1
|
RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription. J Virol 2020; 94:JVI.02035-19. [PMID: 31826988 DOI: 10.1128/jvi.02035-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites.IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.
Collapse
|
2
|
Schlub TE, Buchmann JP, Holmes EC. A Simple Method to Detect Candidate Overlapping Genes in Viruses Using Single Genome Sequences. Mol Biol Evol 2019; 35:2572-2581. [PMID: 30099499 PMCID: PMC6188560 DOI: 10.1093/molbev/msy155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes in viruses maximize the coding capacity of their genomes and allow the generation of new genes without major increases in genome size. Despite their importance, the evolution and function of overlapping genes are often not well understood, in part due to difficulties in their detection. In addition, most bioinformatic approaches for the detection of overlapping genes require the comparison of multiple genome sequences that may not be available in metagenomic surveys of virus biodiversity. We introduce a simple new method for identifying candidate functional overlapping genes using single virus genome sequences. Our method uses randomization tests to estimate the expected length of open reading frames and then identifies overlapping open reading frames that significantly exceed this length and are thus predicted to be functional. We applied this method to 2548 reference RNA virus genomes and find that it has both high sensitivity and low false discovery for genes that overlap by at least 50 nucleotides. Notably, this analysis provided evidence for 29 previously undiscovered functional overlapping genes, some of which are coded in the antisense direction suggesting there are limitations in our current understanding of RNA virus replication.
Collapse
Affiliation(s)
- Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jan P Buchmann
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW , Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW , Australia
| |
Collapse
|
3
|
Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z. Characterization of novel transcripts in pseudorabies virus. Viruses 2015; 7:2727-44. [PMID: 26008709 PMCID: PMC4452928 DOI: 10.3390/v7052727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
In this study we identified two 3'-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis.
Collapse
Affiliation(s)
- Dóra Tombácz
- These authors contributed equally to this work..
| | - Zsolt Csabai
- These authors contributed equally to this work..
| | - Péter Oláh
- These authors contributed equally to this work..
| | - Zoltán Havelda
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged H-6720, Hungary.
| | - Donald Sharon
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. u. 4, Gödöllő H-2100, Hungary.
| | - Michael Snyder
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. u. 4, Gödöllő H-2100, Hungary.
| | | |
Collapse
|
4
|
Long D, Skoberne M, Gierahn TM, Larson S, Price JA, Clemens V, Baccari AE, Cohane KP, Garvie D, Siber GR, Flechtner JB. Identification of novel virus-specific antigens by CD4⁺ and CD8⁺ T cells from asymptomatic HSV-2 seropositive and seronegative donors. Virology 2014; 464-465:296-311. [PMID: 25108380 DOI: 10.1016/j.virol.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
Reactivation of latent herpes simplex virus 2 (HSV-2) infections can be characterized by episodic recurrent genital lesions and/or viral shedding. We hypothesize that infected (HSV-2(pos)) asymptomatic individuals have acquired T cell responses to specific HSV-2 antigen(s) that may be an important factor in controlling their recurrent disease symptoms. Our proteomic screening technology, ATLAS, was used to characterize the antigenic repertoire of T cell responses in infected (HSV-2(pos)) and virus-exposed seronegative (HSV-2(neg)) subjects. T cell responses, determined by IFN-γ secretion, were generated to gL, UL2, UL11, UL21, ICP4, ICP0, ICP47 and UL40 with greater magnitude and/or frequency among cohorts of exposed HSV-2(neg) or asymptomatic HSV-2(pos) individuals, compared to symptomatic recurrent HSV-2(pos) subjects. T cell antigens recognized preferentially among individuals who are resistant to infection or who are infected and have mild or no clinical disease may provide new targets for the design of vaccines aimed at treating and/or preventing HSV-2 infection.
