expressed by transient transfection of plants (Nicotiana benthamiana). The formation of virus-like particles (VLPs) was confirmed by transmission electron microscopy. Mice were immunised with four doses of either H5 or H9 VLPs with adjuvant. Antibody and cellular immune responses were measured against the corresponding recombinant protein using ELISA and enzyme-linked immunosorbent assay (ELISpot), respectively. Chickens were immunised with one dose of H5 VLPs, eliciting HA-specific antibodies measured by ELISA and a pseudotyped virus neutralisation test using a heterologous H5 HA. In conclusion, plant-based VLP vaccines have potential for producing an effective vaccine candidate within a short time at a relatively low cost.
Collapse
Affiliation(s)
- Ola A Elbohy
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Munir Iqbal
- Avian Influenza Group and Newcastle Disease, The Pirbright Institute, Woking GU24 0NF, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Stephen P Dunham
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
9
|
de Bruin ACM, Spronken MI, Kok A, Rosu ME, de Meulder D, van Nieuwkoop S, Lexmond P, Funk M, Leijten LM, Bestebroer TM, Herfst S, van Riel D, Fouchier RAM, Richard M. Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by intrahost selection differences between chickens and ducks. PLoS Pathog 2024; 20:e1011942. [PMID: 38408092 PMCID: PMC10919841 DOI: 10.1371/journal.ppat.1011942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/07/2024] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lonneke M. Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Kwon T, Artiaga BL, McDowell CD, Whitworth KM, Wells KD, Prather RS, Delhon G, Cigan M, White SN, Retallick J, Gaudreault NN, Morozov I, Richt JA. Gene editing of pigs to control influenza A virus infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575771. [PMID: 38293027 PMCID: PMC10827075 DOI: 10.1101/2024.01.15.575771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Proteolytic activation of the hemagglutinin (HA) glycoprotein by host cellular proteases is pivotal for influenza A virus (IAV) infectivity. Highly pathogenic avian influenza viruses possess the multibasic cleavage site of the HA which is cleaved by ubiquitous proteases, such as furin; in contrast, the monobasic HA motif is recognized and activated by trypsin-like proteases, such as the transmembrane serine protease 2 (TMPRSS2). Here, we aimed to determine the effects of TMPRSS2 on the replication of pandemic H1N1 and H3N2 subtype IAVs in the natural host, the pig. The use of the CRISPR/Cas 9 system led to the establishment of homozygous gene edited (GE) TMPRSS2 knockout (KO) pigs. Delayed IAV replication was demonstrated in primary respiratory cells of KO pigs in vitro. IAV infection in vivo resulted in significant reduction of virus shedding in the upper respiratory tract, and lower virus titers and pathological lesions in the lower respiratory tract of TMPRSS2 KO pigs as compared to WT pigs. Our findings could support the commercial use of GE pigs to minimize (i) the economic losses caused by IAV infection in pigs, and (ii) the emergence of novel IAVs with pandemic potential through genetic reassortment in the "mixing vessel", the pig.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Bianca L. Artiaga
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin M. Whitworth
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Kevin D. Wells
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Gustavo Delhon
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | - Jamie Retallick
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
11
|
Li J, Takeda M, Imahatakenaka M, Ikeda M. Identification of dihydroorotate dehydrogenase inhibitor, vidofludimus, as a potent and novel inhibitor for influenza virus. J Med Virol 2024; 96:e29372. [PMID: 38235544 DOI: 10.1002/jmv.29372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 μM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.
Collapse
Affiliation(s)
- Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Midori Takeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mikiko Imahatakenaka
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Hassan MM, Dutta P, Islam MM, Ahaduzzaman M, Chakma S, Islam A, Magalhaes RJS. The One Health Epidemiology of Avian Influenza Infection in Bangladesh: Lessons Learned from the Past 15 Years. Transbound Emerg Dis 2023; 2023:6981327. [PMID: 40303708 PMCID: PMC12017047 DOI: 10.1155/2023/6981327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2025]
Abstract
Avian influenza viruses (AIVs) are significant transboundary zoonotic pathogens that concern both animal and human. Since the first report of H5N1 AIV in Bangladesh in early 2007, it resulted in numerous outbreaks across the country, hindering the sustainable growth of the poultry industry through economic losses in different production systems (commercial and backyard). Highly pathogenic avian influenza (HPAI) virus and low pathogenic avian influenza (LPAI) virus are currently cocirculating and causing infection in poultry sectors in an endemic manner in Bangladesh as well as in wild bird species. The introduction of multiple clades of H5N1 in different poultry species and the reassortment of AIVs with different patterns of infections have complicated the epidemiological situation for control and created conditions to increase the virulence of the virus, host range, and potential zoonotic transmission. The risk of viral transmission at the human-poultry interface is increasing over time due to inadequate surveillance and early detection strategies and practices, ineffective biosecurity practices among poultry raisers, and the complex supply chains of backyard and commercial poultry and live bird market (LBM) systems. Improving AIV surveillance in poultry flocks and LBMs, vaccination, biosecurity, and awareness among poultry professionals is beneficial to controlling the disease burden in the poultry sector. However, human cases of AIV related to poultry production and marketing chain in Bangladesh suggest a One Health approach engaging various stakeholders from the public and private would be a better option for successfully controlling avian influenza outbreaks in Bangladesh. This review of literature presents the comprehensive overview of AIV infection status in Bangladesh, including a description of pathways for zoonotic transmission at different epidemiological interfaces, the genetic evolution of the virus, and the need for improvement of disease control strategies incorporated with early detection, application of effective vaccines, increases the proper biosecurity practices and improvement of awareness among the poultry raisers, traders and consumers using a One Health approach.
