1
|
Dai C, Mao Z, Xu Y, Jia J, Tang H, Zhao Y, Zhou Y. Bis-tridentate Iridium(III) Complex with the N-Heterocyclic Carbene Ligand as a Novel Efficient Electrochemiluminescence Emitter for the Sandwich Immunoassay of the HHV-6A Virus. Anal Chem 2024; 96:7311-7320. [PMID: 38656817 DOI: 10.1021/acs.analchem.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/μL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.
Collapse
Affiliation(s)
- Chenji Dai
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
2
|
Schwanke H, Gonçalves Magalhães V, Schmelz S, Wyler E, Hennig T, Günther T, Grundhoff A, Dölken L, Landthaler M, van Ham M, Jänsch L, Büssow K, van den Heuvel J, Blankenfeldt W, Friedel CC, Erhard F, Brinkmann MM. The Cytomegalovirus M35 Protein Directly Binds to the Interferon-β Enhancer and Modulates Transcription of Ifnb1 and Other IRF3-Driven Genes. J Virol 2023; 97:e0040023. [PMID: 37289084 PMCID: PMC10308904 DOI: 10.1128/jvi.00400-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Induction of type I interferon (IFN) gene expression is among the first lines of cellular defense a virus encounters during primary infection. We previously identified the tegument protein M35 of murine cytomegalovirus (MCMV) as an essential antagonist of this antiviral system, showing that M35 interferes with type I IFN induction downstream of pattern-recognition receptor (PRR) activation. Here, we report structural and mechanistic details of M35's function. Determination of M35's crystal structure combined with reverse genetics revealed that homodimerization is a key feature for M35's immunomodulatory activity. In electrophoretic mobility shift assays (EMSAs), purified M35 protein specifically bound to the regulatory DNA element that governs transcription of the first type I IFN gene induced in nonimmune cells, Ifnb1. DNA-binding sites of M35 overlapped with the recognition elements of interferon regulatory factor 3 (IRF3), a key transcription factor activated by PRR signaling. Chromatin immunoprecipitation (ChIP) showed reduced binding of IRF3 to the host Ifnb1 promoter in the presence of M35. We furthermore defined the IRF3-dependent and the type I IFN signaling-responsive genes in murine fibroblasts by RNA sequencing of metabolically labeled transcripts (SLAM-seq) and assessed M35's global effect on gene expression. Stable expression of M35 broadly influenced the transcriptome in untreated cells and specifically downregulated basal expression of IRF3-dependent genes. During MCMV infection, M35 impaired expression of IRF3-responsive genes aside of Ifnb1. Our results suggest that M35-DNA binding directly antagonizes gene induction mediated by IRF3 and impairs the antiviral response more broadly than formerly recognized. IMPORTANCE Replication of the ubiquitous human cytomegalovirus (HCMV) in healthy individuals mostly goes unnoticed but can impair fetal development or cause life-threatening symptoms in immunosuppressed or -deficient patients. Like other herpesviruses, CMV extensively manipulates its hosts and establishes lifelong latent infections. Murine CMV (MCMV) presents an important model system as it allows the study of CMV infection in the host organism. We previously showed that during entry into host cells, MCMV virions release the evolutionary conserved protein M35 protein to immediately dampen the antiviral type I interferon (IFN) response induced by pathogen detection. Here, we show that M35 dimers bind to regulatory DNA elements and interfere with recruitment of interferon regulatory factor 3 (IRF3), a key cellular factor for antiviral gene expression. Thereby, M35 interferes with expression of type I IFNs and other IRF3-dependent genes, reflecting the importance for herpesviruses to avoid IRF3-mediated gene induction.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konrad Büssow
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joop van den Heuvel
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
3
|
Ludwig CH, Thurm AR, Morgens DW, Yang KJ, Tycko J, Bassik MC, Glaunsinger BA, Bintu L. High-throughput discovery and characterization of viral transcriptional effectors in human cells. Cell Syst 2023; 14:482-500.e8. [PMID: 37348463 PMCID: PMC10350249 DOI: 10.1016/j.cels.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across ∼1,500 proteins from 11 coronaviruses and all nine human herpesviruses. We discovered hundreds of transcriptional effector domains, including a conserved repression domain in all coronavirus Spike homologs, dual activation-repression domains in viral interferon regulatory factors (VIRFs), and an activation domain in six herpesvirus homologs of the single-stranded DNA-binding protein that we show is important for viral replication and late gene expression in Kaposi's sarcoma-associated herpesvirus (KSHV). For the effector domains we identified, we investigated their mechanisms via high-throughput sequence and chemical perturbations, pinpointing sequence motifs essential for function. This work massively expands viral protein annotations, serving as a springboard for studying their biological and health implications and providing new candidates for compact gene regulation tools.
Collapse
Affiliation(s)
- Connor H Ludwig
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David W Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Kevin J Yang
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Britt A Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Lacramioara Bintu
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Lynch M, Nedjat-Haiem M, Abeson K, Chang C. Limbic Encephalitis Associated with Human Herpesvirus-7 Infection in an Immunocompetent Adolescent. Child Neurol Open 2023; 10:2329048X231206935. [PMID: 37829673 PMCID: PMC10566268 DOI: 10.1177/2329048x231206935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Despite the ubiquitous nature of human herpesvirus-7 (HHV-7) infection, its clinical significance in the central nervous system (CNS) is poorly understood. However, the related human herpesvirus-6 (HHV-6), which has remarkable genomic similarity to HHV-7, is linked to encephalitis. We present the case of a 17-year-old immunocompetent male with remote history of seizure who arrived in status epilepticus. Upon resolution, he required hospitalization for worsening encephalopathy. Electroencephalogram (EEG) revealed bilateral temporal lobe dysfunction and magnetic resonance imaging (MRI) showed increased signaling in bilateral medial temporal lobes with hippocampal microhemorrhages. Empiric intravenous (IV) acyclovir was initiated despite initially negative cerebrospinal fluid (CSF) studies due to concern for herpes simplex virus (HSV) encephalitis. The patient improved and was discharged on hospital day 13 (HD13). After discharge, a human metagenomics CSF panel resulted positive only for HHV-7, making a case for possible etiology and empiric treatment of HHV-7 despite delayed CSF and serum studies.
Collapse
Affiliation(s)
- Megan Lynch
- School of Medicine, University of California at Davis, Sacramento, USA
| | | | - Kylie Abeson
- Department of Pediatrics, University of California at Davis School of Medicine, Sacramento, USA
| | - Celia Chang
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, USA
| |
Collapse
|
5
|
Weaver GC, Arya R, Schneider CL, Hudson AW, Stern LJ. Structural Models for Roseolovirus U20 And U21: Non-Classical MHC-I Like Proteins From HHV-6A, HHV-6B, and HHV-7. Front Immunol 2022; 13:864898. [PMID: 35444636 PMCID: PMC9013968 DOI: 10.3389/fimmu.2022.864898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Human roseolovirus U20 and U21 are type I membrane glycoproteins that have been implicated in immune evasion by interfering with recognition of classical and non-classical MHC proteins. U20 and U21 are predicted to be type I glycoproteins with extracytosolic immunoglobulin-like domains, but detailed structural information is lacking. AlphaFold and RoseTTAfold are next generation machine-learning-based prediction engines that recently have revolutionized the field of computational three-dimensional protein structure prediction. Here, we review the structural biology of viral immunoevasins and the current status of computational structure prediction algorithms. We use these computational tools to generate structural models for U20 and U21 proteins, which are predicted to adopt MHC-Ia-like folds with closed MHC platforms and immunoglobulin-like domains. We evaluate these structural models and place them within current understanding of the structural basis for viral immune evasion of T cell and natural killer cell recognition.
