1
|
The 6-Aminoquinolone WC5 inhibits different functions of the immediate-early 2 (IE2) protein of human cytomegalovirus that are essential for viral replication. Antimicrob Agents Chemother 2014; 58:6615-26. [PMID: 25155603 DOI: 10.1128/aac.03309-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional factor essential for viral replication. IE2 modulates both viral and host gene expression, deregulates cell cycle progression, acts as an immunomodulator, and antagonizes cellular antiviral responses. Based on these facts, IE2 has been proposed as an important target for the development of innovative antiviral approaches. We previously identified the 6-aminoquinolone WC5 as a promising inhibitor of HCMV replication, and here, we report the dissection of its mechanism of action against the viral IE2 protein. Using glutathione S-transferase (GST) pulldown assays, mutagenesis, cell-based assays, and electrophoretic mobility shift assays, we demonstrated that WC5 does not interfere with IE2 dimerization, its interaction with TATA-binding protein (TBP), and the expression of a set of cellular genes that are stimulated by IE2. On the contrary, WC5 targets the regulatory activity exerted by IE2 on different responsive viral promoters. Indeed, WC5 blocked the IE2-dependent negative regulation of the major immediate-early promoter by preventing IE2 binding to the crs element. Moreover, WC5 reduced the IE2-dependent transactivation of a series of indicator constructs driven by different portions of the early UL54 gene promoter, and it also inhibited the transactivation of the murine CMV early E1 promoter by the IE3 protein, the murine cytomegalovirus (MCMV) IE2 homolog. In conclusion, our results indicate that the overall anti-HCMV activity of WC5 depends on its ability to specifically interfere with the IE2-dependent regulation of viral promoters. Importantly, our results suggest that this mechanism is conserved in murine CMV, thus paving the way for further preclinical evaluation in an animal model.
Collapse
|
2
|
Mercorelli B, Gribaudo G, Palù G, Loregian A. Approaches for the generation of new anti-cytomegalovirus agents: identification of protein-protein interaction inhibitors and compounds against the HCMV IE2 protein. Methods Mol Biol 2014; 1119:349-363. [PMID: 24639231 DOI: 10.1007/978-1-62703-788-4_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human cytomegalovirus (HCMV) infection is responsible for severe, often even fatal, diseases in immunocompromised subjects and also represents the major cause of viral-associated congenital malformations in newborn children. The few drugs licensed for anti-HCMV therapy suffer from many drawbacks and none of them have been approved for the treatment of congenital infections. Furthermore, the emergence of drug-resistant viral strains represents a major concern for disease management. Thus, there is a strong need for new anti-HCMV drugs. Here we describe three different assays for the discovery of novel anti-HCMV compounds: two are in vitro assays, i.e., a fluorescence polarization (FP)-based assay and an enzyme-linked immunosorbent assay (ELISA), which are designed to search for compounds that act by disrupting the interactions between the HCMV DNA polymerase subunits, but in general can be employed to find inhibitors of any protein-protein interaction of interest; the third is a cell-based assay designed to identify inhibitors of the viral immediate-early 2 (IE2) protein activities.
Collapse
|
3
|
Massari S, Mercorelli B, Sancineto L, Sabatini S, Cecchetti V, Gribaudo G, Palù G, Pannecouque C, Loregian A, Tabarrini O. Design, synthesis, and evaluation of WC5 analogues as inhibitors of human cytomegalovirus Immediate-Early 2 protein, a promising target for anti-HCMV treatment. ChemMedChem 2013; 8:1403-14. [PMID: 23757191 DOI: 10.1002/cmdc.201300106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/16/2013] [Indexed: 12/13/2022]
Abstract
Although human cytomegalovirus (HCMV) infection is mostly asymptomatic for immunocompetent individuals, it remains a serious threat for those who are immunocompromised, in whom it is associated with various clinical manifestations. The therapeutic utility of the few available anti-HCMV drugs is limited by several drawbacks, including cross-resistance due to their common mechanism of action, i.e., inhibition of viral DNA polymerase. Therefore, compounds that target other essential viral events could overcome this problem. One example of this is the 6-aminoquinolone WC5, which acts by directly blocking the transactivation of essential viral Early genes by the Immediate-Early 2 (IE2) protein. In this study, the quinolone scaffold of the lead compound WC5 was investigated in depth, defining more suitable substituents for each of the scaffold positions explored and identifying novel, potent and nontoxic compounds. Some compounds showed potent anti-HCMV activity by interfering with IE2-dependent viral E gene expression. Among them, naphthyridone 1 was also endowed with potent anti-HIV activity in latently infected cells. Their antiviral profile along with their innovative mechanism of action make these anti-HCMV quinolones a very promising class of compounds to be exploited for more effective antiviral therapeutic treatment.