Collapse
|
5
|
Boldogköi Z. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci. Front Genet 2012; 3:122. [PMID: 22783276 PMCID: PMC3389743 DOI: 10.3389/fgene.2012.00122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022] Open
Abstract
The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Kolb AW, Adams M, Cabot EL, Craven M, Brandt CR. Multiplex sequencing of seven ocular herpes simplex virus type-1 genomes: phylogeny, sequence variability, and SNP distribution. Invest Ophthalmol Vis Sci 2011; 52:9061-73. [PMID: 22016062 DOI: 10.1167/iovs.11-7812] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Little is known about the role of sequence variation in the pathology of HSV-1 keratitis virus. The goal was to show that a multiplex, high-throughput genome-sequencing approach is feasible for simultaneously sequencing seven HSV-1 ocular strains. METHODS A genome sequencer was used to sequence the HSV-1 ocular isolates TFT401, 134, CJ311, CJ360, CJ394, CJ970, and OD4, in a single lane. Reads were mapped to the HSV-1 strain 17 reference genome by high-speed sequencing. ClustalW was used for alignment, and the Mega 4 package was used for phylogenetic analysis (www.megasoftware.net). Simplot was used to compare genetic variability and high-speed sequencing was used to identify SNPs (developed by Stuart Ray, Johns Hopkins University School of Medicine, Baltimore, MD, http://sray.med.som.jhml.edu/SCRoftware/simplot). RESULTS Approximately 95% to 99% of the seven genomes were sequenced in a single lane with average coverage ranging from 224 to 1345. Phylogenetic analysis of the sequenced genome regions revealed at least three clades. Each strain had approximately 200 coding SNPs compared to strain 17, and these were evenly spaced along the genomes. Four genes were highly conserved, and six were more variable. Reduced coverage was obtained in the highly GC-rich terminal repeat regions. CONCLUSIONS Multiplex sequencing is a cost-effective way to obtain the genomic sequences of ocular HSV-1 isolates with sufficient coverage of the unique regions for genomic analysis. The number of SNPs and their distribution will be useful for analyzing the genetics of virulence, and the sequence data will be useful for studying HSV-1 evolution and for the design of structure-function studies.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Biotechnology Center,University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
7
|
Xing J, Wang S, Li Y, Guo H, Zhao L, Pan W, Lin F, Zhu H, Wang L, Li M, Wang L, Zheng C. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med Microbiol Immunol 2010; 200:61-8. [PMID: 20949280 DOI: 10.1007/s00430-010-0175-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Indexed: 12/16/2022]
Abstract
In this study, we presented the construction of a library of expression clones for the herpes simplex virus type 1 (HSV-1) proteome and subcellular localization map of HSV-1 proteins in living cells using yellow fluorescent protein (YFP) fusion proteins. As a result, 21 proteins showed cytoplasmic or subcytoplasmic localization, 16 proteins showed nuclear or subnuclear localization, and others were present both in the nucleus and cytoplasm. Interestingly, most capsid proteins showed enriched or exclusive localization in the nucleus, and most of the envelope proteins showed cytoplasmic localization, suggesting that subcellular localization of the proteins correlated with their functions during virus replication. These results present a subcellular localization map of HSV-1 proteins in living cells, which provide useful information to further characterize the functions of these proteins.
Collapse
Affiliation(s)
- Junji Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
9
|
Naito J, Mukerjee R, Mott KR, Kang W, Osorio N, Fraser NW, Perng GC. Identification of a protein encoded in the herpes simplex virus type 1 latency associated transcript promoter region. Virus Res 2005; 108:101-10. [PMID: 15681060 DOI: 10.1016/j.virusres.2004.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/16/2004] [Accepted: 08/16/2004] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) establishes a lifelong latency in the neurons of its host. Sporadically, the latent virus reactivates and spreads back to the original site of infection and causes recrudescent diseases. The only gene actively transcribed during neuronal latency is the latency associated transcript (LAT) gene. Several transcripts have been detected in the important LAT promoter region. However, no polypeptides coded by these transcripts are known. In this communication, we reported the cloning, sequencing, and characterization of a transcript immediately upstream of LAT. We designated this gene UOL (Upstream of LAT). The UOL RNA is polyadenylated, expressed as a late gene in infected cells, transcribed in the same direction as LAT, and contains an open reading frame (ORF) capable of encoding a protein of 96 amino acids with a predicted molecular mass of 11 kDa. The UOL transcript contains 466 nucleotides in length. The 5' end of the UOL transcript starts at nucleotide 118,266 and the 3' end of the UOL transcript ends at nucleotide 118,731 based on the published 17syn+ genomic sequence. The UOL protein was detected in infected cell lysates by immunoprecipitation using an antibody raised against UOL ORF synthetic peptide. More importantly, sera from mice infected with wild-type HSV-1 but not sera from mice infected with a mutant with the UOL region deleted recognized the UOL ORF, expressed in Escherichia coli, on Western blots. These results suggest that a UOL protein is in HSV-1 infected tissue culture cells and in mice infected with HSV-1.