Collapse
Affiliation(s)
- Grant C. Weaver
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | - Richa Arya
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | | | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lawrence J. Stern
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Ramachandran PS, Wilson MR, Catho G, Blanchard-Rohner G, Schiess N, Cohrs RJ, Boutolleau D, Burrel S, Yoshikawa T, Wapniarski A, Heusel EH, Carpenter JE, Jackson W, Ford BA, Grose C. Meningitis Caused by the Live Varicella Vaccine Virus: Metagenomic Next Generation Sequencing, Immunology Exome Sequencing and Cytokine Multiplex Profiling. Viruses 2021; 13:2286. [PMID: 34835092 PMCID: PMC8620440 DOI: 10.3390/v13112286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Varicella vaccine meningitis is an uncommon delayed adverse event of vaccination. Varicella vaccine meningitis has been diagnosed in 12 children, of whom 3 were immunocompromised. We now report two additional cases of vaccine meningitis in twice-immunized immunocompetent children and we perform further testing on a prior third case. We used three methods to diagnose or investigate cases of varicella vaccine meningitis, none of which have been used previously on this disease. These include metagenomic next-generation sequencing and cytokine multiplex profiling of cerebrospinal fluid and immunology exome analysis of white blood cells. In one new case, the diagnosis was confirmed by metagenomic next-generation sequencing of cerebrospinal fluid. Both varicella vaccine virus and human herpesvirus 7 DNA were detected. We performed cytokine multiplex profiling on the cerebrospinal fluid of two cases and found ten elevated biomarkers: interferon gamma, interleukins IL-1RA, IL-6, IL-8, IL-10, IL-17F, chemokines CXCL-9, CXCL-10, CCL-2, and G-CSF. In a second new case, we performed immunology exome sequencing on a panel of 356 genes, but no errors were found. After a review of all 14 cases, we concluded that (i) there is no common explanation for this adverse event, but (ii) ingestion of an oral corticosteroid burst 3-4 weeks before onset of vaccine meningitis may be a risk factor in some cases.
Collapse
Affiliation(s)
- Prashanth S. Ramachandran
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Michael R. Wilson
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Gaud Catho
- Division of Pediatric Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Geraldine Blanchard-Rohner
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
| | - Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - David Boutolleau
- Virology Department, National Reference Center for Herpesviruses, Pitie-Salpetriere Hospital, Sorbonne University, 75013 Paris, France; (D.B.); (S.B.)
| | - Sonia Burrel
- Virology Department, National Reference Center for Herpesviruses, Pitie-Salpetriere Hospital, Sorbonne University, 75013 Paris, France; (D.B.); (S.B.)
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Toyoake 470-1192, Japan;
| | - Anne Wapniarski
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Ethan H. Heusel
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - John E. Carpenter
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - Wallen Jackson
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - Bradley A. Ford
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Charles Grose
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| |
Collapse
|
7
|
Human Herpesvirus 6A Tegument Protein U14 Induces NF-κB Signaling by Interacting with p65. J Virol 2021; 95:e0126921. [PMID: 34549982 DOI: 10.1128/jvi.01269-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infection induces host cells to mount a variety of immune responses, which may either limit viral propagation or create conditions conducive to virus replication in some instances. In this regard, activation of the NF-κB transcription factor is known to modulate virus replication. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is frequently found in patients with neuroinflammatory diseases, although its role in disease pathogenesis has not been elucidated. In this study, we found that the HHV-6A-encoded U14 protein activates NF-κB signaling following interaction with the NF-κB complex protein, p65. Through induction of nuclear translocation of p65, U14 increases the expression of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein 1 transcripts. We also demonstrated that activation of NF-κB signaling is important for HHV-6A replication, since inhibition of this pathway reduced virus protein accumulation and viral genome copy number. Taken together, our results suggest that HHV-6A infection activates the NF-κB pathway and promotes viral gene expression via late gene products, including U14. IMPORTANCE Human herpesvirus 6A (HHV-6A) is frequently found in patients with neuro-inflammation, although its role in the pathogenesis of this disease has not been elucidated. Most viral infections activate the NF-κB pathway, which causes the transactivation of various genes, including those encoding proinflammatory cytokines. Our results indicate that HHV-6A U14 activates the NF-κB pathway, leading to upregulation of proinflammatory cytokines. We also found that activation of the NF-κB transcription factor is important for efficient viral replication. This study provides new insight into HHV-6A U14 function in host cell signaling and identifies potential cellular targets involved in HHV-6A pathogenesis and replication.
Collapse
|
8
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
9
|
Abstract
Like all herpesviruses, the roseoloviruses (HHV6A, -6B, and -7) establish lifelong infection within their host, requiring these viruses to evade host antiviral responses. One common host-evasion strategy is the downregulation of host-encoded, surface-expressed glycoproteins. Roseoloviruses have been shown to evade the host immune response by downregulating NK-activating ligands, class I MHC, and the TCR/CD3 complex. To more globally identify glycoproteins that are differentially expressed on the surface of HHV6A-infected cells, we performed cell surface capture of N-linked glycoproteins present on the surface of T cells infected with HHV6A, and compared these to proteins present on the surface of uninfected T cells. We found that the protein tyrosine phosphatase CD45 is downregulated in T cells infected with HHV6A. We also demonstrated that CD45 is similarly downregulated in cells infected with HHV7. CD45 is essential for signaling through the T cell receptor and, as such, is necessary for developing a fully functional immune response. Interestingly, the closely related betaherpesviruses human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) have also separately evolved unique mechanisms to target CD45. While HCMV and MCMV target CD45 signaling and trafficking, HHV6A acts to downregulate CD45 transcripts. IMPORTANCE Human herpesviruses-6 and -7 infect essentially 100% of the world's population before the age of 5 and then remain latent or persistent in their host throughout life. As such, these viruses are among the most pervasive and stealthy of all viruses. Host immune cells rely on the presence of surface-expressed proteins to identify and target virus-infected cells. Here, we investigated the changes that occur to proteins expressed on the cell surface of T cells after infection with human herpesvirus-6A. We discovered that HHV-6A infection results in a reduction of CD45 on the surface of infected T cells and impaired activation in response to T cell receptor stimulation.