Collapse
Affiliation(s)
- Serena Massari
- Department of Chemistry and Technology of Drugs, University of Perugia, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog 2012; 8:e1002498. [PMID: 22291595 PMCID: PMC3266931 DOI: 10.1371/journal.ppat.1002498] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023] Open
Abstract
Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor. Only recently, intrinsic cellular-based defense mechanisms which give cells the capacity to resist pathogens have been discovered as an essential component of immunity. However, unlike the innate and adaptive branches of the immune system, intrinsic immune defenses are mediated by cellular restriction factors that are constitutively expressed and active even before a pathogen enters the cell. The protein family HIN-200 may act as sensors of foreign DNA and modulate various functions such as growth, apoptosis, and senescence. Here we show that, in the absence of functional IFI16, the replication of some Herpesviruses and in particular of Human Cytomegalovirus (HCMV) is significantly enhanced. Accordingly, IFI16 overexpression strongly inhibited HCMV replication. Accumulation of viral DNA copies was down-regulated along with expression of early and late viral gene expression suggesting that IFI16 inhibits viral DNA synthesis. Using transient transfection, luciferase, gel shift assay, and chromatin immunoprecipitation, we demonstrate that IFI16 suppresses the transcriptional activity of the viral DNA polymerase gene (UL54) and the UL44 gene, also required for viral DNA synthesis. The finding that the nuclear DNA sensor IFI16 controls virus growth represents an important step forward in understanding the intrinsic mechanisms that drive viral infections sustained by DNA viruses such as Herpesviruses.
Collapse
|
5
|
Kofman A, Marcinkiewicz L, Dupart E, Lyshchev A, Martynov B, Ryndin A, Kotelevskaya E, Brown J, Schiff D, Abounader R. The roles of viruses in brain tumor initiation and oncomodulation. J Neurooncol 2011; 105:451-66. [PMID: 21720806 PMCID: PMC3278219 DOI: 10.1007/s11060-011-0658-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/24/2011] [Indexed: 01/30/2023]
Abstract
While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin.
Collapse
Affiliation(s)
- Alexander Kofman
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - Lucasz Marcinkiewicz
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - Evan Dupart
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - Anton Lyshchev
- St. Petersburg State Department of Health, Laboratory of Molecular Genetics, Hospital #31, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Boris Martynov
- S.M.Kirov Medical Academy, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Anatolii Ryndin
- Clinical Diagnostic Center, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Elena Kotelevskaya
- St. Petersburg State Department of Health, Laboratory of Molecular Genetics, Hospital #31, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Jay Brown
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - David Schiff
- Department of Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Roger Abounader
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA. Department of Cancer Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D, Kim YK, Kim YE, Ahn JH, Riddell SR, Stratikos E, Kim VN, Ahn K. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 2011; 12:984-91. [PMID: 21892175 DOI: 10.1038/ni.2097] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/27/2011] [Indexed: 12/12/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present peptides on the cell surface to CD8(+) T cells, which is critical for the killing of virus-infected or transformed cells. Precursors of MHC class I-presented peptides are trimmed to mature epitopes by the aminopeptidase ERAP1. The US2-US11 genomic region of human cytomegalovirus (HCMV) is dispensable for viral replication and encodes three microRNAs (miRNAs). We show here that HCMV miR-US4-1 specifically downregulated ERAP1 expression during viral infection. Accordingly, the trimming of HCMV-derived peptides was inhibited, which led to less susceptibility of infected cells to HCMV-specific cytotoxic T lymphocytes (CTLs). Our findings identify a previously unknown viral miRNA-based CTL-evasion mechanism that targets a key step in the MHC class I antigen-processing pathway.