Collapse
Affiliation(s)
- Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Pronesh Dutta
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
| | - Md. Ahaduzzaman
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Shovon Chakma
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Ariful Islam
- EcoHealth Alliance, NY 10018, New York, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Ricardo J. Soares Magalhaes
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
13
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Conserved Expression and Functionality of Furin between Chickens and Ducks as an Activating Protease of Highly Pathogenic Avian Influenza Virus Hemagglutinins. Microbiol Spectr 2023; 11:e0460222. [PMID: 36916982 PMCID: PMC10100678 DOI: 10.1128/spectrum.04602-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) typically emerge from low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes upon spillover from wild aquatic birds into poultry. The conversion from LPAIV to HPAIV is characterized by the acquisition of a multibasic cleavage site (MBCS) at the proteolytic cleavage site in the viral binding and fusion protein, hemagglutinin (HA), resulting in cleavage and activation of HA by ubiquitously expressed furin-like proteases. The ensuing HPAIVs disseminate systemically in gallinaceous poultry, are endotheliotropic, and cause hemorrhagic disease with high mortality. HPAIV infections in wild aquatic birds are generally milder, often asymptomatic, and generally not associated with systemic dissemination nor endotheliotropic. As MBCS cleavage by host proteases is the main virulence determinant of HPAIVs in poultry, we set out to determine whether cleavage of HPAIV HA by host proteases might influence the observed species-specific pathogenesis and tropism. Here, we sequenced, cloned, and characterized the expression and functionality of duck furin. The furin sequence was strongly conserved between chickens and ducks, and duck furin cleaved HPAIV and tetrabasic HA in an overexpression system, confirming its functionality. Furin was expressed ubiquitously and to similar extents in duck and chicken tissues, including in primary duck endothelial cells, which sustained multicycle replication of H5N1 HPAIV but not LPAIVs. In conclusion, differences in furin-like protease biology between wild aquatic birds and gallinaceous poultry are unlikely to largely determine the stark differences observed in species-specific pathogenesis of HPAIVs. IMPORTANCE HPAIV outbreaks are a global concern due to the health risks for poultry, wildlife, and humans and their major economic impact. The number of LPAIV-to-HPAIV conversions, which is associated with spillover from wild birds to poultry, has been increasing over recent decades. Furthermore, H5 HPAIVs from the A/goose/Guangdong/1/96 lineage have been circulating in migratory birds, causing increasingly frequent epizootics in poultry and wild birds. Milder symptoms in migratory birds allow for dispersion of HPAIVs over long distances, justifying the importance of understanding the pathogenesis of HPAIVs in wild birds. Here, we examined whether host proteases are a likely candidate to explain some differences in the degree of HPAIV systemic dissemination between avian species. This is the first report to show that furin function and expression is comparable between chickens and ducks, which renders the hypothesis unlikely that furin-like protease differences influence the HPAIV species-specific pathogenesis and tropism.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Van Borm S, Boseret G, Dellicour S, Steensels M, Roupie V, Vandenbussche F, Mathijs E, Vilain A, Driesen M, Dispas M, Delcloo AW, Lemey P, Mertens I, Gilbert M, Lambrecht B, van den Berg T. Combined Phylogeographic Analyses and Epidemiologic Contact Tracing to Characterize Atypically Pathogenic Avian Influenza (H3N1) Epidemic, Belgium, 2019. Emerg Infect Dis 2023; 29:351-359. [PMID: 36692362 PMCID: PMC9881769 DOI: 10.3201/eid2902.220765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The high economic impact and zoonotic potential of avian influenza call for detailed investigations of dispersal dynamics of epidemics. We integrated phylogeographic and epidemiologic analyses to investigate the dynamics of a low pathogenicity avian influenza (H3N1) epidemic that occurred in Belgium during 2019. Virus genomes from 104 clinical samples originating from 85% of affected farms were sequenced. A spatially explicit phylogeographic analysis confirmed a dominating northeast to southwest dispersal direction and a long-distance dispersal event linked to direct live animal transportation between farms. Spatiotemporal clustering, transport, and social contacts strongly correlated with the phylogeographic pattern of the epidemic. We detected only a limited association between wind direction and direction of viral lineage dispersal. Our results highlight the multifactorial nature of avian influenza epidemics and illustrate the use of genomic analyses of virus dispersal to complement epidemiologic and environmental data, improve knowledge of avian influenza epidemiologic dynamics, and enhance control strategies.
Collapse
|
15
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
16
|
de Vries EM, Cogan NOI, Gubala AJ, Mee PT, O'Riley KJ, Rodoni BC, Lynch SE. Rapid, in-field deployable, avian influenza virus haemagglutinin characterisation tool using MinION technology. Sci Rep 2022; 12:11886. [PMID: 35831457 PMCID: PMC9279447 DOI: 10.1038/s41598-022-16048-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.
Collapse
Affiliation(s)
- Ellen M de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aneta J Gubala
- Land Division, Defence Science & Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Peter T Mee
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Kim J O'Riley
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Stacey E Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
17
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
18
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
19
|
El-Shesheny R, Turner JCM, Walker D, Franks J, Seiler P, Barman S, Feeroz MM, Hasan MK, Akhtar S, Mukherjee N, Kercher L, McKenzie P, Webster RG, Webby RJ. Detection of a Novel Reassortant H9N9 Avian Influenza Virus in Free-Range Ducks in Bangladesh. Viruses 2021; 13:v13122357. [PMID: 34960626 PMCID: PMC8704232 DOI: 10.3390/v13122357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 01/10/2023] Open
Abstract
Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Jasmine C. M. Turner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - David Walker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - John Franks
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Mohammed M. Feeroz
- Department of Zoology, Jahangirnagar University, Savar 1342, Bangladesh; (M.M.F.); (M.K.H.); (S.A.)
| | - Md Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar 1342, Bangladesh; (M.M.F.); (M.K.H.); (S.A.)
