1
|
Neira JL. Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Subcell Biochem 2024; 105:207-245. [PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry, as an analytical tool to determine molecular mass, are important biophysical methods in structural virology. Although they do not provide atomic or near-atomic details as cryogenic electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can, they do deliver important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation and interactions with other viral and cellular biomolecules. They can also be used to investigate the molecular determinants of virus particle structure and properties and the changes induced in them by external factors. In this chapter, the physical foundations of these three techniques will be described, alongside examples demonstrating their contribution in understanding the structure and physicochemical properties of virus particles.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
2
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
3
|
Dedeo CL, Teschke CM, Alexandrescu AT. Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins. Viruses 2020; 12:v12101163. [PMID: 33066635 PMCID: PMC7602432 DOI: 10.3390/v12101163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: β-tulip, β-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.
Collapse
|
4
|
Stutz C, Blein S. A single mutation increases heavy-chain heterodimer assembly of bispecific antibodies by inducing structural disorder in one homodimer species. J Biol Chem 2020; 295:9392-9408. [PMID: 32404368 PMCID: PMC7363136 DOI: 10.1074/jbc.ra119.012335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
We previously reported efficient heavy-chain assembly of heterodimeric bispecific antibodies by exchanging the interdomain protein interface of the human IgG1 CH3 dimer with the protein interface of the constant α and β domains of the human T-cell receptor, a technology known as bispecific engagement by antibodies based on the T-cell receptor (BEAT). Efficient heterodimerization in mammalian cell transient transfections was observed, but levels were influenced by the nature of the binding arms, particularly in the Fab-scFv-Fc format. In this study, we report a single amino acid change that significantly and consistently improved the heterodimerization rate of this format (≥95%) by inducing partial disorder in one homodimer species without affecting the heterodimer. Correct folding and assembly of the heterodimer were confirmed by the high-resolution (1.88-1.98 Å) crystal structure presented here. Thermal stability and 1-anilinonaphthalene-8-sulfonic acid-binding experiments, comparing original BEAT, mutated BEAT, and "knobs-into-holes" interfaces, suggested a cooperative assembly process of heavy chains in heterodimers. The observed gain in stability of the interfaces could be classified in the following rank order: mutated BEAT > original BEAT > knobs-into-holes. We therefore propose that the superior cooperativity found in BEAT interfaces is the key driver of their greater performance. Furthermore, we show how the mutated BEAT interface can be exploited for the routine preparation of drug candidates, with minimal risk of homodimer contamination using a single Protein A chromatography step.
Collapse
Affiliation(s)
- Cian Stutz
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| | - Stanislas Blein
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| |
Collapse
|
5
|
Bilkis I, Silman I, Weiner L. Generation of Reactive Oxygen Species by Photosensitizers and their Modes of Action on Proteins. Curr Med Chem 2019; 25:5528-5539. [PMID: 29303072 DOI: 10.2174/0929867325666180104153848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
In this review, we first survey the mechanisms underlying the chemical modification of amino acid residues in proteins by singlet oxygen elicited by photosensitizers. Singlet oxygen has the capacity to cause widespread chemical damage to cellular proteins. Its use in photodynamic therapy of tumors thus requires the development of methodologies for specific addressing of the photosensitizer to malignant cells while sparing normal tissue. We describe three targeting paradigms for achieving this objective. The first involves the use of a photosensitizer with a high affinity for its target protein; in this case, the photosensitizer is methylene blue for acetylcholinesterase. The second paradigm involves the use of the hydrophobic photosensitizer hypericin, which has the capacity to interact selectively with partially unfolded forms of proteins, including nascent species in rapidly dividing or virus-infected and cancer cells, acting preferentially at membrane interfaces. In this case, partially unfolded molten globule species of acetylcholinesterase serve as the model system. In the third paradigm, the photodynamic approach takes advantage of a general approach in 'state-of-the-art' chemotherapy, by coupling the photosensitizer emodin to a specific peptide hormone, GnRH, which recognizes malignant cells via specific GnRH receptors on their surface.