Collapse
|
10
|
Jiang X, Tang T, Guo J, Wang Y, Li P, Chen X, Wang L, Wen Y, Jia J, Emanuela G, Hu B, Chen S, Yao K, Li L, Tang H. Human Herpesvirus 6B U26 Inhibits the Activation of the RLR/MAVS Signaling Pathway. mBio 2021; 12:e03505-20. [PMID: 33593967 PMCID: PMC8545120 DOI: 10.1128/mbio.03505-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
U26 is one of the roseolovirus unique genes with unknown function. Human herpesvirus 6B (HHV-6B) pU26 is predicted to be an 8-transmembrane protein containing a mitochondrion location signal. Here, we analyzed U26 function during HHV-6B infection and find that (i) HHV-6B U26 is expressed at a very early stage during HHV-6B infection, and knockdown of it results in a significant decrease of HHV-6B progeny virus production; (ii) U26 inhibits the activation of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)/mitochondrial antiviral signaling protein (MAVS) signaling pathway, an important anti-HHV-6B infection innate immune response, by targeting MAVS protein for degradation; and (iii) a portion of U26 locates to the mitochondria, which could affect the mitochondrial membrane potential and finally leads to MAVS degradation. These findings indicate that HHV-6B U26 is a novel antagonistic viral factor against host innate antiviral immunity.IMPORTANCE HHV-6B (human herpesvirus 6B) is well known to evade host antiviral responses and establish a lifelong latent infection. How HHV-6B evades RNA recognition is still poorly understood. Our results indicate that HHV-6 U26 plays a vital role in RLR/MAVS signaling pathway activity. Knockout of endogenous MAVS could facilitate HHV-6B replication. The findings in this study could provide new insights into host-virus interactions and help develop a new therapy against HHV-6B infection.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tian Tang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinfeng Guo
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuhang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Peipei Li
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangjun Chen
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lily Wang
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yiqun Wen
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Garbarino Emanuela
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Benshun Hu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuhua Chen
- Department of Critical Care Medicine, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, People's Republic of China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Linyun Li
- Department of Medical Genetics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huaming Tang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, People's Republic of China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Denner J, Bigley TM, Phan TL, Zimmermann C, Zhou X, Kaufer BB. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019; 11:E1108. [PMID: 31801268 PMCID: PMC6949924 DOI: 10.3390/v11121108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Robert Koch Fellow, 13352 Berlin, Germany
| | - Tarin M. Bigley
- Division of Rheumatology, Department. of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Tuan L. Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA;
- HHV-6 Foundation, Santa Barbara, CA 93108, USA
| | - Cosima Zimmermann
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
12
|
Houldcroft CJ. Human Herpesvirus Sequencing in the Genomic Era: The Growing Ranks of the Herpetic Legion. Pathogens 2019; 8:E186. [PMID: 31614759 PMCID: PMC6963362 DOI: 10.3390/pathogens8040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
The nine human herpesviruses are some of the most ubiquitous pathogens worldwide, causing life-long latent infection in a variety of different tissues. Human herpesviruses range from mild childhood infections to known tumour viruses and 'trolls of transplantation'. Epstein-Barr virus was the first human herpesvirus to have its whole genome sequenced; GenBank now includes thousands of herpesvirus genomes. This review will cover some of the recent advances in our understanding of herpesvirus diversity and disease that have come about as a result of new sequencing technologies, such as target enrichment and long-read sequencing. It will also look at the problem of resolving mixed-genotype infections, whether with short or long-read sequencing methods; and conclude with some thoughts on the future of the field as herpesvirus population genomics becomes a reality.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambs CB2 0QQ UK.
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, UK.
| |
Collapse
|
13
|
Becerra-Artiles A, Cruz J, Leszyk JD, Sidney J, Sette A, Shaffer SA, Stern LJ. Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses. Eur J Immunol 2019; 49:1167-1185. [PMID: 31020640 DOI: 10.1002/eji.201948126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Human herpes virus 6B (HHV-6B) is a widespread virus that infects most people early in infancy and establishes a chronic life-long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV-6B, but antigenic targets and functional characteristics of the CD4 T-cell response are poorly understood. We identified 25 naturally processed MHC-II peptides, derived from six different HHV-6B proteins, and showed that they were recognized by CD4 T-cell responses in HLA-matched donors. The peptides were identified by mass spectrometry after elution from HLA-DR molecules isolated from HHV-6B-infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T-cell responses in vitro. T-cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+ CD4+ , produced IFN-γ, TNF-α, and low levels of IL-2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide-pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long-term control of HHV-6B infection.
Collapse
Affiliation(s)
| | - John Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA
| | - John D Leszyk
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA.,Department of Medicine, University of California, San Diego, CA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
14
|
El-Mokhtar MA, Bauer A, Madela J, Voigt S. Cellular distribution of CD200 receptor in rats and its interaction with cytomegalovirus e127 protein. Med Microbiol Immunol 2018; 207:307-318. [PMID: 30032349 DOI: 10.1007/s00430-018-0552-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
CD200 is a membrane protein that interacts with CD200R on the surface of immune cells and delivers an inhibitory signal. In this study, we characterized the distribution of inhibitory CD200R in rats. In addition, we investigated if e127, a homologue of rat CD200 expressed by rat cytomegalovirus (RCMV), can suppress immune functions in vitro. RT-PCR analysis was carried out to test the expression of CD200R in different rat tissues and flow cytometry was performed to characterize CD200R at the cellular level. To test the inhibitory functions of e127, a co-culture system was utilized in which immune cells were incubated with e127-expressing cells. The strongest CD200R expression was detected in lymphoid organs such as bone marrow and spleen. Flow cytometry analyses showed that CD200R+ cells were mainly CD4- dendritic cells (DC) and CD4+ T cells in the spleen. In blood, nearly all monocytes and granulocytes expressed CD200R and in bone marrow the NKRP1low subset of natural killer cells highly expressed CD200R. In addition, both peritoneal macrophages and the NR8383 macrophage cell line carried CD200R. At the functional level, viral e127 conferred an inhibitory signal on TNFα and IL6 cytokine release from IFNγ-stimulated macrophages. However, e127 did not affect the cytotoxic activity of DC. CD200R in the rat is mainly expressed on myeloid cells but also on non-myeloid cell subsets, and RCMV e127 can deliver inhibitory signals to immune cells by engaging CD200R. The RCMV model provides a useful tool to study potential immune evasion mechanisms of the herpesviridae and opens new avenues for understanding and controlling herpesvirus infections.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Julia Madela
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany. .,Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
15
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
16
|
Complete Unique Genome Sequence, Expression Profile, and Salivary Gland Tissue Tropism of the Herpesvirus 7 Homolog in Pigtailed Macaques. J Virol 2016; 90:6657-6674. [PMID: 27170755 PMCID: PMC4944276 DOI: 10.1128/jvi.00651-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. While the pathogenic potential of HHV-7 is unclear, it can reactivate HHV-6 from latency and thus contributes to severe pathological conditions associated with HHV-6. Because of the ubiquitous nature of roseoloviruses, their roles in such interactions and the resulting pathological consequences have been difficult to study. Furthermore, the lack of a relevant animal model for HHV-7 infection has hindered a better understanding of its contribution to roseolovirus-associated diseases. Using next-generation sequencing analysis, we characterized the unique genome of an uncultured novel pigtailed macaque roseolovirus. Detailed genomic analysis revealed the presence of gene homologs to all 84 known HHV-7 open reading frames. Phylogenetic analysis confirmed that the virus is a macaque homolog of HHV-7, which we have provisionally named Macaca nemestrina herpesvirus 7 (MneHV7). Using high-throughput RNA sequencing, we observed that the salivary gland tissue samples from nine different macaques had distinct MneHV7 gene expression patterns and that the overall number of viral transcripts correlated with viral loads in parotid gland tissue and saliva. Immunohistochemistry staining confirmed that, like HHV-7, MneHV7 exhibits a natural tropism for salivary gland ductal cells. We also observed staining for MneHV7 in peripheral nerve ganglia present in salivary gland tissues, suggesting that HHV-7 may also have a tropism for the peripheral nervous system. Our data demonstrate that MneHV7-infected macaques represent a relevant animal model that may help clarify the causality between roseolovirus reactivation and diseases. IMPORTANCE Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses. We have recently discovered that pigtailed macaques are naturally infected with viral homologs of HHV-6 and HHV-7, which we provisionally named MneHV6 and MneHV7, respectively. In this study, we confirm that MneHV7 is genetically and biologically similar to its human counterpart, HHV-7. We determined the complete unique MneHV7 genome sequence and provide a comprehensive annotation of all genes. We also characterized viral transcription profiles in salivary glands from naturally infected macaques. We show that broad transcriptional activity across most of the viral genome is associated with high viral loads in infected parotid glands and that late viral protein expression is detected in salivary duct cells and peripheral nerve ganglia. Our study provides new insights into the natural behavior of an extremely prevalent virus and establishes a basis for subsequent investigations of the mechanisms that cause HHV-7 reactivation and associated disease.