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Savar 1342, Bangladesh; (M.M.F.); (M.K.H.); (S.A.)
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
- Correspondence:
| |
Collapse
|
20
|
Zhao J, He W, Lu M, He H, Lai A. Emergence and Characterization of a Novel Reassortant Canine Influenza Virus Isolated from Cats. Pathogens 2021; 10:pathogens10101320. [PMID: 34684269 PMCID: PMC8539923 DOI: 10.3390/pathogens10101320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
Cats are susceptible to a wide range of influenza A viruses (IAV). Furthermore, cats can serve as an intermediate host, and transfer avian influenza virus (AIV) H7N2 to a veterinarian. In this report, a novel reassortant influenza virus, designated A/feline/Jiangsu/HWT/2017 (H3N2), and abbreviated as FIV-HWT-2017, was isolated from nasal swab of a symptomatic cat in Jiangsu province, China. Sequence analysis indicated that, whilst the other seven genes were most similar to the avian-origin canine influenza viruses (CIV H3N2) isolated in China, the NS gene was more closely related to the circulating human influenza virus (H3N2) in the region. Therefore, FIV-HWT-2017 is a reassortant virus. In addition, some mutations were identified, and they were similar to a distinctive CIV H3N2 clade. Whether these cats were infected with the reassortant virus was unknown, however, this random isolation of a reassortant virus indicated that domestic or stray cats were "mixing vessel" for IAV cannot be ruled out. An enhanced surveillance for novel influenza virus should include pet and stray cats.
Collapse
Affiliation(s)
- Jin Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.H.); (M.L.)
- Correspondence: (J.Z.); (H.H.); (A.L.)
| | - Wanting He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.H.); (M.L.)
| | - Meng Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.H.); (M.L.)
| | - Haijian He
- Agricultural College, Jinhua Polytechnic, Jinhua 321007, China
- Correspondence: (J.Z.); (H.H.); (A.L.)
| | - Alexander Lai
- School of STEM, Kentucky State University, Frankfort, KY 40601, USA
- Correspondence: (J.Z.); (H.H.); (A.L.)
| |
Collapse
|
21
|
Steensels M, Gelaude P, Van Borm S, Van Den Berg T, Cargnel M, Roupie V, Rauw F, Lambrecht B. Atypical Pathogenicity of Avian Influenza (H3N1) Virus Involved in Outbreak, Belgium, 2019. Emerg Infect Dis 2021; 26:1899-1903. [PMID: 32687049 PMCID: PMC7392414 DOI: 10.3201/eid2608.191338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In 2019, an outbreak of avian influenza (H3N1) virus infection occurred among commercial poultry in Belgium. Full-genome phylogenetic analysis indicated a wild bird origin rather than recent circulation among poultry. Although classified as a nonnotifiable avian influenza virus, it was associated with reproductive tropism and substantial mortality in the field.
Collapse
|
22
|
Neumann G. Influenza Reverse Genetics-Historical Perspective. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038547. [PMID: 31964649 DOI: 10.1101/cshperspect.a038547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The generation of wild-type, mutant, and reassortant influenza viruses from viral cDNAs (reverse genetics) is now a basic molecular virology technique in many influenza virus laboratories. Here, I describe the original RNA polymerase I reverse genetics system and the modifications that have been developed in past years. Together, these technologies have made possible many advances in basic and applied influenza virology that would not have been otherwise attainable, including the revival and study of extinct influenza viruses, the rapid characterization of emerging influenza viruses, the generation of conventional influenza vaccines, and the development of novel influenza vaccines.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
23
|
Lee DH, Criado MF, Swayne DE. Pathobiological Origins and Evolutionary History of Highly Pathogenic Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:a038679. [PMID: 31964650 PMCID: PMC7849344 DOI: 10.1101/cshperspect.a038679] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High-pathogenicity avian influenza (HPAI) viruses have arisen from low-pathogenicity avian influenza (LPAI) viruses via changes in the hemagglutinin proteolytic cleavage site, which include mutation of multiple nonbasic to basic amino acids, duplication of basic amino acids, or recombination with insertion of cellular or viral amino acids. Between 1959 and 2019, a total of 42 natural, independent H5 (n = 15) and H7 (n = 27) LPAI to HPAI virus conversion events have occurred in Europe (n = 16), North America (n = 9), Oceania (n = 7), Asia (n = 5), Africa (n = 4), and South America (n = 1). Thirty-eight of these HPAI outbreaks were limited in the number of poultry premises affected and were eradicated. However, poultry outbreaks caused by A/goose/Guangdong/1/1996 (H5Nx), Mexican H7N3, and Chinese H7N9 HPAI lineages have continued. Active surveillance and molecular detection and characterization efforts will provide the best opportunity for early detection and eradication from domestic birds.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Miria Ferreira Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA
| |
Collapse
|
24
|
Escalera-Zamudio M, Golden M, Gutiérrez B, Thézé J, Keown JR, Carrique L, Bowden TA, Pybus OG. Parallel evolution in the emergence of highly pathogenic avian influenza A viruses. Nat Commun 2020; 11:5511. [PMID: 33139731 PMCID: PMC7608645 DOI: 10.1038/s41467-020-19364-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/12/2020] [Indexed: 01/30/2023] Open
Abstract
Parallel molecular evolution and adaptation are important phenomena commonly observed in viruses. Here, we exploit parallel molecular evolution to understand virulence evolution in avian influenza viruses (AIV). Highly-pathogenic AIVs evolve independently from low-pathogenic ancestors via acquisition of polybasic cleavage sites. Why some AIV lineages but not others evolve in this way is unknown. We hypothesise that the parallel emergence of highly-pathogenic AIV may be facilitated by permissive or compensatory mutations occurring across the viral genome. We combine phylogenetic, statistical and structural approaches to discover parallel mutations in AIV genomes associated with the highly-pathogenic phenotype. Parallel mutations were screened using a statistical test of mutation-phenotype association and further evaluated in the contexts of positive selection and protein structure. Our resulting mutational panel may help to reveal new links between virulence evolution and other traits, and raises the possibility of predicting aspects of AIV evolution.