Collapse
Affiliation(s)
- Julie Naito
- Department of Ophthalmology, College of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Klupp BG, Altenschmidt J, Granzow H, Fuchs W, Mettenleiter TC. Identification and characterization of the pseudorabies virus UL43 protein. Virology 2005; 334:224-33. [PMID: 15780872 DOI: 10.1016/j.virol.2005.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/04/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022]
Abstract
Among the least characterized herpesvirus membrane proteins are the homologs of UL43 of herpes simplex virus 1 (HSV-1). To identify and characterize the UL43 protein of pseudorabies virus (PrV), part of the open reading frame was expressed in Escherichia coli and used for immunization of a rabbit. The antiserum recognized in Western blots a 34-kDa protein in lysates of PrV infected cells and purified virions, demonstrating that the UL43 protein is a virion component. In indirect immunofluorescence analysis, the antiserum labeled vesicular structures in PrV infected cells which also contained glycoprotein B. To functionally analyze UL43, a deletion mutant was constructed lacking amino acids 23-332 of the 373aa protein. This mutant was only slightly impaired in replication as assayed by one-step growth kinetics, measurement of plaque sizes, and electron microscopy. Interestingly, the PrV UL43 protein was able to inhibit fusion induced by PrV glycoproteins in a transient expression-fusion assay to a similar extent as gM. Double mutant viruses lacking, in addition to UL43, the multiply membrane spanning glycoproteins K or M did not show a phenotype beyond that observed in the gK and gM single deletion mutants.
Collapse
Affiliation(s)
- Barbara G Klupp
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
11
|
Abstract
The herpes simplex virus (HSV) has a 152 kbp dsDNA encoding probably 84 proteins. The approximate number of ORFs is 94, from which seven are doubled. The most probable number of single copy ORFs is 84 after omitting the two latency associated transcripts (LAT)/ORFs and the putative UL27.5 ORF. The high gene number creates a "crowded" genome with several overlapping transcripts. The unique long (U(L)) segment has at least 10 interposed ORFs, the existence of which was not obvious at first sequence analysis, while the unique short (U(S)) segment has two such genes. The surplus of ORFs causes complex transcription patterns: (1) Transcripts with common initiation signals but different termination; (2) Transcripts with different initiation sites but co-terminal ends; (3) "Nested" transcripts differing at both, the initiation as well as termination signals, having partially collinear sequences. At least three or possibly four ORF (gene) pairs (UL9.5/UL10; UL27/UL27.5; UL43/UL43.5; ICP34.5/ORF P and O) occupy both DNA strands at complementary positions rising anti-sense transcripts expressed by an antagonistic mechanism of mutual exclusion. The anti-sense mRNA mechanism might also operate when either LAT or ICP0 ORFs are expressed during latency assuring the absence of lytic virus replication. In contrast, during productive replication the cascade regulation of gene expression predominates, based on stepwise activation of immediate early (IE), early (E), early late (EL) and late (L) promoters. The promoters of different expression kinetic classes (alpha, beta, gamma-1 and gamma-2) are equipped with different number of cellular transcription factor binding and/or enhancer motifs. Surprisingly, only a few HSV mRNAs are being spliced (ICP0, UL15, US1, US12/ICP47). As reviewed here, the transcription pattern of the great majority of overlapping ORFs within the HSV-1 was quite convincingly elucidated, with exception of the putative UL27.5 gene. The UL27.5 transcript was not identified yet. Since the existence of the UL27.5 gene was based on indirect rather than direct evidence, it needs final confirmation.