Collapse
Affiliation(s)
- Sungchul Kim
- National Creative Research Initiative Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Functional properties of the human cytomegalovirus IE86 protein required for transcriptional regulation and virus replication. J Virol 2010; 84:8839-48. [PMID: 20554773 DOI: 10.1128/jvi.00327-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Collapse
|
8
|
Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. J Virol 2010; 84:8111-23. [PMID: 20519406 DOI: 10.1128/jvi.00459-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 86-kDa immediate-early 2 (IE2) protein of human cytomegalovirus (HCMV) is a promiscuous transactivator essential for viral gene expression. IE2 is covalently modified by SUMO at two lysine residues (K175 and K180) and also interacts noncovalently with SUMO. Although SUMOylation of IE2 has been shown to enhance its transactivation activity, the role of SUMO binding is not clear. Here we showed that SUMO binding by IE2 is necessary for its efficient transactivation function and for viral growth. IE2 bound physically to SUMO-1 through a SUMO-interacting motif (SIM). Mutations in SIM (mSIM) or in both SUMOylation sites and SIM (KR/mSIM), significantly reduced IE2 transactivation effects on viral early promoters. The replication of IE2 SIM mutant viruses (mSIM or KR/mSIM) was severely depressed in normal human fibroblasts. Analysis of viral growth curves revealed that the replication defect of the mSIM virus correlated with low-level accumulation of SUMO-modified IE2 and of viral early and late proteins. Importantly, both the formation of viral transcription domains and the association of IE2 with viral promoters in infected cells were significantly reduced in IE2 SIM mutant virus infection. Furthermore, IE2 was found to interact with the SUMO-modified form of TATA-binding protein (TBP)-associated factor 12 (TAF12), a component of the TFIID complex, in a SIM-dependent manner, and this interaction enhanced the transactivation activity of IE2. Our data demonstrate that the interaction of IE2 with SUMO-modified proteins plays an important role for the progression of the HCMV lytic cycle, and they suggest a novel viral mechanism utilizing the cellular SUMO system.
Collapse
|
9
|
The 6-aminoquinolone WC5 inhibits human cytomegalovirus replication at an early stage by interfering with the transactivating activity of viral immediate-early 2 protein. Antimicrob Agents Chemother 2010; 54:1930-40. [PMID: 20194695 DOI: 10.1128/aac.01730-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
WC5 is a 6-aminoquinolone that potently inhibits the replication of human cytomegalovirus (HCMV) but has no activity, or significantly less activity, against other herpesviruses. Here we investigated the nature of its specific anti-HCMV activity. Structure-activity relationship studies on a small series of analogues showed that WC5 possesses the most suitable pattern of substitutions around the quinolone scaffold to give potent and selective anti-HCMV activity. Studies performed to identify the possible target of WC5 indicated that it prevents viral DNA synthesis but does not significantly affect DNA polymerase activity. In yield reduction experiments with different multiplicities of infection, the anti-HCMV activity of WC5 appeared to be highly dependent on the viral inoculum, suggesting that WC5 may act at an initial stage of virus replication. Consistently, time-of-addition and time-of-removal studies demonstrated that WC5 affects a phase of the HCMV replicative cycle that precedes viral DNA synthesis. Experiments to monitor the effects of the compound on virus attachment and entry showed that it does not inhibit either process. Evaluation of viral mRNA and protein expression revealed that WC5 targets an event of the HCMV replicative cycle that follows the transcription and translation of immediate-early genes and precedes those of early and late genes. In cell-based assays to test the effects of WC5 on the transactivating activity of the HCMV immediate-early 2 (IE2) protein, WC5 markedly interfered with IE2-mediated transactivation of viral early promoters. Finally, WC5 combined with ganciclovir in checkerboard experiments exhibited highly synergistic activity. These findings suggest that WC5 deserves further investigation as a candidate anti-HCMV drug with a novel mechanism of action.
Collapse
|
10
|
Luganini A, Caposio P, Mondini M, Landolfo S, Gribaudo G. New cell-based indicator assays for the detection of human cytomegalovirus infection and screening of inhibitors of viral immediate-early 2 protein activity. J Appl Microbiol 2009; 105:1791-801. [PMID: 19120629 DOI: 10.1111/j.1365-2672.2008.03927.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Expression of early (E) genes of human cytomegalovirus (HCMV) is stimulated cooperatively by the activities of host cell transcription factors and the viral immediate-early 2 (IE2) protein. Taking advantage of the IE2-dependent inducibility of E gene promoters, in this study, we generated cell-based assays in which the expression of the enhanced green fluorescence protein (EGFP) reporter gene was driven by the UL54 or UL112/113 E promoters. METHODS AND RESULTS Cell clones derived from a stably transfected human cell line permissive to HCMV replication showed a specific and inducible dose- and time-dependent EGFP response to HCMV infection. The sensitivity of these indicator cells for detecting infectious particles of clinical isolates of HCMV was comparable to that of a conventional plaque assay. The HCMV-induced EGFP expression was completely prevented by treatment of indicator cells with fomivirsen, an antisense oligodeoxynucleotide designed to block IE2 expression, and this inhibitory activity was also observed when the IE2 protein alone was constitutively expressed in EGFP indicator cells. CONCLUSIONS The EGFP-based cell assays have proved to be a rapid, sensitive, quantitative and specific system for detection of HCMV and selection of antivirals. SIGNIFICANCE AND IMPACT OF THE STUDY These new cell-based assays can be exploited as functional assays to detect infectious HCMV particles, as well as to screen antiviral compounds that interfere with IE2 activity.