Collapse
|
17
|
Crystal Structure of Human Herpesvirus 6B Tegument Protein U14. PLoS Pathog 2016; 12:e1005594. [PMID: 27152739 PMCID: PMC4859480 DOI: 10.1371/journal.ppat.1005594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
The tegument protein U14 of human herpesvirus 6B (HHV-6B) constitutes the viral virion structure and is essential for viral growth. To define the characteristics and functions of U14, we determined the crystal structure of the N-terminal domain of HHV-6B U14 (U14-NTD) at 1.85 Å resolution. U14-NTD forms an elongated helix-rich fold with a protruding β hairpin. U14-NTD exists as a dimer exhibiting broad electrostatic interactions and a network of hydrogen bonds. This is first report of the crystal structure and dimerization of HHV-6B U14. The surface of the U14-NTD dimer reveals multiple clusters of negatively- and positively-charged residues that coincide with potential functional sites of U14. Three successive residues, L424, E425 and V426, which relate to viral growth, reside on the β hairpin close to the dimer's two-fold axis. The hydrophobic side-chains of L424 and V426 that constitute a part of a hydrophobic patch are solvent-exposed, indicating the possibility that the β hairpin region is a key functional site of HHV-6 U14. Structure-based sequence comparison suggests that U14-NTD corresponds to the core fold conserved among U14 homologs, human herpesvirus 7 U14, and human cytomegalovirus UL25 and UL35, although dimerization appears to be a specific feature of the U14 group. Human herpesvirus 6B (HHV-6B), a causative agent of exanthema subitum for children and immunocompromised adults, encodes numerous tegument proteins that constitute the viral matrix. HHV-6B U14 is a tegument protein essential for viral propagation, and additionally it interacts with host factors such as tumor suppressor p53 and cellular protein EDD, thereby regulating host cell responses. Here, we report the molecular structure of HHV-6B U14 at an atomic resolution. The N-terminal domain of U14 (U14-NTD) adopts an elongated, helix-rich fold without any significant overall similarity to known structures. U14-NTD forms a 100 kDa homodimer through electrostatic interactions and a wide hydrogen bond network. The U14-NTD homodimer displays four clusters of electrostatic potential with deep grooves, implying multiple binding sites for other viral or host proteins. U14-NTD corresponds to the core fold shared by homologous proteins of human herpesvirus 7 (HHV-7) and of human cytomegalovirus, although dimerization seems to be specific to HHV-6 and HHV-7. The U14-NTD structure provides clues to promote further analysis on the role and behavior of U14 in the pathogenesis of HHV-6. It also leads to a comprehensive understanding of the U14 homologs in beta herpesviruses, and furthermore contributes to the overall knowledge about tegument proteins in herpesviruses.
Collapse
|
18
|
Mahmoud NF, Kawabata A, Tang H, Wakata A, Wang B, Serada S, Naka T, Mori Y. Human herpesvirus 6 U11 protein is critical for virus infection. Virology 2016; 489:151-7. [PMID: 26761397 DOI: 10.1016/j.virol.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 11/29/2022]
Abstract
All herpesviruses contain a tegument layer comprising a protein matrix; these proteins play key roles during viral assembly and egress. Here, liquid chromatography and tandem mass spectrometry analysis (LC-MS/MS) of proteins from human herpesvirus 6 (HHV-6)-infected cells revealed a possible association between two major tegument proteins, U14 and U11. This association was verified by immunoprecipitation experiments. Moreover, U11 protein was expressed during the late phase of infection and incorporated into virions. Finally, in contrast to its revertant, a U11 deletion mutant could not be reconstituted. Taken together, these results suggest that HHV-6 U11 is an essential gene for virus growth and propagation.
Collapse
Affiliation(s)
- Nora F Mahmoud
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Akiko Kawabata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Huamin Tang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Aika Wakata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Bochao Wang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
19
|
Mousavinezhad-Moghaddam M, Amin AA, Rafatpanah H, Rezaee SAR. A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:2-13. [PMID: 27096058 PMCID: PMC4823611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi's sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents.
Collapse
Affiliation(s)
| | - Abbas Ali Amin
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdol Rahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Seyed Abodol Rahim Rezaee. Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38012768; Fax: +98-51-38436626;
| |
Collapse
|
20
|
Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol 2015; 97:543-560. [PMID: 26669819 DOI: 10.1099/jgv.0.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Anne Tanner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Eric W Stutz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
21
|
Jasirwan C, Tang H, Kawabata A, Mori Y. The human herpesvirus 6 U21-U24 gene cluster is dispensable for virus growth. Microbiol Immunol 2015; 59:48-53. [PMID: 25346365 DOI: 10.1111/1348-0421.12208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
Human herpesvirus 6 (HHV-6) is a T-lymphotrophic virus belongs to the genus Roseolovirus within the beta herpesvirus subfamily. The U20-U24 gene cluster is unique to Roseoloviruses; however, both their function and whether they are essential for virus growth is unknown. Recently, bacterial artificial chromosome (BAC) techniques have been used to investigate HHV-6A. This study describes generation of a virus genome lacking U21-U24 (HHV-6ABACΔU21-24) and shows that infectious virus particles can be reconstituted from this BAC DNA. Our data indicate that the HHV-6 U21-U24 gene cluster is dispensable for virus propagation.
Collapse
Affiliation(s)
- Chyntia Jasirwan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Kobe, 650-0017, Japan
| | | | | | | |
Collapse
|
22
|
Trempe F, Gravel A, Dubuc I, Wallaschek N, Collin V, Gilbert-Girard S, Morissette G, Kaufer BB, Flamand L. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res 2015; 43:6084-98. [PMID: 25999342 PMCID: PMC4499131 DOI: 10.1093/nar/gkv503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/04/2015] [Indexed: 02/02/2023] Open
Abstract
Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3′ to 5′ exonuclease activity on dsDNA with a preference for 3′-recessed ends. Once the DNA strand reaches 8–10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3′ end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration.