Collapse
Affiliation(s)
- Itzhak Bilkis
- Robert Smith Faculty of Agriculture, Food & Environment, Hebrew University, Rehovot 76 100, Israel
| | - Israel Silman
- Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Lev Weiner
- Weizmann Institute of Science, Rehovot, 76 100, Israel
| |
Collapse
|
6
|
Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Sci Rep 2016; 6:32499. [PMID: 27581352 PMCID: PMC5007486 DOI: 10.1038/srep32499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural “anti-chaperones”, i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins – the intrinsically low thermodynamic protein stability.
Collapse
|
7
|
Neira JL. Fluorescence, circular dichroism and mass spectrometry as tools to study virus structure. Subcell Biochem 2013; 68:177-202. [PMID: 23737052 DOI: 10.1007/978-94-007-6552-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry as an analytical tool to determine the molecular mass, provide important biophysical approaches in structural virology. Although they do not provide atomic, or near-atomic, details as electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can do, they do provide important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation, and interactions with other viral and cellular biomolecules. They can be used also to investigate the molecular determinants of virus particle structure and properties, and the changes induced in them by external factors. In this chapter, I describe the physical bases of these three techniques, and some examples on how they have helped us to understand virus particle structure and physicochemical properties.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain,
| |
Collapse
|
8
|
Cardone G, Heymann JB, Cheng N, Trus BL, Steven AC. Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:423-39. [PMID: 22297525 PMCID: PMC3475206 DOI: 10.1007/978-1-4614-0980-9_19] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herpesviruses, a family of animal viruses with large (125-250 kbp) linear DNA genomes, are highly diversified in terms of host range; nevertheless, their virions conform to a common architecture. The genome is confined at high density within a thick-walled icosahedral capsid with the uncommon (among viruses, generally) but unvarying triangulation number T = 16. The envelope is a membrane in which some 11 different viral glycoproteins are implanted. Between the capsid and the envelope is a capacious compartment called the tegument that accommodates ∼20-40 different viral proteins (depending on which virus) destined for delivery into a host cell. A strong body of evidence supports the hypothesis that herpesvirus capsids and those of tailed bacteriophages stem from a distant common ancestor, whereas their radically different infection apparatuses - envelope on one hand and tail on the other - reflect subsequent coevolution with divergent hosts. Here we review the molecular components of herpesvirus capsids and the mechanisms that regulate their assembly, with particular reference to the archetypal alphaherpesvirus, herpes simplex virus type 1; assess their duality with the capsids of tailed bacteriophages; and discuss the mechanism whereby, once DNA packaging has been completed, herpesvirus nucleocapsids exit from the nucleus to embark on later stages of the replication cycle.
Collapse
Affiliation(s)
- Giovanni Cardone
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Bernard Heymann
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benes L. Trus
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C. Steven
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures. J Virol 2011; 85:12698-707. [PMID: 21957296 DOI: 10.1128/jvi.05791-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.
Collapse
|
10
|
Henson BW, Johnson N, Bera A, Okoye ME, Desai KV, Desai PJ. Expression of the HSV-1 capsid protein VP19C in Escherichia coli: a single amino acid change overcomes an expression block of the full-length polypeptide. Protein Expr Purif 2010; 77:80-5. [PMID: 21193049 DOI: 10.1016/j.pep.2010.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/18/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
The herpesvirus triplex is a key structural feature of the capsids of these viruses. It is composed of a hetero-trimer of one molecule of VP19C and two molecules of VP23. It acts to stabilize capsid shells by connecting the capsomeric subunits together. Although it has been possible to over-express in Escherichia coli and purify one component of the triplex, VP23; this has not been the case with VP19C. Because an N-terminal polypeptide of VP19C could be expressed and purified using a GST affinity tag, a directed mutagenic approach was used to determine the region of VP19C that caused the block in expression of the full-length protein. The region was mapped to reside between VP19C amino acids 145 and 150 using truncation gene fusions and subsequently a single amino acid, R146 was identified which when changed to alanine, allowed stable expression and accumulation of VP19C. This change does not affect the biological function of VP19C. Finally using this altered VP19C, co-expression of the triplex proteins in the same cell has been achieved making it now possible to purify this complex for biophysical and structural studies.