Collapse
Affiliation(s)
| | - Michael Golden
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK
| | | | - Julien Thézé
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK
| | - Jeremy Russell Keown
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
| |
Collapse
|
25
|
The Effects of Genetic Variation on H7N9 Avian Influenza Virus Pathogenicity. Viruses 2020; 12:v12111220. [PMID: 33126529 PMCID: PMC7693985 DOI: 10.3390/v12111220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since the H7N9 avian influenza virus emerged in China in 2013, there have been five seasonal waves which have shown human infections and caused high fatality rates in infected patients. A multibasic amino acid insertion seen in the HA of current H7N9 viruses occurred through natural evolution and reassortment, and created a high pathogenicity avian influenza (HPAI) virus from the low pathogenicity avian influenza (LPAI) in 2017, and significantly increased pathogenicity in poultry, resulting in widespread HPAI H7N9 in poultry, which along with LPAI H7N9, contributed to the severe fifth seasonal wave in China. H7N9 is a novel reassorted virus from three different subtypes of influenza A viruses (IAVs) which displays a great potential threat to public health and the poultry industry. To date, no sustained human-to-human transmission has been recorded by the WHO. However, the high ability of evolutionary adaptation of H7N9 and lack of pre-existing immunity in humans heightens the pandemic potential. Changes in IAVs proteins can affect the viral transmissibility, receptor binding specificity, pathogenicity, and virulence. The multibasic amino acid insertion, mutations in hemagglutinin, deletion and mutations in neuraminidase, and mutations in PB2 contribute to different virological characteristics. This review summarized the latest research evidence to describe the impacts of viral protein changes in viral adaptation and pathogenicity of H7N9, aiming to provide better insights for developing and enhancing early warning or intervention strategies with the goal of preventing highly pathogenic IAVs circulation in live poultry, and transmission to humans.
Collapse
|
26
|
Seekings AH, Howard WA, Nuñéz A, Slomka MJ, Banyard AC, Hicks D, Ellis RJ, Nuñéz-García J, Hartgroves LC, Barclay WS, Banks J, Brown IH. The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses 2020; 12:v12090920. [PMID: 32839404 PMCID: PMC7552004 DOI: 10.3390/v12090920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Outbreaks of highly pathogenic avian influenza virus (HPAIV) often result in the infection of millions of poultry, causing up to 100% mortality. HPAIV has been shown to emerge from low pathogenicity avian influenza virus (LPAIV) in field outbreaks. Direct evidence for the emergence of H7N7 HPAIV from a LPAIV precursor with a rare di-basic cleavage site (DBCS) was identified in the UK in 2008. The DBCS contained an additional basic amino acid compared to commonly circulating LPAIVs that harbor a single-basic amino acid at the cleavage site (SBCS). Using reverse genetics, outbreak HPAIVs were rescued with a DBCS (H7N7DB), as seen in the LPAIV precursor or an SBCS representative of common H7 LPAIVs (H7N7SB). Passage of H7N7DB in chicken embryo tissues showed spontaneous evolution to a HPAIV. In contrast, deep sequencing of extracts from embryo tissues in which H7N7SB was serially passaged showed retention of the LPAIV genotype. Thus, in chicken embryos, an H7N7 virus containing a DBCS appears naturally unstable, enabling rapid evolution to HPAIV. Evaluation in embryo tissue presents a useful approach to study AIV evolution and allows a laboratory-based dissection of molecular mechanisms behind the emergence of HPAIV.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- Correspondence:
| | - Wendy A. Howard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Alejandro Nuñéz
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Richard J. Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | - Javier Nuñéz-García
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | | | - Wendy S. Barclay
- Virology Department, Imperial College, London W2 1NY, UK; (L.C.H.); (W.S.B.)
| | - Jill Banks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| |
Collapse
|
27
|
Outbreak of highly pathogenic avian influenza in Ghana, 2015: degree of losses and outcomes of time-course outbreak management. Epidemiol Infect 2020; 148:e45. [PMID: 32063239 PMCID: PMC7058832 DOI: 10.1017/s095026882000045x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This retrospective study highlights the degree of losses and time-course through which the 2015 highly pathogenic avian influenza (HPAI) outbreaks in Ghana were managed. A total of 102 760 birds from 35 farms across five regions in Ghana included in this study were affected. Out of this, 89.3% was from the Greater Accra region. Majority of the birds were culled (94.2%). Adult layers were most affected and destroyed (64.0%), followed by broilers (13.7%). Event initiation to reporting averaged 7.7 ± 1.3 days (range: 1-30 days). Laboratory confirmation to depopulation of birds averaged 2.2 ± 0.5 (0-15) days while depopulation to disinfection took 2.2 ± 0.7 (0-20) days. Overall, some farms took as long as 30 days to report the outbreak to the authorities, 15 days from confirmation to depopulation and 20 days from depopulation to disinfection. On average, outbreak management lasted 12.3 (2-43) days from event initiation to depopulation. The study reveals a significant number of avian losses and delays in HPAI reporting and management by the authorities in Ghana during the 2015 outbreak. This poses a high risk of spread to other farms and a threat to public health. Awareness creation for poultry farmers is necessary for early reporting, while further study is required to set thresholds for the management of such outbreaks by veterinary departments.