Collapse
Affiliation(s)
- Frédéric Trempe
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Isabelle Dubuc
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, Berlin 14163, Germany
| | - Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Shella Gilbert-Girard
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Guillaume Morissette
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin 14163, Germany
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Quebec city, Québec,G1V 0A6 Canada
| |
Collapse
|
23
|
Krug LT, Pellett PE. Roseolovirus molecular biology: recent advances. Curr Opin Virol 2014; 9:170-7. [PMID: 25437229 PMCID: PMC4753783 DOI: 10.1016/j.coviro.2014.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/29/2022]
Abstract
Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, and HHV-7) are classified within the roseolovirus genus of the betaherpesvirus subfamily. Most humans likely harbor at least two of these large DNA viruses, and 1% of humans harbor germline chromosomally integrated (ci) HHV-6A or HHV-6B genomes. Differences at the genetic level manifest as distinct biologic properties during infection and disease. We provide a brief synopsis of roseolovirus replication and highlight the unique properties of their lifecycle and what is known about the viral gene products that mediate these functions. In the nearly 30 years since their discovery, we have only begun to unlock the molecular strategies these highly evolved pathogens employ to establish and maintain chronic infections in humans.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Philip E Pellett
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
24
|
Kaufer BB, Flamand L. Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol 2014; 9:111-8. [PMID: 25462442 DOI: 10.1016/j.coviro.2014.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/16/2022]
Abstract
HHV-6 integrates its genome into telomeres of human chromosomes. Integration can occur in somatic cells or gametes, the latter leading to individuals harboring the HHV-6 genome in every cell. This condition is transmitted to descendants and referred to as inherited chromosomally integrated human herpesvirus 6 (iciHHV-6). Although integration can occur in different chromosomes, it invariably takes place in the telomere region. This integration mechanism represents a way to maintain the virus genome during latency, which is so far unique amongst human herpesviruses. Recent work provides evidence that the integrated HHV-6 genome can be mobilized from the host chromosome, resulting in the onset of disease. Details on required structural determinants, putative integration mechanisms and biological and medical consequences of iciHHV-6 are discussed.
Collapse
Affiliation(s)
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec, Research Center and Department of Microbiology-Infectious Diseases and Immunology, Université Laval, Quebec, Canada.
| |
Collapse
|
25
|
Elephant endotheliotropic herpesviruses EEHV1A, EEHV1B, and EEHV2 from cases of hemorrhagic disease are highly diverged from other mammalian herpesviruses and may form a new subfamily. J Virol 2014; 88:13523-46. [PMID: 25231303 DOI: 10.1128/jvi.01673-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED A family of novel endotheliotropic herpesviruses (EEHVs) assigned to the genus Proboscivirus have been identified as the cause of fatal hemorrhagic disease in 70 young Asian elephants worldwide. Although EEHV cannot be grown in cell culture, we have determined a total of 378 kb of viral genomic DNA sequence directly from clinical tissue samples from six lethal cases and two survivors. Overall, the data obtained encompass 57 genes, including orthologues of 32 core genes common to all herpesviruses, 14 genes found in some other herpesviruses, plus 10 novel genes, including a single large putative transcriptional regulatory protein (ORF-L). On the basis of differences in gene content and organization plus phylogenetic analyses of conserved core proteins that have just 20% to 50% or less identity to orthologues in other herpesviruses, we propose that EEHV1A, EEHV1B, and EEHV2 could be considered a new Deltaherpesvirinae subfamily of mammalian herpesviruses that evolved as an intermediate branch between the Betaherpesvirinae and Gammaherpesvirinae. Unlike cytomegaloviruses, EEHV genomes encode ribonucleotide kinase B subunit (RRB), thymidine kinase (TK), and UL9-like origin binding protein (OBP) proteins and have an alphaherpesvirus-like dyad symmetry Ori-Lyt domain. They also differ from all known betaherpesviruses by having a 40-kb large-scale inversion of core gene blocks I, II, and III. EEHV1 and EEHV2 DNA differ uniformly by more than 25%, but EEHV1 clusters into two major subgroups designated EEHV1A and EEHV1B with ancient partially chimeric features. Whereas large segments are nearly identical, three nonadjacent loci totaling 15 kb diverge by between 21 and 37%. One strain of EEHV1B analyzed is interpreted to be a modern partial recombinant with EEHV1A. IMPORTANCE Asian elephants are an endangered species whose survival is under extreme pressure in wild range countries and whose captive breeding populations in zoos are not self-sustaining. In 1999, a novel class of herpesviruses called EEHVs was discovered. These viruses have caused a rapidly lethal hemorrhagic disease in 20% of all captive Asian elephant calves born in zoos in the United States and Europe since 1980. The disease is increasingly being recognized in Asian range countries as well. These viruses cannot be grown in cell culture, but by direct PCR DNA sequence analysis from segments totaling 15 to 30% of the genomes from blood or necropsy tissue from eight different cases, we have determined that they fall into multiple types and chimeric subtypes of a novel Proboscivirus genus, and we propose that they should also be classified as the first examples of a new mammalian herpesvirus subfamily named the Deltaherpesvirinae.
Collapse
|
26
|
|
27
|
Genomic organization and molecular characterization of porcine cytomegalovirus. Virology 2014; 460-461:165-72. [DOI: 10.1016/j.virol.2014.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/17/2013] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
|
28
|
Osterrieder N, Wallaschek N, Kaufer BB. Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes. Annu Rev Virol 2014; 1:215-35. [PMID: 26958721 DOI: 10.1146/annurev-virology-031413-085422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that numerous viruses integrate their genetic material into host cell chromosomes. Human herpesvirus 6 (HHV-6) and oncogenic Marek's disease virus (MDV) have been shown to integrate their genomes into host telomeres of latently infected cells. This is unusual for herpesviruses as most maintain their genomes as circular episomes during the quiescent stage of infection. The genomic DNA of HHV-6, MDV, and several other herpesviruses harbors telomeric repeats (TMRs) that are identical to host telomere sequences (TTAGGG). At least in the case of MDV, viral TMRs facilitate integration into host telomeres. Integration of HHV-6 occurs not only in lymphocytes but also in the germline of some individuals, allowing vertical virus transmission. Although the molecular mechanism of telomere integration is poorly understood, the presence of TMRs in a number of herpesviruses suggests it is their default program for genome maintenance during latency and also allows efficient reactivation.
Collapse
Affiliation(s)
| | - Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany; ,
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany; ,
| |
Collapse
|
29
|
Characterization of the human herpesvirus 6A U23 gene. Virology 2013; 450-451:98-105. [PMID: 24503071 DOI: 10.1016/j.virol.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/01/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
Human herpesvirus 6 (HHV-6), which replicates abundantly in T cells, belongs to the Roseolovirus genus within the betaherpesvirus subfamily. Members of the Roseolovirus genus encode seven unique genes, U20, U21, U23, U24, U24A, U26, and U100. The present study focused on one of these, U23, by analyzing the characteristics of its gene product in HHV-6A-infected cells. The results indicated that the U23 protein was expressed at the late phase of infection as a glycoprotein, but was not incorporated into virions, and mostly stayed within the trans Golgi network (TGN) in HHV-6A-infected cells. Furthermore, analysis using a U23-defective mutant virus showed that the gene is nonessential for viral replication in vitro.
Collapse
|
30
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The sequence of human herpesvirus 7 (HHV-7) strain UCL-1 was determined using target enrichment and next-generation sequencing methods. We have identified 86 putative open reading frames (ORFs), and comparative sequence analyses demonstrate that this strain is closely related to the previously sequenced HHV-7 strains RK and JI.
Collapse
|
32
|
Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, Bonsi L, Di Luca D, Marchionni C, Alvisi G, Ripalti A. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS One 2013; 8:e71412. [PMID: 23940750 PMCID: PMC3734067 DOI: 10.1371/journal.pone.0071412] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
Fetal membranes (FM) derived mesenchymal stromal/stem cells (MSCs) are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), Varicella zoster virus (VZV), and Human Cytomegalovirus (HCMV), but not with Epstein-Barr virus (EBV), Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8) although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.