Collapse
Affiliation(s)
- A Luganini
- Department of Public Health and Microbiology, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
11
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J Virol 2008; 82:7059-77. [PMID: 18463148 DOI: 10.1128/jvi.00675-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins.
Collapse
|
12
|
Poole E, Atkins E, Nakayama T, Yoshie O, Groves I, Alcami A, Sinclair J. NF-kappaB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J Virol 2008; 82:4250-6. [PMID: 18287226 PMCID: PMC2293074 DOI: 10.1128/jvi.02156-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 02/06/2008] [Indexed: 11/20/2022] Open
Abstract
The product of the human cytomegalovirus (HCMV) gene UL144, expressed at early times postinfection, is located in the UL/b' region of the viral genome and is related to members of the tumor necrosis factor receptor superfamily, but it does not bind tumor necrosis factor superfamily ligands. However, UL144 does activate NF-kappaB, resulting in NF-kappaB-mediated activation of the cellular chemokine CCL22. Consistent with this finding, isolates of HCMV lacking the UL/b' region show no such activation of CCL22. Recently, it has been suggested that activation of NF-kappaB is repressed by the product of the viral gene IE86: IE86 appears to block NF-kappaB binding to DNA but not nuclear translocation of NF-kappaB. Intriguingly, IE86 is detectable throughout an infection with the virus, so how UL144 is able to activate NF-kappaB in the presence of continued IE86 expression is unclear. Here we show that although IE86 does repress the UL144-mediated activation of a synthetic NF-kappaB promoter, it is unable to block UL144-mediated activation of the CCL22 promoter, and this lack of responsiveness to IE86 appears to be regulated by binding of the CREB transcription factor.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Box 157, University of Cambridge, Level 5 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Chiou SH, Yang YP, Lin JC, Hsu CH, Jhang HC, Yang YT, Lee CH, Ho LLT, Hsu WM, Ku HH, Chen SJ, Chen SSL, Chang MDT, Wu CW, Juan LJ. The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. THE JOURNAL OF IMMUNOLOGY 2006; 177:6199-206. [PMID: 17056549 DOI: 10.4049/jimmunol.177.9.6199] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CMV (HCMV) is a widespread human pathogen that causes blindness by inducing retinitis in AIDS patients. Previously, we showed that viral immediate early 2 (IE2) protein may allow HCMV to evade the immune control by killing the Fas receptor-positive T lymphocytes attracted to the infected retina with increased secretion of Fas ligand (FasL). In this study, we further demonstrate that the secreted FasL also kills uninfected Fas-rich bystander retinal cells and that IE2 simultaneously protects the infected cells from undergoing apoptotic death, in part, by activating the expression of cellular FLIP (c-FLIP), an antiapoptotic molecule that blocks the direct downstream executer caspase 8 of the FasL/Fas pathway. c-FLIP induction requires the N-terminal 98 residues of IE2 and the c-FLIP promoter region spanning nucleotides -978 to -696. In vivo association of IE2 to this region, IE2-specific c-FLIP activation, and decrease of FasL-up-regulated activities of caspases 8 and 3 were all demonstrated in HCMV-infected human retinal cells. Moreover, c-FLIP up-regulation by IE2 appeared to involve PI3K and might also render cells resistant to TRAIL-mediated death. Finally, enhanced c-FLIP signals were immunohistochemically detected in IE-positive cells in the HCMV-infected lesions of the human retina. Taken together, these data demonstrate specific activation of c-FLIP by HCMV IE2 and indicate a novel role for c-FLIP in the pathogenesis of HCMV retinitis.