Collapse
Affiliation(s)
- Július Rajcáni
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
12
|
Perelygina L, Zhu L, Zurkuhlen H, Mills R, Borodovsky M, Hilliard JK. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J Virol 2003; 77:6167-77. [PMID: 12743273 PMCID: PMC155011 DOI: 10.1128/jvi.77.11.6167-6177.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of herpes B virus (Cercopithecine herpesvirus 1) strain E2490, isolated from a rhesus macaque, was determined. The total genome length is 156,789 bp, with 74.5% G+C composition and overall genome organization characteristic of alphaherpesviruses. The first and last residues of the genome were defined by sequencing the cloned genomic termini. There were six origins of DNA replication in the genome due to tandem duplication of both oriL and oriS regions. Seventy-four genes were identified, and sequence homology to proteins known in herpes simplex viruses (HSVs) was observed in all cases but one. The degree of amino acid identity between B virus and HSV proteins ranged from 26.6% (US5) to 87.7% (US15). Unexpectedly, B virus lacked a homolog of the HSV gamma(1)34.5 gene, which encodes a neurovirulence factor. Absence of this gene was verified in two low-passage clinical isolates derived from a rhesus macaque and a zoonotically infected human. This finding suggests that B virus most likely utilizes mechanisms distinct from those of HSV to sustain efficient replication in neuronal cells. Despite the considerable differences in G+C content of the macaque and B virus genes (51% and 74.2%, respectively), codons used by B virus are optimal for the tRNA population of macaque cells. Complete sequence of the B virus genome will certainly facilitate identification of the genetic basis and possible molecular mechanisms of enhanced B virus neurovirulence in humans, which results in an 80% mortality rate following zoonotic infection.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Viral/analysis
- Genome, Viral
- Herpesvirus 1, Cercopithecine/chemistry
- Herpesvirus 1, Cercopithecine/genetics
- Herpesvirus 1, Human/chemistry
- Herpesvirus 1, Human/genetics
- Herpesvirus 2, Human/chemistry
- Herpesvirus 2, Human/genetics
- Humans
- Macaca mulatta
- Molecular Sequence Data
- Open Reading Frames/genetics
- Sequence Analysis, DNA
- Viral Proteins/chemistry
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Ludmila Perelygina
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta 30303, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Wagner EK, Ramirez JJG, Stingley SWN, Aguilar SA, Buehler L, Devi-Rao GB, Ghazal P. Practical approaches to long oligonucleotide-based DNA microarray: lessons from herpesviruses. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:445-91. [PMID: 12108450 DOI: 10.1016/s0079-6603(02)71048-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Edward K Wagner
- Department of Molecular Biology and Biochemistry and Center for Virus Research, University of California, Irvine 92717, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kobelt D, Lechmann M, Steinkasserer A. The interaction between dendritic cells and herpes simplex virus-1. Curr Top Microbiol Immunol 2003; 276:145-61. [PMID: 12797447 DOI: 10.1007/978-3-662-06508-2_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, because they are also able to induce native T cells. Thus they are crucial in the induction of antiviral immune responses. Several viral immune escape mechanisms have been described; here we concentrate on the interaction between DCs and herpes simplex virus type 1 (HSV-1). DCs can be infected by HSV-1; however, only immature DCs generate infectious viral particles, whereas mature DCs do not support virus production and only immediate-early and early viral transcripts are generated. To induce potent immune responses DCs must mature. Interestingly, HSV-1 interferes with this maturation process, thus inhibiting antiviral T cell stimulation. Furthermore, HSV-1 strongly interferes with DC-mediated T cell proliferation. A striking finding was the complete degradation of CD83, the best-known marker for mature DC, after HSV-1 infection in lysosomal compartments. This CD83 degradation coincided with a clearly reduced T cell stimulation representing an additional new escape strategy. The functional role and the importance of CD83 are discussed in detail.
Collapse
Affiliation(s)
- D Kobelt
- Department of Dermatology, University of Erlangen, Hartmannstrasse 14, 91052 Erlangen, Germany
| | | | | |
Collapse
|
15
|
Kemble GW, Annunziato P, Lungu O, Winter RE, Cha TA, Silverstein SJ, Spaete RR. Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells. J Virol 2000; 74:11311-21. [PMID: 11070031 PMCID: PMC113236 DOI: 10.1128/jvi.74.23.11311-11321.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the discovery of a novel gene in the varicella-zoster virus (VZV) genome, designated open reading frame (ORF) S/L. This gene, located at the left end of the prototype VZV genome isomer, expresses a polyadenylated mRNA containing a splice within the 3' untranslated region in virus-infected cells. Sequence analysis reveals significant differences between the ORF S/Ls of wild-type and attenuated strains of VZV. Antisera raised to a bacterially expressed portion of ORF S/L reacted specifically with a 21-kDa protein synthesized in cells infected with a VZV clinical isolate and with the original vaccine strain of VZV (Oka-ATCC). Cells infected with other VZV strains, including a wild-type strain that has been extensively passaged in tissue culture and commercially produced vaccine strains of Oka, synthesize a family of proteins ranging in size from 21 to 30 kDa that react with the anti-ORF S/L antiserum. MeWO cells infected with recombinant VZV harboring mutations in the C-terminal region of the ORF S/L gene lost adherence to the stratum and adjacent cells, resulting in an altered plaque morphology. Immunohistochemical analysis of VZV-infected cells demonstrated that ORF S/L protein localizes to the cytoplasm. ORF S/L protein was present in skin lesions of individuals with primary or reactivated infection and in the neurons of a dorsal root ganglion during virus reactivation.