Collapse
Affiliation(s)
- Brandon W Henson
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Rm. 353, CRB1, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The capsids of herpesviruses, which comprise major and minor capsid proteins, have a common icosahedral structure with 162 capsomers. An electron microscopic study shows that Epstein-Barr virus (EBV) capsids in the nucleus are immunolabeled by anti-BDLF1 and anti-BORF1 antibodies, indicating that BDLF1 and BORF1 are the minor capsid proteins of EBV. Cross-linking and electrophoresis studies of purified BDLF1 and BORF1 revealed that these two proteins form a triplex that is similar to that formed by the minor capsid proteins, VP19C and VP23, of herpes simplex virus type 1 (HSV-1). Although the interaction between VP23, a homolog of BDLF1, and the major capsid protein VP5 could not be verified biochemically in earlier studies, the interaction between BDLF1 and the EBV major capsid protein, viral capsid antigen (VCA), can be confirmed by glutathione S-transferase (GST) pulldown assay and coimmunoprecipitation. Additionally, in HSV-1, VP5 interacts with only the middle region of VP19C; in EBV, VCA interacts with both the N-terminal and middle regions of BORF1, a homolog of VP19C, revealing that the proteins in the EBV triplex interact with the major capsid protein differently from those in HSV-1. A GST pulldown study also identifies the oligomerization domains in VCA and the dimerization domain in BDLF1. The results presented herein reveal how the EBV capsid proteins interact and thereby improve our understanding of the capsid structure of the virus.
Collapse
|
12
|
The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome. J Virol 2008; 82:6654-66. [PMID: 18448531 DOI: 10.1128/jvi.00257-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Studies on the herpes simplex virus type 1 UL25-null mutant KUL25NS have shown that the capsid-associated UL25 protein is required at a late stage in the encapsidation of viral DNA. Our previous work on UL25 with the UL25 temperature-sensitive (ts) mutant ts1204 also implicated UL25 in a role at very early times in the virus growth cycle, possibly at the stage of penetration of the host cell. We have reexamined this mutant and discovered that it had an additional ts mutation elsewhere in the genome. The ts1204 UL25 mutation was transferred into wild-type (wt) virus DNA, and the UL25 mutant ts1249 was isolated and characterized to clarify the function of UL25 at the initial stages of virus infection. Indirect immunofluorescence assays and in situ hybridization analysis of virus-infected cells revealed that the mutant ts1249 was not impaired in penetration of the host cell but had an uncoating defect at the nonpermissive temperature. When ts1249-infected cells were incubated initially at the permissive temperature to allow uncoating of the viral genome and subsequently transferred to the restrictive temperature, a DNA-packaging defect was evident. The results suggested that ts1249, like KUL25NS, had a block at a late stage of DNA packaging and that the packaged genome was shorter than the full-length genome. Examination of ts1249 capsids produced at the nonpermissive temperature revealed that, in comparison with wt capsids, they contained reduced amounts of UL25 protein, thereby providing a possible explanation for the failure of ts1249 to package full-length viral DNA.
Collapse
|
13
|
Greene LH, Wijesinha-Bettoni R, Redfield C. Characterization of the Molten Globule of Human Serum Retinol-Binding Protein Using NMR Spectroscopy,. Biochemistry 2006; 45:9475-84. [PMID: 16878982 DOI: 10.1021/bi060229c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molten globule state is a partially folded conformer of proteins that has been the focus of intense study for more than two decades. This non-native fluctuating conformation has been linked to protein-folding intermediates, to biological function, and more recently to precursors in amyloid fibril formation. The molten globule state of human serum retinol-binding protein (RBP) has been postulated previously to be involved in the mechanism of ligand release (Ptitsyn, O. B., et al. (1993) FEBS Lett. 317, 181-184). Conserved residues within RBP have been identified and proposed to be key to folding and stability, although a link to a molten globule state has not previously been shown (Greene, L. H., et al. (2003) FEBS Lett. 553, 39-44). In this work, a detailed characterization of the acid-induced molten globule of RBP is presented. Using stopped-flow fluorescence spectroscopy in the presence of 8-anilino-1-naphthalene sulfonic acid (ANS), we show that RBP populates a state with molten-globule-like characteristics early in refolding. To gain insight into the structural features of the molten globule of RBP, we have monitored the denaturant-induced unfolding of this ensemble using NMR spectroscopy. The transition at the level of individual residues is significantly more cooperative than that found previously for the archetypal molten globule, alpha-lactalbumin (alpha-LA); this difference may be due to a predominantly beta-sheet structure present in RBP in contrast to the alpha-helical nature of the alpha-LA molten globule.