Collapse
|
28
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
29
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
30
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
31
|
Abstract
The distribution pattern of host proteases and their cleavage specificity for viral fusion glycoproteins are key determinants for viral tissue tropism and pathogenicity. The discovery of this protease-dependent virus tropism and pathogenicity has been triggered by the leading studies of the host-induced or -controlled modification of viruses by Homma et al. in 1970s. With the introduction of advanced protein analysis method, the observations by Homma et al. have been clearly explained by the cleavage activation of viral fusion glycoproteins by proteases. The molecular biological features of viruses, which show distinct protease specificity or dependency, have been also revealed by newly introduced nucleotide and molecular analysis method. Highly pathogenic avian influenza viruses (HPAIVs) have multi-basic cleavage motif in the hemagglutinin (HA) protein and are activated proteolytically by furin. Furin is ubiquitously expressed in eukaryotic cells and thereby HPAIVs have the potential to cause a systemic infection in infected animals. On the other hand, the HA cleavage site of low pathogenic avian influenza viruses (LPAIVs) and seasonal human influenza viruses is mono-basic and thus not recognized by furin. They are likely cleaved by protease(s) localized in specific organs or tissues. However, the protease(s), which cleaves mono-basic HA in vivo, has long been undetermined, although many proteases have been shown as candidates. Finally, recent studies using gene knocked out mice revealed that TMPRSS2, a member of type II transmembrane serine proteases, is responsible for the cleavage of influenza viruses with a mono-basic HA in vivo. A subsequent study further demonstrated that TMPRSS2 contributes to replication and pathology of emerging SARS- and MERS coronaviruses in vivo.
Collapse
|
32
|
Wang SJ, Liu XW, Shen X, Hua XG, Cui L. Epidemiological and molecular analysis of avian influenza A(H7N9) virus in Shanghai, China, 2013-2017. Infect Drug Resist 2018; 11:2411-2424. [PMID: 30538508 PMCID: PMC6254586 DOI: 10.2147/idr.s179517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Human infections with a novel avian influenza A virus (H7N9) were reported in Shanghai municipality, China, at the beginning of 2013. High-pathogenic avian influenza (HPAI) H7N9 virus emerged in late February 2017 along with existing low-pathogenic avian influenza (LPAI) H7N9 virus, and this has the potential to develop into a pandemic that could be harmful to humans. Methods To elucidate the epidemiological characteristics of H7N9-infected cases from 2013 to 2017 in Shanghai, data on the 59 laboratory-confirmed human cases and 26 bird and environmental contamination cases were collected from the WHO website and Food and Agriculture Organization Emergency Prevention System for Animal Health (FAO EMPRES-AH). Full-length sequences of H7N9 viruses that emerged in Shanghai were collected from the Global Initiative on Sharing Avian Influenza Data to analyze the evolutionary and genetic features. Results We found that genetically different strains emerged in every epidemic in Shanghai, and most of the circulating H7N9 strains had affinity to human-type receptors, with the characteristics of high-virulence and low-pathogenic influenza viruses. Furthermore, our findings suggest that the Shanghai chicken strains are closely related to the HPAI H7N9 virus A/Guangdong/17SF003/2016, indicating that this viral strain is of avian origin and generated from the LPAI H7N9 viruses in Shanghai. The gradual decrease in H7N9 human infection in Shanghai was probably due to the control measures taken by the Shanghai government and the enhanced public awareness leading to a reduced risk of H7N9 virus infection. However, LPAI H7N9 viruses from poultry and environmental samples were continually detected in Shanghai across the epidemics, increasing the risk of new emerging H7N9 outbreaks. Conclusion It is important to consistently obtain sufficient surveillance data and implement prevention measures against H7N9 viruses in Shanghai municipality.
Collapse
Affiliation(s)
- Seong Jin Wang
- Department of Animal Science, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, .,Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, .,Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Xue Wei Liu
- Department of Animal Science, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China,
| | - Xiaojuan Shen
- Department of Animal Science, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, .,Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China,
| | - Xiu Guo Hua
- Department of Animal Science, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, .,Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China,
| | - Li Cui
- Department of Animal Science, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, .,Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China,
| |
Collapse
|
33
|
Short KR, Kedzierska K, van de Sandt CE. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018; 8:343. [PMID: 30349811 PMCID: PMC6187080 DOI: 10.3389/fcimb.2018.00343] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.
Collapse
Affiliation(s)
- Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
34
|
A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. J Virol 2018; 92:JVI.00778-18. [PMID: 29899102 DOI: 10.1128/jvi.00778-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCE Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.
Collapse
|
35
|
Evolution of high pathogenicity of H5 avian influenza virus: haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens. Sci Rep 2018; 8:11518. [PMID: 30068964 PMCID: PMC6070550 DOI: 10.1038/s41598-018-29944-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023] Open
Abstract
Low pathogenicity avian influenza viruses (LPAIVs) are generally asymptomatic in their natural avian hosts. LPAIVs can evolve into highly pathogenic forms, which can affect avian and human populations with devastating consequences. The switch to highly pathogenic avian influenza virus (HPAIV) from LPAIV precursors requires the acquisition of multiple basic amino acids in the haemagglutinin cleavage site (HACS) motif. Through reverse genetics of an H5N1 HPAIV, and experimental infection of chickens, we determined that viruses containing five or more basic amino acids in the HACS motif were preferentially selected over those with three to four basic amino acids, leading to rapid replacement with virus types containing extended HACS motifs. Conversely, viruses harbouring low pathogenicity motifs containing two basic amino acids did not readily evolve to extended forms, suggesting that a single insertion of a basic amino acid into the cleavage site motif of low-pathogenic viruses may lead to escalating selection for extended motifs. Our results may explain why mid-length forms are rarely detected in nature. The stability of the short motif suggests that pathogenicity switching may require specific conditions of intense selection pressure (such as with high host density) to boost selection of the initial mid-length HACS forms.