Collapse
Affiliation(s)
- G W Kemble
- Aviron, Mountain View, California 94043, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Stingley SW, Ramirez JJ, Aguilar SA, Simmen K, Sandri-Goldin RM, Ghazal P, Wagner EK. Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 2000; 74:9916-27. [PMID: 11024119 PMCID: PMC102029 DOI: 10.1128/jvi.74.21.9916-9927.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
More than 100 transcripts of various abundances and kinetic classes are expressed during phases of productive and latent infections by herpes simplex virus (HSV) type 1. To carry out rapid global analysis of variations in such patterns as a function of perturbation of viral regulatory genes and cell differentiation, we have made DNA microchips containing sets of 75-mer oligonucleotides specific for individual viral transcripts. About half of these are unique for single transcripts, while others function for overlapping ones. We have also included probes for 57 human genes known to be involved in some aspect of stress response. The chips efficiently detect all viral transcripts, and analysis of those abundant under various conditions of infection demonstrates excellent correlation with known kinetics of mRNA accumulation. Further, quantitative sensitivity is high. We have further applied global analysis of transcription to an investigation of mRNA populations in cells infected with a mutant virus in which the essential immediate-early alpha27 (U(L)54) gene has been functionally deleted. Transcripts expressed at 6 h following infection with this mutant can be classified into three groups: those whose abundance is augmented (mainly immediate-early transcripts) or unaltered, those whose abundance is somewhat reduced, and those where there is a significant reduction in transcript levels. These do not conform to any particular kinetic class. Interestingly, levels of many cellular transcripts surveyed are increased. The high proportion of such transcripts suggests that the alpha27 gene plays a major role in the early decline in cellular gene expression so characteristic of HSV infection.
Collapse
Affiliation(s)
- S W Stingley
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ward PL, Taddeo B, Markovitz NS, Roizman B. Identification of a novel expressed open reading frame situated between genes U(L)20 and U(L)21 of the herpes simplex virus 1 genome. Virology 2000; 266:275-85. [PMID: 10639314 DOI: 10.1006/viro.1999.0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An open reading frame (ORF) situated between the U(L)20 and U(L)21 genes encodes a protein designated as U(L)20.5. The U(L)20.5 ORF lies 5' and in the same orientation as the U(L)20 ORF. The expression of the U(L)20.5 ORF was verified by RNase protection assays and by in-frame insertion of an amino acid sequence encoding an epitope of an available monoclonal antibody. The tagged U(L)20.5 protein colocalized in small dense nuclear structures with products of the alpha22/U(S)1.5, U(L)3, and U(L)4 genes. Expression of the U(L)20.5 gene was blocked in cells infected and maintained in the presence of phosphonoacetate, indicating that it belongs to the late, or gamma(2), kinetic class. U(L)20.5 is not essential for viral replication inasmuch as a recombinant virus made by insertion of the thymidine kinase gene into the U(L)20.5 ORF replicates in all cell lines tested [J. D. Baines, P. L. Ward, G. Campadelli-Fiume, and B. Roizman (1991) J. Virol. 65, 6414-6424]. The genomic location of the recently discovered genes illustrates the compact nature of the viral genome.
Collapse
Affiliation(s)
- P L Ward
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 E. 58th Street, Chicago, Illinois, 60637, USA
| | | | | | | |
Collapse
|
18
|
Boldogkõi Z, Barta E. Specific amino acid content and codon usage account for the existence of overlapping ORFS. Biosystems 1999; 51:95-100. [PMID: 10482421 DOI: 10.1016/s0303-2647(99)00018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here we present a novel hypothesis for the origin of overlapping open reading frames (O-ORFs) observed in the 'non-coding frames' of several genes of yeast chromosome II. By computer analysis it was found that the specific amino acid content and base distribution pattern at certain genomic locations and the presence of O-ORFs were related. This observation prompt us to conclude that these O-ORFs are mere statistical curiosities without any biological function, which is in contrast to the hypotheses proposed by other authors.