Collapse
Affiliation(s)
- Shih-Hwa Chiou
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Beck Z, Bácsi A, Liu X, Ebbesen P, Andirkó I, Csoma E, Kónya J, Nagy E, Tóth FD. Differential patterns of human cytomegalovirus gene expression in various T-cell lines carrying human T-cell leukemia-lymphoma virus type I: role of Tax-activated cellular transcription factors. J Med Virol 2003; 71:94-104. [PMID: 12858414 DOI: 10.1002/jmv.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Replication of human cytomegalovirus (HCMV) was investigated in various T-cell lines expressing the tax gene product of human T-cell leukemia-lymphoma virus type I (HTLV-I). Differential patterns of HCMV replication were found in HTLV-I-carrying cell lines. HCMV gene expression was restricted to the immediate-early genes in MT-2 and MT-4 cells, whereas full replication cycle of the virus was observed in C8166-45 cells. Productive HCMV infection induced a cytopathic effect resulting in the lysis of infected cells. The results of electrophoretic mobility shift assay (EMSA) showed high levels of NF-kappaB-, CREB/ATF-1-, and SRF-specific DNA binding activity in all Tax-positive cell lines. In contrast, SP1 activity could be detected only in C8166-45 cells. Using an inducible system (Jurkat cell line JPX-9), a dramatic increase in NF-kappaB, CREB/ATF-1, SRF, and SP1 binding activity, as well as productive HCMV infection, were observed upon Tax expression. Overexpression of SP1 in MT-2 and MT-4 cells converted HCMV infection from an abortive to a productive one. These data suggest that the stimulatory effect of Tax protein on HCMV in T cells is accomplished through at least five host-related transcription factor pathways. The results of this study provide possible mechanisms whereby HCMV infections might imply suppression of adult T-cell leukemia.
Collapse
Affiliation(s)
- Zoltán Beck
- Institute of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kronschnabl M, Stamminger T. Synergistic induction of intercellular adhesion molecule-1 by the human cytomegalovirus transactivators IE2p86 and pp71 is mediated via an Sp1-binding site. J Gen Virol 2003; 84:61-73. [PMID: 12533701 DOI: 10.1099/vir.0.18703-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of transplant recipients is frequently associated with allograft vasculopathy and rejection. One potential mechanism is vascular injury from HCMV-triggered, immunologically mediated processes. HCMV infection has been shown to increase the expression of intercellular adhesion molecule-1 (ICAM-1). The objective of this study was to determine the molecular basis of HCMV-enhanced ICAM-1 gene expression. Transient transfection experiments identified the IE2p86 protein as a potent activator of the ICAM-1 promoter. The tegument protein pp71 showed a strong synergistic effect on IE2p86-mediated ICAM-1 promoter activation. Mutagenesis experiments defined a DNA element from -110 to -42 relative to the transcription start site as responsive for IE2p86. Further point mutations within this DNA element identified an Sp1-binding site that was essential for strong synergistic activation by IE2p86 and pp71. To confirm the activation of ICAM-1 gene expression, human fibroblasts (HFF) as well as endothelial cells (HUVEC) were infected with recombinant IE2p86- and pp71-expressing baculoviruses, respectively. In FACS analysis, a synergistic induction of ICAM-1 was detectable when cells were co-infected with the two recombinant baculoviruses. These findings clearly demonstrate that IE2p86 and pp71 are crucial regulatory factors for HCMV-induced ICAM-1 upregulation.
Collapse
Affiliation(s)
- Martina Kronschnabl
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
16
|
Huang CH, Chen JY. Identification of additional IE2-p86-responsive cis-repressive sequences within the human cytomegalovirus major immediate early gene promoter. J Biomed Sci 2002; 9:460-70. [PMID: 12218362 DOI: 10.1007/bf02256541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that is the leading viral cause of birth defects and also causes significant morbidity and mortality in immunosuppressed individuals. The immediate early (IE) genes, IE1-p72 and IE2-p86, are the first HCMV genes expressed after infection under the control of a strong transcriptional enhancer-promoter, the major IE promoter (MIEP). Gene expression mediated by the predominant IE2-p86 is believed to be essential for the progression of viral production, as well as for the development of HCMV-associated pathogenesis. To gain further understanding of the transcriptional activity of IE2-p86, we attempted to isolate its downstream target genes within the HCMV genome. By a modified approach coupling the methods of cyclic amplification and selection of targets and selection and amplification of binding sites, several HCMV genomic fragments were identified based on their ability to bind to IE2-p86. Two additional IE2-p86-responsive elements other than the cis-repressive sequence (CRS) were identified within the MIEP and were termed -240 and -170 boxes. These two cis elements resemble the CRS in their sequences, as they contain the CG(N)(10)CG motif. The binding of IE2-p86 to these two distal CRS-like sequences was further confirmed by DNase I footprinting analysis and electrophoretic mobility shift assay. Promoter activity analysis in the transient expression system suggested that these two cis elements act functionally as IE2-p86-responsive repressive sequences to cooperate with the CRS to suppress MIEP expression.