Collapse
Affiliation(s)
- Lesley H Greene
- Department of Biochemistry and Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
14
|
Thurlow JK, Murphy M, Stow ND, Preston VG. Herpes simplex virus type 1 DNA-packaging protein UL17 is required for efficient binding of UL25 to capsids. J Virol 2006; 80:2118-26. [PMID: 16474120 PMCID: PMC1395399 DOI: 10.1128/jvi.80.5.2118-2126.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 packages its DNA genome into a precursor capsid, referred to as the procapsid. Of the three capsid-associated DNA-packaging proteins, UL17, UL25, and UL6, only UL17 and UL6 appear to be components of the procapsid, with UL25 being added subsequently. To determine whether the association of UL17 or UL25 with capsids was dependent on the other two packaging proteins, B capsids, which lack viral DNA but retain the cleaved internal scaffold, were purified from nonpermissive cells infected with UL17, UL25, or UL6 null mutants and compared with wild-type (wt) B capsids. In the absence of UL17, the levels of UL25 in the mutant capsids were much lower than those in wt B capsids. These results suggest that UL17 is required for efficient incorporation of UL25 into B capsids. B capsids lacking UL25 contained about twofold-less UL17 than wt capsids, raising the possibilities that UL25 is important for stabilizing UL17 in capsids and that the two proteins interact in the capsid. The distribution of UL17 and UL25 on B capsids was examined using immunogold labeling. Both proteins appeared to bind to multiple sites on the capsid. The properties of the UL17 and UL25 proteins are consistent with the idea that the two proteins are important in stabilizing capsid-DNA structures rather than having a direct role in DNA packaging.
Collapse
|
15
|
Okoye ME, Sexton GL, Huang E, McCaffery JM, Desai P. Functional analysis of the triplex proteins (VP19C and VP23) of herpes simplex virus type 1. J Virol 2006; 80:929-40. [PMID: 16378995 PMCID: PMC1346874 DOI: 10.1128/jvi.80.2.929-940.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The triplex of herpesvirus capsids is a unique structural element. In herpes simplex virus type 1 (HSV-1), one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent VP5 molecules. The interaction between VP19C and VP23 was inferred by yeast cryoelectron microscopy studies and subsequently confirmed by the two-hybrid assay. In order to define the functional domains of VP19C and VP23, a Tn7-based transposon was used to randomly insert 15 bp into the coding regions of these two proteins. The mutants were initially screened for interaction in the yeast two-hybrid assay to identify the domains important for triplex formation. Using genetic complementation assays in HSV-1-infected cells, the domains of each protein required for virus replication were similarly uncovered. The same mutations that abolish interaction between these two proteins in the yeast two-hybrid assay similarly failed to complement the growth of the VP23- and VP19C-null mutant viruses in the genetic complementation assay. Some of these mutants were transferred into recombinant baculoviruses to analyze the effect of the mutations on herpesvirus capsid assembly in insect cells. The mutations that abolished the interaction in the yeast two-hybrid assay also abolished capsid assembly in insect cells. The outcome of these experiments showed that insertions in at least four regions and especially the amino terminus of VP23 abolished function, whereas the amino terminus of VP19C can tolerate transposon insertions. A novel finding of these studies was the ability to assemble herpesvirus capsids in insect cells using VP5 and VP19C that contained a histidine handle at their amino terminus.