Collapse
Affiliation(s)
- Z Boldogkõi
- Laboratory of Neuromorphology, Semmelweis University of Medicine, Budapest, Hungary.
| | | |
Collapse
|
19
|
McCormick L, Igarashi K, Roizman B. Posttranscriptional regulation of US11 in cells infected with a herpes simplex virus 1 recombinant lacking both 222-bp domains containing S-component origins of DNA synthesis. Virology 1999; 259:286-98. [PMID: 10388653 DOI: 10.1006/viro.1999.9790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The US11 gene of herpes simplex virus 1 maps in the unique sequences of the short component of the HSV-1(F) genome approximately 775 bp from the center of the DNA replication origin (OriS) and encodes a virion protein which binds RNA in sequence- and conformation-specific fashion, negatively regulates the accumulation of a prematurely terminated transcript of UL34, associates in the infected cell with the 60S ribosomal subunit, and, late in infection, accumulates in nucleoli. We report the following: (i) Deletion of a 222-bp sequence including OriS (DeltaOriS) negatively affected the accumulation of the US11 protein without decreasing the accumulation of the US11 transcript. (ii) The defect, observed at all times after infection, was multiplicity independent, was unrelated to US11 protein stability, and apparently resulted from a cis-acting element since a coinfecting virus was unable to complement the DeltaOriS virus. (iii) Transcription from the US11 promoter initiated from three sites on the DeltaOriS virus. Transcripts initiated from two of the three initation sites accumulated similarly in cells infected with the DeltaOriS virus or wild-type parent virus. The low-abundance transcript initiating from the third site was apparently unique to the DeltaOriS virus but was not expected to alter the coding capacity of the mRNA. (iv) Infected cells accumulated RNA derived by antisense transcription of the genome domain containing the US11 gene. One transcript accumulated in larger amounts in cells infected with the DeltaOriS virus than in cells infected with parent or repaired virus.
Collapse
Affiliation(s)
- L McCormick
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 East 58th Street, Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
20
|
DiPaolo JA, Woodworth CD, Coutlée F, Zimonic DB, Bryant J, Kessous A. Relationship of stable integration of herpes simplex virus-2 Bg/II N subfragment Xho2 to malignant transformation of human papillomavirus-immortalized cervical keratinocytes. Int J Cancer 1998; 76:865-71. [PMID: 9626354 DOI: 10.1002/(sici)1097-0215(19980610)76:6<865::aid-ijc16>3.0.co;2-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transfection of the right end Xho2 subfragment of Bg/II N of herpes simplex virus-2 (HSV-2) into human genital keratinocytes immortalized by human papillomavirus (HPV) type 16 or 18 resulted in invasive and noninvasive indolent cystic squamous carcinomas when cells were injected into immunocompromised mice. Retention and expression of the right end portion of the Bg/II N fragment correlated with malignancy, as the corresponding HSV-2 sequences were integrated and transcribed in the tumorigenic cell lines. HPV-immortalized cells alone were not tumorigenic. In contrast, previous results have shown that using the entire Bg/II N region can malignantly transform HPV-immortalized cells, although HSV2 DNA was not retained. Together, these observations localize the transforming activity of Bg/II N to Xho2 and suggest that the remaining sequences have an inhibitory effect on stable integration. The Xho2 sequence is 2480 bp long and contains an open reading frame (ORF) extending from nucleotides 559 to 1797. The ORF encodes a putative protein of 412-aa with a m.w. of 42-43 kDa and is highly homologous to UL43 of HSV-I. The correlation of tumorigenicity with stable integration and expression of Xho2 DNA in HPV-immortalized cells indicates that HSV-2 should be investigated further for a possible role in cervical cancer.