Collapse
Affiliation(s)
- C H Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | |
Collapse
|
17
|
Chen J, Stinski MF. Role of regulatory elements and the MAPK/ERK or p38 MAPK pathways for activation of human cytomegalovirus gene expression. J Virol 2002; 76:4873-85. [PMID: 11967304 PMCID: PMC136149 DOI: 10.1128/jvi.76.10.4873-4885.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of recombinant viruses with either site-specific mutations or various deletions of the early UL4 promoter of human cytomegalovirus were used to determine the roles of regulatory elements and the effects of the mitogen-activated protein kinase (MAPK) pathways. Viral gene expression was regulated by upstream cis-acting sites and by basic promoter elements that respond to the MAPK signal transduction pathways. Inhibitors of either the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway or the p38 MAPK pathway affected expression equally with either wild-type or mutant early UL4 promoters in the viral genome, indicating that the effects of the inhibitors are not exclusive for a single transcription factor. The minimal responsive element is the TATA box-containing early viral promoter.
Collapse
Affiliation(s)
- Jiping Chen
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
18
|
Shirakata M, Terauchi M, Ablikim M, Imadome KI, Hirai K, Aso T, Yamanashi Y. Novel immediate-early protein IE19 of human cytomegalovirus activates the origin recognition complex I promoter in a cooperative manner with IE72. J Virol 2002; 76:3158-67. [PMID: 11884540 PMCID: PMC136045 DOI: 10.1128/jvi.76.7.3158-3167.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 12/29/2001] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) expresses IE86, IE72, IE55, and IE18 mRNA by differential splicing. Reverse transcription-PCR with IE72-specific primers generated an 0.65-kb cDNA from HCMV-infected fibroblast RNA, which does not correspond to any known MIE cDNA. Nucleotide sequencing revealed that the 0.65-kb cDNA is from exons 1, 2, and 3 and part of exon 4, indicating that it is derived from a novel alternatively spliced mRNA of the MIE gene. The cDNA encodes a 172-amino-acid polypeptide, termed IE19, which corresponds to an IE72 variant with an internal deletion from Val(86) to Pro(404) and appears as a band at 38 kDa on a sodium dodecyl sulfate-polyacrylamide gel. IE19 mRNA was expressed at a low level in the immediate-early, early, and late period of viral infection. IE19 was localized in nuclei, and a transient-expression assay revealed that IE19 enhances IE72-dependent activation of the HsOrc1 promoter, which is identified here as an IE72 target promoter. Another MIE protein, IE86, activated the same promoter but only weakly compared to IE72, and coexpression of IE19 did not alter the IE86-mediated transcriptional activation. In addition, IE19 did not enhance the IE72-dependent activation of the HCMV UL54 promoter. These results suggest that IE19 is a transcriptional coactivator that works with IE72.
Collapse
Affiliation(s)
- Masaki Shirakata
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Scholz M, Doerr HW, Cinatl J. Inhibition of cytomegalovirus immediate early gene expression: a therapeutic option? Antiviral Res 2001; 49:129-45. [PMID: 11428240 DOI: 10.1016/s0166-3542(01)00126-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The replication cycle of the human cytomegalovirus (HCMV) is characterized by the expression of immediate early (IE), early (E), and late (L) gene regions. Current antiviral strategies are directed against the viral DNA polymerase expressed during the early phase of infection. The regulation of the IE-1 and IE-2 gene expression is the key to latency and active replication due to their transactivating and repressing functions. There is growing evidence that the pathogenic features of HCMV are largely due to the abilities of IE-1 and IE-2 to transactivate cellular genes. Consequently, current drugs used to inhibit HCMV infection would have no impact on IE-1 and IE-2-induced effects that are produced before the early phase. Moreover, when HCMV DNA replication is inhibited, IE gene products accumulate in infected cells causing disturbances of host cell functions. This review summarizes the biological functions of HCMV-IE gene expression, their relevance in pathogenesis, as well as efforts to develop novel treatment strategies directed against HCMV-IE expression.