Collapse
Affiliation(s)
- Mercy E Okoye
- Molecular Virology Laboratories, Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
16
|
Thurlow JK, Rixon FJ, Murphy M, Targett-Adams P, Hughes M, Preston VG. The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J Virol 2005; 79:150-8. [PMID: 15596811 PMCID: PMC538745 DOI: 10.1128/jvi.79.1.150-158.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 08/31/2004] [Indexed: 11/20/2022] Open
Abstract
The UL17 protein of herpes simplex virus type 1 is essential for packaging the viral genome into the procapsid, a spherical assembly intermediate, and is present in the mature virus particle. We have examined the distribution of UL17 in various assembly products and virions to determine which component of the virus particle UL17 is associated with and at what stage in capsid assembly UL17 is required. UL17 was present in the procapsid, in the DNA-containing angularized C capsid, and in two other angularized capsid forms, A and B, that lack DNA and are thought to be dead-end products. The results suggest that UL17 is a minor capsid protein which is incorporated into the procapsid during assembly of the particle. UL17 was also found in virions and in noninfectious structures known as light (L) particles, which possess a tegument and envelope but lack a capsid. The level of UL17 in these particles was much greater than the amount that could be attributed to capsid contamination of the purified L-particle preparation, suggesting that UL17 is also a tegument protein. The finding that virions contain approximately twofold more UL17 than do C capsids provided further support for the idea that UL17 is present in two different structural components within the mature virion. The UL25 packaging protein, which is also present in virions, was not found in significant amounts in L particles, indicating that it is associated only with the capsid. UL6, the third virion-associated packaging protein, was present in slightly increased levels in L particles.
Collapse
|
17
|
Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RAJ, White JH, Barlow PN. Structural Analysis of the Complement Control Protein (CCP) Modules of GABAB Receptor 1a. J Biol Chem 2004; 279:48292-306. [PMID: 15304491 DOI: 10.1074/jbc.m406540200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type B (GABA(B)) receptor is a heterodimeric G-protein-coupled receptor. In humans, three splice variants of the GABA(B) receptor 1 (R1) subunit differ in having one, both, or neither of two putative complement control protein (CCP) modules at the extracellular N terminus, prior to the GABA-binding domain. The in vivo function of these predicted modules remains to be discovered, but a likely association with extracellular matrix proteins is intriguing. The portion of the GABA(B) R1a variant encompassing both of its CCP module-like sequences has been expressed, as have the sequences corresponding to each individual module. Each putative CCP module exhibits the expected pattern of disulfide formation. However, the second module (CCP2) is more compactly folded than the first, and the three-dimensional structure of this more C-terminal module (expressed alone) was solved on the basis of NMR-derived nuclear Overhauser effects. This revealed a strong similarity to previously determined CCP module structures in the regulators of complement activation. The N-terminal module (CCP1) displayed conformational heterogeneity under a wide range of conditions whether expressed alone or together with CCP2. Several lines of evidence indicated the presence of native disorder in CCP1, despite the fact that recombinant CCP1 contributes to binding to the extracellular matrix protein fibulin-2. Thus, we have shown that the two CCP modules of GABA(B) R1a have strikingly different structural properties, reflecting their different functions.
Collapse
Affiliation(s)
- Stanislas Blein
- Edinburgh Protein Interaction Centre, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Bentley A Fane
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
19
|
Umashankar M, Murthy MRN, Savithri HS. Mutation of interfacial residues disrupts subunit folding and particle assembly of Physalis mottle tymovirus. J Biol Chem 2003; 278:6145-52. [PMID: 12477730 DOI: 10.1074/jbc.m207992200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Virus-like particles (VLPs) serve as excellent model systems to identify the pathways of virus assembly. To gain insights into the assembly mechanisms of the Physalis mottle tymovirus (PhMV), six interfacial residues, identified based on the crystal structure of the native and recombinant capsids, were targeted for mutagenesis. The Q37E, Y67A, R68Q, D83A, I123A, and S145A mutants of the PhMV recombinant coat protein (rCP) expressed in Escherichia coli were soluble. However, except for the S145A mutant, which assembled into VLPs similar to that of wild type rCP capsids, all the other mutants failed to assemble into VLPs. Furthermore, the purified Q37E, Y67A, R68Q, D83A, and I123A rCP mutants existed essentially as partially folded monomers as revealed by sucrose density gradient analysis, circular dichroism, fluorescence, thermal, and urea denaturation studies. The rCP mutants locked into such conformations probably lack the structural signals/features that would allow them to assemble into capsids. Thus, the mutation of residues involved in inter-subunit interactions in PhMV disrupts both subunit folding and particle assembly.