Collapse
Affiliation(s)
- Simone Avanzi
- Department of Oncology, Haematology and Laboratory Medicine, Operative Unit of Microbiology, A. O-U. di Bologna Policlinico S. Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases. J Virol 2013; 87:6700-12. [PMID: 23552421 DOI: 10.1128/jvi.00655-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely, EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease.
Collapse
|
34
|
Stack G, Stacey MA, Humphreys IR. Herpesvirus exploitation of host immune inhibitory pathways. Viruses 2012; 4:1182-201. [PMID: 23012619 PMCID: PMC3446756 DOI: 10.3390/v4081182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses employ a plethora of mechanisms to circumvent clearance by host immune responses. A key feature of mammalian immune systems is the employment of regulatory pathways that limit immune responsiveness. The primary functions of these mechanisms are to control autoimmunity and limit exuberant responses to harmless antigen in mucosal surfaces. However, such pathways can be exploited by viral pathogens to enable acute infection, persistence and dissemination. Herein, we outline the current understanding of inhibitory pathways in modulating antiviral immunity during herpesvirus infections in vivo and discuss strategies employed by herpesviruses to exploit these pathways to limit host antiviral immunity.
Collapse
Affiliation(s)
- Gabrielle Stack
- Institute of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| | | | | |
Collapse
|
35
|
Abstract
human herpesvirus 6 (HHV-6) is the major causative agent of exanthem subitum which is one of popular diseases in infant, and establishes latent infections in adults of more than 90%. Recently, the encephalitis caused by reactivated- HHV-6 has been shown in patients after transplantation. In addition, the relationship HHV-6 and drug-induced hypersensitivity syndrome has also been reported. human herpesvirus 7 (HHV-7) was isolated from the stimulated-peripheral blood lymphocytes of a healthy individual, and also causes exanthema subitum. Both viruses are related viruses which belong to betaherpesvirus subfamily, and replicate and produce progeny viruses in T cells.
Collapse
|
36
|
Abstract
This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented as a digest of current information flanked by commentaries on past activities and future directions. The International Committee on Taxonomy of Viruses recently instituted a major update of herpesvirus classification. The former family Herpesviridae was elevated to a new order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences. Progress in regard to improving the RefSeq herpesvirus accessions is discussed, and insights into particular aspects of herpesvirus genomics arising from this work are reported.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| |
Collapse
|
37
|
Abstract
Az emberi 7-es herpeszvírus 1990 óta ismert, közeli rokonságban áll a 6-os herpeszvírussal, annak B változatával. Csak emberi sejtekben szaporodik, receptora a CD4 molekula. A fertőzött sejtek egy részében élethossziglan lappang, gyakran reaktiválódik és a nyálban tünetmentesen ürül. Gyermekek egy része 3–4 éves korára tünetmentesen fertőződik, de minden életkorban találhatók szeronegatív egyének, akik fogékonyak a fertőzés iránt. Gyermekekben ritkán exanthema subitum, múló lázas-görcsös állapotok, fiatal felnőttekben rózsahámlás, immunszuppresszált egyénekben a reaktiválódott 6-os B herpeszvírussal és cytomegalovirussal egyetemben halálos szövődmények alakulhatnak ki. Egyéb vírusokat is aktiválhat más kórképekben. A vírus patogenezisében a legfontosabb, hogy megváltozik a fertőzött lymphocytákból kiáramló citokinek és növekedési faktorok egyensúlya, amely láncreakcióként hat az immunrendszer és egyéb szervek sejtjeire. A vírusellenes antitestek kimutatása kereskedelmi forgalomban kapható készletekkel (immunfluoreszcencia, ELISA, immunoblot), a nukleinsav kimutatása fészkes polimeráz láncreakcióval lehetséges. A fertőzés következtében kialakult betegségek legtöbbje nem igényel kezelést, de súlyos szövődmények esetén ganciclovir és származékai, valamint foscarnet és cidofovir alkalmazható.
Collapse
Affiliation(s)
- József Ongrádi
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar Közegészségtani Intézet Budapest Nagyvárad tér 4. 1089
| | - Valéria Kövesdi
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar Közegészségtani Intézet Budapest Nagyvárad tér 4. 1089
| | - Enikő Kováts
- 2 Einstein Pediatrics Jenkintown PA Amerikai Egyesült Államok
| |
Collapse
|
38
|
Galan A, McNiff JM, Choi JN, Lazova R. Fatal HHV6 infection in an immunocompromised patient presenting with skin involvement. J Cutan Pathol 2009; 37:277-81. [PMID: 19522847 DOI: 10.1111/j.1600-0560.2009.01291.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection with human herpesvirus-6 (HHV6) has a broad distribution in the human population, with a seroprevalence approaching 100% worldwide. Primary infection takes place during childhood, after which the virus remains latent mostly in lymphocytes and monocytes at various sites. Immunosuppression can result in viral reactivation, associated with clinical sequelae and even death. We report a case of a disseminated HHV6 infection in a 53-year-old patient, who was immunocompromised after allogeneic bone marrow transplant treatment for acute lymphocytic leukemia. Initially, he presented with a macular eruption of the skin, followed by involvement of other sites. Histopathologic analysis of skin biopsies revealed superficial perivascular large atypical mononuclear cells with intranuclear and intracytoplasmic inclusions. Most affected cells labeled with antibodies to CD3 and CD43 as lymphocytes, and some labeled with CD68 as macrophages. Polymerase chain reaction (PCR) studies of the blood, skin, liver, colon, cerebrospinal fluid and brain were positive for HHV6 virus. Additionally, the serologic titers for HHV6 were high. Viral particles were also detected by electron microscopy (EM) in the colon. Although rare, HHV6 virus may be an important pathogen in immunocompromised patients, and may present initially in the skin. Awareness of this infection is critical to diagnosis in acute settings.
Collapse
Affiliation(s)
- Anjela Galan
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059, USA.
| | | | | | | |
Collapse
|
39
|
Ponti R, Bergallo M, Costa C, Quaglino P, Fierro MT, Comessatti A, Stroppiana E, Sidoti F, Merlino C, Novelli M, Alotto D, Cavallo R, Bernengo MG. Human herpesvirus 7 detection by quantitative real time polymerase chain reaction in primary cutaneous T-cell lymphomas and healthy subjects: lack of a pathogenic role. Br J Dermatol 2008; 159:1131-7. [PMID: 18782321 DOI: 10.1111/j.1365-2133.2008.08811.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Primary cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of lymphomas where the tumour population emerges within a multiple subclone pattern. Mycosis fungoides (MF) and Sézary syndrome (SS) are characterized by the expansion of clonal CD4+/CD45RO+ memory T cells. Lymphomatoid papulosis (LyP) is a chronic, lymphoproliferative disorder included in the CD30+ primary CTCL spectrum. Several studies have suggested a role of viral infection for super-antigenic activation of T lymphocytes; however, evidence of their association with CTCLs is still lacking. Human herpesvirus (HHV) 7 is a CD4+ T-lymphotropic herpesvirus; its restricted cellular tropism and the ability to induce cytokine production in infected cells could make it an important pathogenic cofactor in lymphoproliferative disorders. OBJECTIVES To investigate the presence of HHV7 DNA on CTCL and healthy skin donors (HD). METHODS We used quantitative real time polymerase chain reaction to evaluate the potential pathogenic role of HHV7. RESULTS Twenty-seven of 84 (32.1%) HD were positive for HHV7 DNA. Twenty-one of 148 (14.2%) patients with CTCLs were positive for HHV7 DNA: nine of 39 (23.1%) SS, six of 14 (42.9%) CD30+ CTCLs and six of 24 (25.0%) LyP, and HHV7 DNA was negative in all 71 patients with MF. CONCLUSIONS These results seem to exclude a pathogenic role of HHV7 in CTCLs, suggesting the possibility of skin as a latency site.