Collapse
|
36
|
Dornfeld D, Dudek AH, Vausselin T, Günther SC, Hultquist JF, Giese S, Khokhlova-Cubberley D, Chew YC, Pache L, Krogan NJ, Garcia-Sastre A, Schwemmle M, Shaw ML. SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Sci Rep 2018; 8:2092. [PMID: 29391557 PMCID: PMC5794779 DOI: 10.1038/s41598-018-20458-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/18/2018] [Indexed: 11/29/2022] Open
Abstract
The human interferon (IFN)-induced MxA protein is a key antiviral host restriction factor exhibiting broad antiviral activity against many RNA viruses, including highly pathogenic avian influenza A viruses (IAV) of the H5N1 and H7N7 subtype. To date the mechanism for how MxA exerts its antiviral activity is unclear, however, additional cellular factors are believed to be essential for this activity. To identify MxA cofactors we performed a genome-wide siRNA-based screen in human airway epithelial cells (A549) constitutively expressing MxA using an H5N1 reporter virus. These data were complemented with a proteomic screen to identify MxA-interacting proteins. The combined data identified SMARCA2, the ATPase subunit of the BAF chromatin remodeling complex, as a crucial factor required for the antiviral activity of MxA against IAV. Intriguingly, our data demonstrate that although SMARCA2 is essential for expression of some IFN-stimulated genes (ISGs), and the establishment of an antiviral state, it is not required for expression of MxA, suggesting an indirect effect on MxA activity. Transcriptome analysis of SMARCA2-depleted A549-MxA cells identified a small set of SMARCA2-regulated factors required for activity of MxA, in particular IFITM2 and IGFBP3. These findings reveal that several virus-inducible factors work in concert to enable MxA restriction of IAV.
Collapse
Affiliation(s)
- Dominik Dornfeld
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Alexandra H Dudek
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Thibaut Vausselin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sira C Günther
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Judd F Hultquist
- Quantitative Biosciences Institute, QBI, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Sebastian Giese
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | | | - Yap C Chew
- Zymo Research Corp, Irvine, CA, 92614, USA
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, QBI, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
37
|
Laleye A, Joannis T, Shittu I, Meseko C, Zamperin G, Milani A, Zecchin B, Fusaro A, Monne I, Abolnik C. A two-year monitoring period of the genetic properties of clade 2.3.2.1c H5N1 viruses in Nigeria reveals the emergence and co-circulation of distinct genotypes. INFECTION GENETICS AND EVOLUTION 2018; 57:98-105. [DOI: 10.1016/j.meegid.2017.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022]
|
38
|
Abstract
Waterbirds are the main reservoir for low pathogenic avian influenza A viruses (LPAIV), from which occasional spillover to poultry occurs. When circulating among poultry, LPAIV may become highly pathogenic avian influenza A viruses (HPAIV). In recent years, the epidemiology of HPAIV viruses has changed drastically. HPAIV H5N1 are currently endemic among poultry in a number of countries. In addition, global spread of HPAIV H5Nx viruses has resulted in major outbreaks among wild birds and poultry worldwide. Using data collected during these outbreaks, the role of migratory birds as a vector became increasingly clear. Here we provide an overview of current data about various aspects of the changing role of wild birds in the epidemiology of avian influenza A viruses.
Collapse
|
39
|
Phylogenetic and genetic characterization of a 2017 clinical isolate of H7N9 virus in Guangzhou, China during the fifth epidemic wave. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1331-1339. [PMID: 29019145 DOI: 10.1007/s11427-017-9152-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022]
Abstract
Pathogenic H7N9 influenza viruses continue to pose a public health concern. The H7N9 virus has caused five outbreak waves of human infections in China since 2013. In the present study, a novel H7N9 strain (A/Guangdong/8H324/2017) was isolated from a female patient with severe respiratory illness during the fifth wave of the 2017 H7N9 epidemic. Phylogenetic analysis showed that the H7N9 viruses collected during the fifth wave belong to two different lineages: the Pearl River Delta lineage and the Yangtze River Delta lineage. The novel isolate is closely related to the Pearl River Delta H7N9 viruses, which were isolated from patients in Guangdong Province. The novel H7N9 isolate has an insertion of three basic amino acids in the cleavage site of hemagglutinin (HA), which may enhance virulence in poultry. The 2017 isolate also possesses an R292K substitution in the neuraminidase (NA) protein, which confers oseltamivir resistance. This study highlights the pandemic potential of the novel H7N9 virus in mammals; thus, future characterization and surveillance is warranted.