Collapse
Affiliation(s)
- M Scholz
- Klinik für Thorax-, Herz- und thorakale Gefässchirurgie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
20
|
Marchini A, Liu H, Zhu H. Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol 2001; 75:1870-8. [PMID: 11160686 PMCID: PMC114097 DOI: 10.1128/jvi.75.4.1870-1878.2001] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much evidence suggests that the major immediate-early (IE) transactivator of human cytomegalovirus (HCMV), IE-2, is likely to be critical for efficient viral replication; however, the lack of an IE-2 mutant HCMV has precluded an experimental test of this hypothesis. As an initial step toward characterizing an IE-2 mutant, we first cloned the HCMV Towne genome as a bacterial artificial chromosome (BAC) and analyzed the ability of transfected Towne-BAC DNA (T-BACwt) to produce plaques following introduction into permissive human fibroblasts. Like Towne viral DNA, transfected T-BACwt DNA was infectious in permissive cells, and the resulting virus stocks were indistinguishable from Towne virus. We then used homologous recombination in Escherichia coli to delete the majority of UL122, the open reading frame encoding the unique portion of IE-2, from T-BACwt. From this deleted BAC, a third BAC clone in which the deletion was repaired with wild-type UL122 was created. In numerous transfections of permissive human foreskin fibroblast cells with these three BAC DNA clones, the rescued BAC and T-BACwt consistently yielded plaques, while the UL122 mutant BAC never generated plaques, even after 4 weeks. Protein and mRNA of other IE genes were readily detected from transfected UL122 mutant BAC DNA; however, reverse transcription-PCR failed to detect mRNA expression from any of five early genes examined. The generalized failure of this mutant to express early genes is consistent with expectations from in vitro assays which have demonstrated that IE-2 transactivates most HCMV promoters. These experiments provide the first direct demonstration that IE-2 is required for successful HCMV infection and indicate that virus lacking IE-2 arrests early in the replication cycle.
Collapse
Affiliation(s)
- A Marchini
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
21
|
García-Ramírez JJ, Ruchti F, Huang H, Simmen K, Angulo A, Ghazal P. Dominance of virus over host factors in cross-species activation of human cytomegalovirus early gene expression. J Virol 2001; 75:26-35. [PMID: 11119570 PMCID: PMC113894 DOI: 10.1128/jvi.75.1.26-35.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) exhibits a highly restricted host range. In this study, we sought to examine the relative significance of host and viral factors in activating early gene expression of the HCMV UL54 (DNA polymerase) promoter in murine cells. Appropriate activation of the UL54 promoter at early times is essential for viral DNA replication. To study how the HCMV UL54 promoter is activated in murine cells, a transgenesis system based on yeast artificial chromosomes (YACs) was established for HCMV. A 178-kb YAC, containing a subgenomic fragment of HCMV encompassing the majority of the unique long (UL) region, was constructed by homologous recombination in yeast. This HCMV YAC backbone is defective for viral growth and lacks the major immediate-early (IE) gene region, thus permitting the analysis of essential cis-acting sequences when complemented in trans. To quantitatively measure the level of gene expression, we generated HCMV YACs containing a luciferase reporter gene inserted downstream of either the UL54 promoter or, as a control for late gene expression, the UL86 promoter, which directs expression of the major capsid protein. To determine the early gene activation pathway, point mutations were introduced into the inverted repeat 1 (IR1) element of the UL54 promoter of the HCMV YAC. In the transgenesis experiments, HCMV YACs and derivatives generated in yeast were introduced into NIH 3T3 murine cells by polyethylene glycol-mediated fusion. We found that infection of YAC, but not plasmid, transgenic lines with HCMV was sufficient to fully recapitulate the UL54 expression program at early times of infection, indicating the importance of remote regulatory elements in influencing regulation of the UL54 promoter. Moreover, YACs containing a mutant IR1 in the UL54 promoter led to reduced ( approximately 30-fold) reporter gene expression levels, indicating that HCMV major IE gene activation of the UL54 promoter is fully permissive in murine cells. In comparison with HCMV, infection of YAC transgenic NIH 3T3 lines with murine cytomegalovirus (MCMV) resulted in lower (more than one order of magnitude) efficiency in activating UL54 early gene expression. MCMV is therefore not able to fully activate HCMV early gene expression, indicating the significance of virus over host determinants in the cross-species activation of key early gene promoters. Finally, these studies show that YAC transgenesis can be a useful tool in functional analysis of viral proteins and control of gene expression for large viral genomes.