Collapse
Affiliation(s)
- R Ponti
- Dermatology Section, Department of Biomedical Science and Human Oncology, Turin University, Via Cherasco 23, 10126, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ishibashi K, Tokumoto T, Shirakawa H, Hashimoto K, Kushida N, Yanagida T, Shishido K, Aikawa K, Yamaguchi O, Toma H, Tanabe K, Suzutani T. Strain-specific seroepidemiology and reinfection of cytomegalovirus. Microbes Infect 2008; 10:1363-9. [PMID: 18761415 DOI: 10.1016/j.micinf.2008.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/14/2008] [Accepted: 08/04/2008] [Indexed: 11/24/2022]
Abstract
Although there have been some reports describing the serostatus of cytomegalovirus, strain-specific antibody responses and their distribution remain unknown. In this study, ELISA using fusion proteins encompassing epitope of glycoprotein H from both AD169 and Towne strains was used to test 352 blood donors. Of these 352 donors, 207 were analyzed for strain-specific glycoprotein H antibodies. Of the 44 donors whose serum contained antibodies against both AD169 and Towne, 27 (60%) were aged 50 years or over (p = 0.0003). This may indicate serological evidence of reinfection with cytomegalovirus in the elder population. The nucleotide sequence analysis of cytomegalovirus glycoprotein H from the peripheral blood of the cytomegalovirus-positive renal transplant recipients showed that our strain-specific ELISA can reveal cytomegalovirus reinfection after transplantation.
Collapse
Affiliation(s)
- Kei Ishibashi
- Department of Microbiology, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Case R, Sharp E, Benned-Jensen T, Rosenkilde MM, Davis-Poynter N, Farrell HE. Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol 2008; 82:1884-98. [PMID: 18057236 PMCID: PMC2258698 DOI: 10.1128/jvi.02550-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 11/20/2007] [Indexed: 01/28/2023] Open
Abstract
The murine cytomegalovirus (MCMV) M33 gene is conserved among all betaherpesviruses and encodes a homologue of seven-transmembrane receptors (7TMR) with the capacity for constitutive signaling. Previous studies have demonstrated that M33 is important for MCMV dissemination to or replication within the salivary glands. In this study, we probed N- and C-terminal regions of M33 as well as known 7TMR signature motifs in transmembrane (TM) II and TM III to determine the impact on cell surface expression, constitutive signaling, and in vivo phenotype. The region between amino acids R(340) and A(353) of the C terminus was found to be important for CREB- and NFAT-mediated signaling, although not essential for phosphatidylinositol turnover. Tagging or truncation of the N terminus of M33 resulted in loss of cell surface expression. Within TM II, an F79D mutation abolished constitutive signaling, demonstrating a role, as in other cellular and viral 7TMR, of TM II in receptor activation. In TM III, the arginine (but not the asparagine) residue of the NRY motif (the counterpart of the common DRY motif in cellular 7TMR) was found to be essential for constitutive signaling. Selected mutations incorporated into recombinant MCMV showed that disruption of constitutive signaling for a viral 7TMR homologue resulted in a reduced capacity to disseminate to or replicate in the salivary glands. In addition, HCMV UL33 was found to partially compensate for the lack of M33 in vivo, suggesting conserved biological roles of the UL33 gene family.
Collapse
Affiliation(s)
- Ruth Case
- Clinical Medical Virology Centre, University of Queensland, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston 4029, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Sherrill JD, Miller WE. Desensitization of herpesvirus-encoded G protein-coupled receptors. Life Sci 2007; 82:125-34. [PMID: 18054964 DOI: 10.1016/j.lfs.2007.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/15/2007] [Accepted: 10/31/2007] [Indexed: 11/28/2022]
Abstract
Members of the herpesvirus family, including human cytomegalovirus (HCMV) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), encode G protein-coupled receptor (GPCR) homologs, which strongly activate classical G protein signal transduction networks within the cell. In animal models of herpesvirus infection, the viral GPCRs appear to play physiologically important roles by enabling viral replication within tropic tissues and by promoting reactivation from latency. While a number of studies have defined intracellular signaling pathways activated by herpesviral GPCRs, it remains unclear if their physiological function is subjected to the process of desensitization as observed for cellular GPCRs. G protein-coupled receptor kinases (GRK) and arrestin proteins have been recently implicated in regulating viral GPCR signaling; however, the role that these desensitization proteins play in viral GPCR function in vivo remains unknown. Here, we review what is currently known regarding viral GPCR desensitization and discuss potential biological ramifications of viral GPCR regulation by the host cell desensitization machinery.
Collapse
Affiliation(s)
- Joseph D Sherrill
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | |
Collapse
|
43
|
Takemoto M, Yamanishi K, Mori Y. Human herpesvirus 7 infection increases the expression levels of CD46 and CD59 in target cells. J Gen Virol 2007; 88:1415-1422. [PMID: 17412968 DOI: 10.1099/vir.0.82394-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD46 (membrane cofactor protein; MCP) is a molecule that functions as either a complement-regulatory protein (CRP) or a receptor for some pathogens, including human herpesvirus 6. DNA microarray analysis suggested that the expression of CD46 was upregulated in T cells infected with human herpesvirus 7 (HHV-7). Northen and Western blot analyses supported this result at both the transcriptional and translational levels. Flow-cytometric analysis revealed that upregulation of CD46 occurred at a late stage of infection in both SupT1 cells and primary CD4+ T cells, and also that expression of another CRP, CD59, was increased at a late stage of infection. Whether these CRPs actually function in HHV-7-infected cells was addressed and it was found that HHV-7-infected cells were more resistant to complement-dependent cytotoxicity than were uninfected cells. This study is the first report demonstrating that HHV-7 infection causes elevation of the CRPs CD46 and CD59, which may be a possible mechanism for HHV-7 to evade humoral immunity via complement.