Collapse
Affiliation(s)
- J A DiPaolo
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda 20892, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Sanchez V, Angeletti PC, Engler JA, Britt WJ. Localization of human cytomegalovirus structural proteins to the nuclear matrix of infected human fibroblasts. J Virol 1998; 72:3321-9. [PMID: 9525659 PMCID: PMC109810 DOI: 10.1128/jvi.72.4.3321-3329.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intranuclear assembly of herpesvirus subviral particles remains an incompletely understood process. Previous studies have described the nuclear localization of capsid and tegument proteins as well as intranuclear tegumentation of capsid-like particles. The temporally and spatially regulated replication of viral DNA suggests that assembly may also be regulated by compartmentalization of structural proteins. We have investigated the intranuclear location of several structural and nonstructural proteins of human cytomegalovirus (HCMV). Tegument components including pp65 (ppUL83) and ppUL69 and capsid components including the major capsid protein (pUL86) and the small capsid protein (pUL48/49) were retained within the nuclear matrix (NM), whereas the immediate-early regulatory proteins IE-1 and IE-2 were present in the soluble nuclear fraction. The association of pp65 with the NM resisted washes with 1 M guanidine hydrochloride, and direct binding to the NM could be demonstrated by far-Western blotting. Furthermore, pp65 exhibited accumulation along the nuclear periphery and in far-Western analysis bound to proteins which comigrated with proteins of the size of nuclear lamins. A direct interaction between pp65 and lamins was demonstrated by coprecipitation of lamins in immune complexes containing pp65. Together, our findings provide evidence that major virion structural proteins localized to a nuclear compartment, the NM, during permissive infection of human fibroblasts.
Collapse
Affiliation(s)
- V Sanchez
- Department of Microbiology, University of Alabama at Birmingham, 35233, USA
| | | | | | | |
Collapse
|
22
|
Dolan A, Jamieson FE, Cunningham C, Barnett BC, McGeoch DJ. The genome sequence of herpes simplex virus type 2. J Virol 1998; 72:2010-21. [PMID: 9499055 PMCID: PMC109494 DOI: 10.1128/jvi.72.3.2010-2021.1998] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genomic DNA sequence of herpes simplex virus type 2 (HSV-2) strain HG52 was determined as 154,746 bp with a G+C content of 70.4%. A total of 74 genes encoding distinct proteins was identified; three of these were each present in two copies, within major repeat elements of the genome. The HSV-2 gene set corresponds closely with that of HSV-1, and the HSV-2 sequence prompted several local revisions to the published HSV-1 sequence (D. J. McGeoch, M. A. Dalrymple, A. J. Davison, A. Dolan, M. C. Frame, D. McNab, L. J. Perry, J. E. Scott, and P. Taylor, J. Gen. Virol. 69:1531-1574, 1988). No compelling evidence for the existence of any additional protein-coding genes in HSV-2 was identified.
Collapse
Affiliation(s)
- A Dolan
- MRC Virology Unit, Institute of Virology, Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Phelan A, Dunlop J, Patel AH, Stow ND, Clements JB. Nuclear sites of herpes simplex virus type 1 DNA replication and transcription colocalize at early times postinfection and are largely distinct from RNA processing factors. J Virol 1997; 71:1124-32. [PMID: 8995633 PMCID: PMC191164 DOI: 10.1128/jvi.71.2.1124-1132.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have visualized the intracellular localization of herpes simplex virus (HSV) type 1 replication and transcription sites in infected HeLa cells by using direct labelling methods. The number of viral transcription foci increases in a limited way; however, the number of replication sites increases in a near-exponential manner throughout infection, and both replication and transcription sites are found buried throughout the nuclear interior. Simultaneous visualization of viral transcription and replication foci shows that the two processes colocalize at early times, but at later times postinfection, there are additional sites committed solely to replication. This contrasts with the situation in adenovirus-infected cells in which, throughout replication, sites of transcription are adjacent to but do not colocalize with sites of viral DNA replication. The data for an increase in HSV transcription sites suggest an initial phase of replication of input genomes which are then transcribed. Sites of HSV replication colocalize with viral DNA replication and packaging proteins but are largely distinct from the punctate distribution of small nuclear ribonucleoprotein particles. Very high multiplicities of infection have shown an upper limit of some 18 viral transcription foci per nucleus, suggesting cellular constraints on transcription site formation. Use of virus replication mutants confirms that the labelled foci are sites of viral RNA and DNA synthesis; in the absence of viral DNA replication functions, no replication foci and only a limited number of transcription foci were present. Absence of a packaging function had no apparent effect on transcription or replication site formation, illustrating that DNA packaging is not a prerequisite for ongoing DNA synthesis. Further, the essential HSV protein IE63 is required for efficient replication site formation at later times postinfection but is not required for transcription foci formation.