Collapse
Affiliation(s)
- J J García-Ramírez
- Departments of Immunology and Molecular Biology, Division of Virology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chen J, Stinski MF. Activation of transcription of the human cytomegalovirus early UL4 promoter by the Ets transcription factor binding element. J Virol 2000; 74:9845-57. [PMID: 11024111 PMCID: PMC102021 DOI: 10.1128/jvi.74.21.9845-9857.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) early UL4 promoter has served as a useful model for studying the activation of early viral gene expression. Previous transient-transfection experiments detected cis-acting elements (the NF-Y site and site 2) upstream of the transcriptional start site (L. Huang and M. F. Stinski, J. Virol. 69:7612-7621, 1995). The roles of two of these sites, the NF-Y site and site 2, in the context of the viral genome were investigated further by comparing mRNA levels from the early UL4 promoter in human foreskin fibroblasts infected by recombinant viruses with either wild-type or mutant cis-acting elements. Steady-state mRNA levels from the UL4 promoter with a mutation in the NF-Y site were comparable to that of wild type. A mutation in an Elk-1 site plus putative IE86 protein binding sites decreased the steady-state mRNA levels compared to the wild type at early times after infection. Electrophoretic mobility shift assays and antibody supershifts detected the binding of cellular transcription factor Elk-1 to site 2 DNA with infected nuclear extracts but not with mock-infected nuclear extracts. The role of cellular transcription factors activated by the mitogen activated protein kinase/extracellular signal-regulated kinase pathway in activating transcription from early viral promoters is discussed.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
23
|
Kim JM, Hong Y, Jeang KT, Kim S. Transactivation activity of the human cytomegalovirus IE2 protein occurs at steps subsequent to TATA box-binding protein recruitment. J Gen Virol 2000; 81:37-46. [PMID: 10640540 DOI: 10.1099/0022-1317-81-1-37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IE2 protein of human cytomegalovirus transactivates viral and cellular promoters through a wide variety of cis-elements, but the mechanism of its action has not been well characterized. Here, IE2-Sp1 synergy and IE2-TATA box-binding protein (TBP) interaction are examined by artificial recruitment of either Sp1 or TBP to the promoter. It was found that IE2 could cooperate with DNA-bound Sp1. A 117 amino acid glutamine-rich fragment of Sp1, which can interact with Drosophila TAF(II)110 and human TAF(II)130, was sufficient for the augmentation of IE2-driven transactivation. In binding assays in vitro, IE2 interacted directly with the C-terminal region of Sp1, which contains the zinc finger DNA-binding domain, but not with its transactivation domain, suggesting that synergy between IE2 and the transactivation domain of Sp1 might be mediated by other proteins such as TAF or TBP. It was also found that TBP recruitment to the promoter markedly increased IE2-mediated transactivation. Thus, IE2 acts synergistically with DNA-bound Sp1 and DNA-bound TBP. These results suggest that, in human cytomegalovirus IE2 transactivation, Sp1 functions at an early step such as recruitment of TBP and IE2 acts to accelerate rate-limiting steps after TBP recruitment.
Collapse
Affiliation(s)
- J M Kim
- Institute for Molecular Biology and Genetics, Seoul National University, Building 105, Kwan-Ak-Gu, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- E A Fortunato
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0366, USA
| | | |
Collapse
|
25
|
Li J, Yamamoto T, Ohtsubo K, Shirakata M, Hirai K. Major product pp43 of human cytomegalovirus U(L)112-113 gene is a transcriptional coactivator with two functionally distinct domains. Virology 1999; 260:89-97. [PMID: 10405360 DOI: 10.1006/viro.1999.9800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cytomegalovirus U(L)112-113 encodes four phosphoproteins, pp84, pp50, pp43, and pp34, with common amino-termini. A previous report by Kerry et al. (J. Virol. 70, 373-382, 1996) demonstrated that U(L)112-113 products activate U(L)54 promoter in cooperation with immediate-early (IE) proteins. In this study, we identified a domain required for transcriptional activation in the pp43 protein, which consisted of two distinct regions: domain I (amino acids 272-296) and domain II (amino acids 297-306). Domain I contained two long glycine stretches, and domain II was a short proline-containing region. Both of domains were required for IE2-dependent transcriptional activation. The pp43 mutant that had domain I but lacked domain II acted as a dominant negative mutant and suppressed most of the IE2-dependent activation, indicating the importance of coactivation by pp43 in this transcriptional activation. The major protein pp43 also weakly activated the promoter through IR1 element in a manner independent of IE2. Only domain I was required for this IE2-independent activation. These domains were common in pp84, pp50, and pp43 but did not exist in pp34, which did not activate transcription alone. These results suggest that the major product, pp43, of U(L)112-113 has two functionally distinct domains and plays an important role in mediating IE2-dependent transcriptional activation.
Collapse
Affiliation(s)
- J Li
- Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Yushima 1-5-45, Tokyo, Bunkyo-ku, 113-8510, Japan
| | | | | | | | | |
Collapse
|