Collapse
Affiliation(s)
- Masaya Takemoto
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Koichi Yamanishi
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yasuko Mori
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
44
|
Lorz K, Hofmann H, Berndt A, Tavalai N, Mueller R, Schlötzer-Schrehardt U, Stamminger T. Deletion of open reading frame UL26 from the human cytomegalovirus genome results in reduced viral growth, which involves impaired stability of viral particles. J Virol 2007; 80:5423-34. [PMID: 16699023 PMCID: PMC1472153 DOI: 10.1128/jvi.02585-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that open reading frame (ORF) UL26 of human cytomegalovirus, a member of the US22 multigene family of betaherpesviruses, encodes a novel tegument protein, which is imported into cells in the course of viral infection. Moreover, we demonstrated that pUL26 contains a strong transcriptional activation domain and is capable of stimulating the major immediate-early (IE) enhancer-promoter. Since this suggested an important function of pUL26 during the initiation of the viral replicative cycle, we sought to ascertain the relevance of pUL26 by construction of a viral deletion mutant lacking the UL26 ORF using the bacterial artificial chromosome mutagenesis procedure. The resulting deletion virus was verified by PCR, enzyme restriction, and Southern blot analyses. After infection of human foreskin fibroblasts, the UL26 deletion mutant showed a small-plaque phenotype and replicated to significantly lower titers than wild-type or revertant virus. In particular, we noticed a striking decrease of infectious titers 7 days postinfection in a multistep growth experiment, whereas the release of viral DNA from infected cells was not impaired. A further investigation of this aspect revealed a significantly diminished stability of viral particles derived from the UL26 deletion mutant. Consistent with this, we observed that the tegument composition of the deletion mutant deviates from that of the wild-type virus. We therefore hypothesize that pUL26 plays a role not only in the onset of IE gene transcription but also in the assembly of the viral tegument layer in a stable and correct manner.
Collapse
Affiliation(s)
- Kerstin Lorz
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Vischer HF, Vink C, Smit MJ. A viral conspiracy: hijacking the chemokine system through virally encoded pirated chemokine receptors. Curr Top Microbiol Immunol 2007; 303:121-54. [PMID: 16570859 DOI: 10.1007/978-3-540-33397-5_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several herpesviruses and poxviruses contain genes encoding for G protein-coupled receptor (GPCR) proteins that are expressed on the surface of infected host cells and/or the viral envelope. Most of these membrane-associated proteins display highest homology to the subfamily of chemokine receptors known to play a key role in the immune system. Virally encoded chemokine receptors have been modified through evolutionary selection both in chemokine binding profile and signaling capacity, ultimately resulting in immune evasion and cellular reprogramming in favor of viral survival and replication. Insight in the role of virally encoded GPCRs during the viral lifecycle may reveal their potential as future drug targets.
Collapse
Affiliation(s)
- H F Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a gamma2-herpesvirus discovered in 1994 and is the agent responsible for Kaposi sarcoma (KS), an endothelial cell malignancy responsible for significant morbidity and mortality worldwide. Over time, KSHV has pirated many human genes whose products regulate angiogenesis, inflammation, and the cell cycle. One of these encodes for a mutated G protein-coupled receptor (GPCR) that is a homologue of the human IL-8 receptor. GPCRs are the largest family of signaling molecules and respond to a wide array of ligands. Unlike its normal counterpart, the mutations present in KSHV vGPCR result in constitutive, ligand-independent signaling activity. Signaling by the KSHV vGPCR results in the elaboration of many mitogenic and angiogenic cytokines that are vital to the biology of KS and other KSHV-driven malignancies. Several other herpesviruses also encode GPCRs, the functions of which are under ongoing investigation. In addition, several human diseases are associated with mutated mammalian GPCRs in germline or somatic cells.
Collapse
Affiliation(s)
- M Cannon
- Cancer Research UK Viral Oncology Group, Wolfson Institute for Biomedical Research University College London, The Cruciform Building, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Valchanova RS, Picard-Maureau M, Budt M, Brune W. Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 2006; 80:10181-90. [PMID: 17005695 PMCID: PMC1617306 DOI: 10.1128/jvi.00908-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/21/2006] [Indexed: 11/20/2022] Open
Abstract
Cytomegaloviruses carry the US22 family of genes, which have common sequence motifs but diverse functions. Only two of the 12 US22 family genes of murine cytomegalovirus (MCMV) are essential for virus replication, but their functions have remained unknown. In the present study, we deleted the essential US22 family genes, m142 and m143, from the MCMV genome and propagated the mutant viruses on complementing cells. The m142 and the m143 deletion mutants were both unable to replicate in noncomplementing cells at low and high multiplicities of infection. In cells infected with the deletion mutants, viral immediate-early and early proteins were expressed, but viral DNA replication and synthesis of the late-gene product glycoprotein B were inhibited, even though mRNAs of late genes were present. Global protein synthesis was impaired in these cells, which correlated with phosphorylation of the double-stranded RNA-dependent protein kinase R (PKR) and its target protein, the eukaryotic translation initiation factor 2alpha, suggesting that m142 and m143 are necessary to block the PKR-mediated shutdown of protein synthesis. Replication of the m142 and m143 knockout mutants was partially restored by expression of the human cytomegalovirus TRS1 gene, a known double-stranded-RNA-binding protein that inhibits PKR activation. These results indicate that m142 and m143 are both required for inhibition of the PKR-mediated host antiviral response.
Collapse
Affiliation(s)
- Ralitsa S Valchanova
- Robert Koch-Institut, Fachgebiet Virale Infektionen, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
48
|
Sadaoka T, Yamanishi K, Mori Y. Human herpesvirus 7 U47 gene products are glycoproteins expressed in virions and associate with glycoprotein H. J Gen Virol 2006; 87:501-508. [PMID: 16476971 DOI: 10.1099/vir.0.81374-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of the human herpesvirus 7 (HHV-7) U47 gene, which is a positional homologue of the genes encoding glycoprotein O (gO) in human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), was analysed. A monoclonal antibody (mAb) against the U47 gene product reacted in immunoblots with proteins migrating at 49 and 51 kDa in lysates of HHV-7-infected cells and with 49 and 51 kDa proteins in partially purified virions. Digestion of the 49 and 51 kDa proteins with endoglycosidase H and peptide N-glycosidase F indicated that the U47-encoded proteins were modified with N-linked oligosaccharides. Therefore, the U47 gene and its product were named gO, as in HCMV and HHV-6. In addition, the anti-gO mAb co-immunoprecipitated glycoprotein H (gH) in HHV-7-infected cells, indicating an association between HHV-7 gO and gH. The results suggest that the HHV-7 gO-gH complex might have a similar function to that in HCMV or HHV-6, such as cell-cell fusion in virus infection.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Koichi Yamanishi
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yasuko Mori
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
49
|
van Cleef KWR, Smit MJ, Bruggeman CA, Vink C. Cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines. J Clin Virol 2006; 35:343-8. [PMID: 16406796 DOI: 10.1016/j.jcv.2005.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 10/06/2005] [Accepted: 10/15/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cytomegaloviruses (CMVs) have developed various sophisticated strategies to manipulate and evade the defense mechanisms of their hosts. Among the CMV genes that are predicted to be involved in these strategies are genes that encode mimics of cellular proteins, such as G protein-coupled receptors (GPCRs) and chemokines (CKs). These genes may have been pirated from the host genome during the long co-evolution of virus and host. OBJECTIVES In this report, the putative functions of the CMV-encoded homologs of GPCRs and CKs in the pathogenesis of infection will be discussed. STUDY DESIGN In order to present an overview of the current state of knowledge, the literature on the CMV-encoded homologs of GPCRs and CKs was reviewed. RESULTS The GPCR and CK homologs that are encoded by the CMVs represent immunomodulatory proteins with crucial roles in the pathogenesis of infection. CONCLUSIONS In light of their function as well as accessibility on the cell surface, the CMV-encoded GPCR homologs are attractive targets for the development of new anti-viral therapies.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | |
Collapse
|
50
|
Gompels U, Kasolo F. HHV-6 Genome: Similar and Different. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s0168-7069(06)12003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|