Collapse
|
40
|
Azab AA, Arafa A, Selim A, Hassan MK, Bazid AI, Sultan AH, Hussein HA, Abdelwhab EM. Pathogenicity of the Egyptian A/H5N1 avian influenza viruses in chickens. Microb Pathog 2017; 110:471-476. [PMID: 28739438 DOI: 10.1016/j.micpath.2017.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Long-term circulation of highly pathogenic avian influenza H5N1 viruses of clade 2.2.1 in Egyptian poultry since February 2006 resulted in the evolution of two distinct clades: 2.2.1.1 represents antigenic-drift variants isolated from vaccinated poultry and 2.2.1.2 that caused the newest upsurge in birds and humans in 2014/2015. In the present study, nine isolates were collected from chickens, ducks and turkeys representing the commercial and backyard sectors during the period 2009-2015. The subtyping was confirmed by hemagglutination inhibition (HI) test, RT-qPCR and sequence analysis. The Mean Death Time (MDT) and Intravenous Pathogenicity Index (IVPI) for all isolates were determined. Sequence analysis of the HA gene sequences of these viruses revealed that two viruses belonged to clade 2.2.1.1 and the rest were clade 2.2.1.2. Antigenic characterisation of the viruses supported the results of the phylogenetic analysis. The MDT of the isolates ranged from 18 to 72 h and the IVPI values ranged from 2.3 to 2.9; viruses of the 2.2.1.1 clade were less virulent than those of the 2.2.1.2 clade. In addition, clade-specific polymorphism in the HA cleavage site was observed. These findings indicate the high and variable pathogenicity of H5N1 viruses of different clades and host-origin in Egypt. The upsurge of outbreaks in poultry in 2014/2015 was probably not due to a shift in virulence from earlier viruses.
Collapse
Affiliation(s)
- A A Azab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt.
| | - A Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - A Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - M K Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - A I Bazid
- Faculty of Veterinary Medicine, Sadat City University, Al-Menofia, Egypt
| | - A H Sultan
- Faculty of Veterinary Medicine, Sadat City University, Al-Menofia, Egypt
| | - H A Hussein
- Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - E M Abdelwhab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
41
|
Marinova-Petkova A, Shanmuganatham K, Feeroz MM, Jones-Engel L, Hasan MK, Akhtar S, Turner J, Walker D, Seiler P, Franks J, McKenzie P, Krauss S, Webby RJ, Webster RG. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014. Avian Dis 2017; 60:108-17. [PMID: 27309046 DOI: 10.1637/11136-050815-reg] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra-and interclade reassortant; its HA, polymerase basic 1 (PB1), polymerase (PA), and nonstructural (NS) genes come from subclade 2.3.2.1a; the polymerase basic 2 (PB2) comes from subclade 2.3.2.1c; and the NA, nucleocapsid protein (NP), and matrix (M) gene from clade 2.3.4.2. The H9N2 influenza viruses cocirculating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from an HPAI H7N3 virus previously isolated in Pakistan. Despite frequent coinfection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried seven genes from the local HPAI H5N1 lineage and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although the live birds we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans.
Collapse
Affiliation(s)
| | | | - Mohammed M Feeroz
- B Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh 1342
| | - Lisa Jones-Engel
- C National Primate Research Center, University of Washington, Seattle, WA 98195
| | - M Kamrul Hasan
- B Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh 1342
| | - Sharmin Akhtar
- B Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh 1342
| | - Jasmine Turner
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - David Walker
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Patrick Seiler
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - John Franks
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Pamela McKenzie
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Scott Krauss
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Richard J Webby
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Robert G Webster
- A Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105.,D Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia 21589
| |
Collapse
|
42
|
Yang JR, Liu MT. Human infection caused by an avian influenza A (H7N9) virus with a polybasic cleavage site in Taiwan, 2017. J Formos Med Assoc 2017; 116:210-212. [PMID: 28259506 DOI: 10.1016/j.jfma.2017.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan.
| |
Collapse
|
43
|
Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin. mBio 2017; 8:mBio.02298-16. [PMID: 28196963 PMCID: PMC5312086 DOI: 10.1128/mbio.02298-16] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes. Influenza A viruses are divided into subtypes based on the antigenicity of the viral surface glycoproteins hemagglutinin (HA) and neuraminidase. Of the 16 HA subtypes (H1 to -16) maintained in waterfowl reservoirs of influenza A viruses, H5 and H7 viruses often become highly pathogenic through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been known since the 1980s, the genetic basis for nucleotide insertions has remained unclear. This study shows the potential role of the viral RNA secondary structure for nucleotide insertions and demonstrates a key mechanism explaining why the acquisition of the polybasic HA cleavage site is restricted to particular HA subtypes in nature. Our findings will contribute to better understanding of the ecology of influenza A viruses and will also be useful for the development of genetically modified vaccines against H5 and H7 influenza A viruses with increased stability.
Collapse
|
44
|
Peeters B, Reemers S, Dortmans J, de Vries E, de Jong M, van de Zande S, Rottier PJM, de Haan CAM. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection. Virology 2017; 503:83-93. [PMID: 28135661 DOI: 10.1016/j.virol.2017.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 01/03/2023]
Abstract
Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, and cross-reactivity and antigenic distances between 12 different viruses were determined. In general, antigenic distances increased proportional to genetic distances although notable exceptions were observed. Antigenic distances correlated better with genetic variation in 27 selected, antigenically-relevant H5 residues, than in the complete HA1 domain. Variation in these selected residues could accurately predict the antigenic distances for a novel H5N8 virus. Protection provided by vaccines against heterologous H5N1 challenge viruses indicated that cross-protection also correlates better with genetic variation in the selected antigenically-relevant residues than in complete HA1. When time is limited, variation at these selected residues may be used to accurately predict antigenic distance and vaccine performance.