Collapse
Affiliation(s)
- A Phelan
- Institute of Virology, University of Glasgow, Scotland
| | | | | | | | | |
Collapse
|
24
|
Beaudet-Miller M, Zhang R, Durkin J, Gibson W, Kwong AD, Hong Z. Virus-specific interaction between the human cytomegalovirus major capsid protein and the C terminus of the assembly protein precursor. J Virol 1996; 70:8081-8. [PMID: 8892933 PMCID: PMC190882 DOI: 10.1128/jvi.70.11.8081-8088.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.
Collapse
Affiliation(s)
- M Beaudet-Miller
- Antiviral Chemotherapy, Schering-Plough Research Institute, Kenilworth, New Jersey 07033-0539, USA
| | | | | | | | | | | |
Collapse
|
25
|
Carter KL, Ward PL, Roizman B. Characterization of the products of the U(L)43 gene of herpes simplex virus 1: potential implications for regulation of gene expression by antisense transcription. J Virol 1996; 70:7663-8. [PMID: 8892886 PMCID: PMC190835 DOI: 10.1128/jvi.70.11.7663-7668.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The products, RNA or proteins, of the herpes simplex virus 1 open reading frame U(L)43 have not been previously identified. The expression of an open reading frame antisense to U(L)43, U(L)43.5 (P. L. Ward, D. E. Barker, and B. Roizman, J. Virol. 70:2684-2690, 1996), has been reported. We report the existence of a transcript corresponding to the domain of the U(L)43 open reading frame extending approximately 30 bp from the predicted TATA box to the predicted polyadenylation signal. The RNA of the U(L)43 open reading frame accumulates to higher levels in the presence of phosphonoacetic acid, an inhibitor of viral DNA synthesis, than in its absence, whereas the U(L)43.5 transcript accumulates in larger amounts in the absence of phosphonoacetic acid. The open reading frame tagged with a sequence encoding a 20-amino-acid epitope yielded a protein with an apparent Mr of 32,000, i.e., considerably lower than that predicted from the size of the open reading frame. The discovery of a pair of antisense genes expressed during productive infection raises the possibilities that additional antisense genes exist and that the antisense arrangement provides still another mechanism for regulation of gene expression.
Collapse
Affiliation(s)
- K L Carter
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
26
|
Roizman B. The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci U S A 1996; 93:11307-12. [PMID: 8876131 PMCID: PMC38053 DOI: 10.1073/pnas.93.21.11307] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
Collapse
Affiliation(s)
- B Roizman
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, IL 60637, USA
| |
Collapse
|
27
|
Ward PL, Ogle WO, Roizman B. Assemblons: nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. J Virol 1996; 70:4623-31. [PMID: 8676489 PMCID: PMC190399 DOI: 10.1128/jvi.70.7.4623-4631.1996] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In cells infected with herpes simplex virus 1 (HSV-1), the viral proteins ICP5 (infected-cell protein 5) and VP19c (the product of UL38) are associated with mature capsids, whereas the same proteins, along with ICP35, are components of immature capsids. Here we report that ICP35, ICP5, and UL38 (VP19c) coalesce at late times postinfection and form antigenically dense structures located at the periphery of nuclei, close to but not abutting nuclear membranes. These structures were formed in cells infected with a virus carrying a temperature-sensitive mutation in the UL15 gene at nonpermissive temperatures. Since at these temperatures viral DNA is made but not packaged, these structures must contain the proteins for immature-capsid assembly and were therefore designated assemblons. These assemblons are located at the periphery of a diffuse structure composed of proteins involved in DNA synthesis. This structure overlaps only minimally with the assemblons. In contrast, tegument proteins were located in asymmetrically distributed structures also partially overlapping with assemblons but frequently located nearer to nuclear membranes. Of particular interest is the finding that the UL15 protein colocalized with the proteins associated with viral DNA synthesis rather than with assemblons, suggesting that the association with DNA may take place during its synthesis and precedes the involvement of this protein in packaging of the viral DNA into capsids. The formation of three different compartments consisting of proteins involved in viral DNA synthesis, the capsid proteins, and tegument proteins suggests that there exists a viral machinery which enables aggregation and coalescence of specific viral protein groups on the basis of their function.
Collapse
Affiliation(s)
- P L Ward
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|