Collapse
Affiliation(s)
- Ben Peeters
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.
| | | | - Jos Dortmans
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Erik de Vries
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Mart de Jong
- Department of Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The Netherlands
| | | | - Peter J M Rottier
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Asante IA, Bertram S, Awuni J, Commey ANO, Aniwa B, Ampofo WK, Gabriel G. Highly Pathogenic Avian Influenza A(H5N1) Virus among Poultry, Ghana, 2015. Emerg Infect Dis 2016; 22:2209-2211. [PMID: 27584829 PMCID: PMC5189147 DOI: 10.3201/eid2212.160639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Nickbakhsh S, Hall MD, Dorigatti I, Lycett SJ, Mulatti P, Monne I, Fusaro A, Woolhouse ME, Rambaut A, Kao RR. Modelling the impact of co-circulating low pathogenic avian influenza viruses on epidemics of highly pathogenic avian influenza in poultry. Epidemics 2016; 17:27-34. [DOI: 10.1016/j.epidem.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022] Open
|
47
|
Nonthabenjawan N, Cardona C, Amonsin A, Sreevatsan S. Time-space analysis of highly pathogenic avian influenza H5N2 outbreak in the US. Virol J 2016; 13:147. [PMID: 27576782 PMCID: PMC5006563 DOI: 10.1186/s12985-016-0605-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/23/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In early 2015, highly pathogenic avian influenza H5N2 caused outbreaks in commercial poultry farms in Minnesota and neighboring states where more than 48 million birds were affected. To date, the origin and transmission pathways of HPAI H5N2 have not been conclusively established. METHODS In this study, we analyzed forty-six samples from turkeys and their environment that were collected at different time-points of the outbreak to identify origins and within outbreak evolutionary changes. We performed de-novo whole genome sequencing from primary samples and the most recent common ancestors of the PB2, PA, HA5, M and NS segments were traced back to Japanese HPAI H5N8 isolates. These segments appeared to have diverged from the ancestor around June and November 2014. RESULTS The time to most recent common ancestor analysis for PB1, NP and NA2 segments suggest two likely possibilities of reassortant HPAI H5N2 origin - either a reassortment in Alaska area or multiple reassortments with North American low pathogenic avian influenza strains, before the HPAI H5N2 outbreak strain emerged. Within the outbreak, viruses clustered into two and three subgroups suggesting high substitution rates of 0.702x10-2 - 1.665x10-2 (subs/site/year), over the 5-month outbreak period. CONCLUSIONS Data are suggestive of a fast evolving HPAI strain within an outbreak that should be taken into consideration in developing appropriate control strategies in the future.
Collapse
Affiliation(s)
- Nutthawan Nonthabenjawan
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Rm 301E, St. Paul, MN 55108 USA
| | - Carol Cardona
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Rm 301E, St. Paul, MN 55108 USA
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Rm 301E, St. Paul, MN 55108 USA
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Rm 301E, St. Paul, MN 55108 USA
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Rm 301E, St. Paul, MN 55108 USA
| |
Collapse
|
48
|
Wang LC, Huang D, Chen HW. Simultaneous subtyping and pathotyping of avian influenza viruses in chickens in Taiwan using reverse transcription loop-mediated isothermal amplification and microarray. J Vet Med Sci 2016; 78:1223-8. [PMID: 27086860 PMCID: PMC5053921 DOI: 10.1292/jvms.15-0602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The H6N1 avian influenza virus has circulated in Taiwan for more than 40 years. The sporadic activity of low pathogenic H5N2 virus has been noted since 2003, and highly pathogenic H5N2 avian influenza virus has been detected since 2008. Ressortant viruses between H6N1 and H5N2 viruses have become established and enzootic in chickens throughout Taiwan. Outbreaks caused by Novel highly pathogenic H5 avian influenza viruses whose HA genes were closely related to that of the H5N8 virus isolated from ducks in Korea in 2014 were isolated from outbreaks in Taiwan since early 2015. The avian influenza virus infection status is becoming much more complicated in chickens in Taiwan. This necessitates a rapid and simple approach to detect and differentiate the viruses that prevail. H6N1, H5N2 and novel H5 viruses were simultaneously subtyped and pathotyped in this study using reverse transcription loop-mediated isothermal amplification and microarray, with detection limits of 10°, 10(1) and 10° viral copy numbers, respectively. The microarray signals were read by the naked eye with no expensive equipment needed. The method developed in this study could greatly improve avian influenza virus surveillance efficiency.
Collapse
Affiliation(s)
- Lih-Chiann Wang
- School of Veterinary Medicine, National Taiwan University, No 1, Sec 4, Roosevelt Rd, Taipei 10617, Taiwan
| | | | | |
Collapse
|
49
|
Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian Influenza Virus and DIVA Strategies. Viral Immunol 2016; 29:198-211. [PMID: 26900835 DOI: 10.1089/vim.2015.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
Collapse
Affiliation(s)
- Noor Haliza Hasan
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Sabah, Malaysia
| | - Jagoda Ignjatovic
- 3 School of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
| | - Anne Peaston
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
50
|
Wang M, Veit M. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein Cell 2016; 7:28-45. [PMID: 26215728 PMCID: PMC4707155 DOI: 10.1007/s13238-015-0193-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
Influenza C virus, a member of the Orthomyxoviridae family, causes flu-like disease but typically only with mild symptoms. Humans are the main reservoir of the virus, but it also infects pigs and dogs. Very recently, influenza C-like viruses were isolated from pigs and cattle that differ from classical influenza C virus and might constitute a new influenza virus genus. Influenza C virus is unique since it contains only one spike protein, the hemagglutinin-esterase-fusion glycoprotein HEF that possesses receptor binding, receptor destroying and membrane fusion activities, thus combining the functions of Hemagglutinin (HA) and Neuraminidase (NA) of influenza A and B viruses. Here we briefly review the epidemiology and pathology of the virus and the morphology of virus particles and their genome. The main focus is on the structure of the HEF protein as well as on its co- and post-translational modification, such as N-glycosylation, disulfide bond formation, S-acylation and proteolytic cleavage into HEF1 and HEF2 subunits. Finally, we describe the functions of HEF: receptor binding, esterase activity and membrane fusion.
Collapse
Affiliation(s)
- Mingyang Wang
- Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany.
| |
Collapse
|