Collapse
|
20
|
Abstract
In this article we have attempted to describe some structural aspects of large viruses. Although this may seem a straightforward task, it is complicated by the fact that large viruses do not represent a distinctive class of organisms and any grouping under this heading will include a range of unrelated viruses with different structures, replication strategies, and host types. To simplify matters we limited our definition to dsDNA viruses with genomes of 100 kbp or larger. However, even this restricted grouping includes viruses with diverse and seemingly unrelated structures. Furthermore, few if any structural features are exclusive to large viruses and most of what appears distinctive about their structure or assembly can also be found in smaller, and usually better characterized, viruses. Therefore we have not attempted to provide a comprehensive catalog of the properties of large viruses but have tried to illustrate particular structural points with examples from a few of the better known forms, notably herpes simplex virus (HSV) and phage T4. The two techniques used to provide rigorous analyses of virus structures are X-ray crystallography and electron cryomicroscopy with computer-assisted reconstruction. To date, X-ray crystallography has been successful only with smaller viruses, and what is known about the structures of these large viruses has come primarily from electron cryomicroscopy. However, with the notable exception of the HSV capsid, such studies have been limited in extent and of relatively low resolution, and the information obtained has been confined largely to describing the spatial distributions and relationships between the subunits. Nevertheless, these studies have given us our clearest insights into the biology of these complex particles and increases in resolution promise to extend these insights by bridging the gap between gross and atomic structures, as exemplified by the identification and mapping of secondary structural elements in the HSV capsid.
Collapse
Affiliation(s)
- Frazer J Rixon
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | |
Collapse
|
21
|
McClelland DA, Aitken JD, Bhella D, McNab D, Mitchell J, Kelly SM, Price NC, Rixon FJ. pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. J Virol 2002; 76:7407-17. [PMID: 12097553 PMCID: PMC136365 DOI: 10.1128/jvi.76.15.7407-7417.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Assembly of the infectious herpes simplex virus type 1 virion is a complex, multistage process that begins with the production of a procapsid, which is formed by the condensation of capsid shell proteins around an internal scaffold fashioned from multiple copies of the scaffolding protein, pre-VP22a. The ability of pre-VP22a to interact with itself is an essential feature of this process. However, this self-interaction must subsequently be reversed to allow the scaffolding proteins to exit from the capsid to make room for the viral genome to be packaged. The nature of the process by which dissociation of the scaffold is accomplished is unknown. Therefore, to investigate this process, the properties of isolated scaffold particles were investigated. Electron microscopy and gradient sedimentation studies showed that the particles could be dissociated by low concentrations of chaotropic agents and by moderate reductions in pH (from 7.2 to 5.5). Fluorescence spectroscopy and circular dichroism analyses revealed that there was relatively little change in tertiary and secondary structures under these conditions, indicating that major structural transformations are not required for the dissociation process. We suggest the possibility that dissociation of the scaffold may be triggered by a reduction in pH brought about by the entry of the viral DNA into the capsid.
Collapse
Affiliation(s)
- David A McClelland
- MRC Virology Unit, Faculty of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
What is the first step in protein folding - hydrophobic collapse (compaction) or secondary structure formation? It is still not clear if the major driving force in protein folding is hydrogen bonding or hydrophobic interactions or both. We analyzed data on the conformational characteristics of 41 globular proteins in native and partially folded conformational states. Our analysis shows that a good correlation exists between relative decrease in hydrodynamic volume and increase in secondary structure content. No compact equilibrium intermediates lacking secondary structure, or highly ordered non-compact species, were found. This correlation provides experimental support for the hypothesis that hydrophobic collapse occurs simultaneously with formation of secondary structure in the early stages of the protein folding.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142292, Moscow Region, Pushchino, Russia.
| | | |
Collapse
|
23
|
Abstract
Structural descriptions of viral particles are key to our understanding of their assembly mechanisms and properties. We will describe the application of X-ray crystallography and electron cryomicroscopy to the structural determination of the bluetongue virus core and the herpesvirus capsid. These represent the highest resolution structural studies carried out by these techniques on such complex and large icosahedral virus particles. The bluetongue virus core consists of two layers of distinct proteins with different protein packing symmetries, while the herpes virus capsid is made up of four types of proteins with 3.3 MDa per asymmetric unit. The structural results reveal that each of these proteins has distinct folds and they are packed uniquely to form stable particles.
Collapse
Affiliation(s)
- Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
24
|
Jiang W, Baker ML, Ludtke SJ, Chiu W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J Mol Biol 2001; 308:1033-44. [PMID: 11352589 DOI: 10.1006/jmbi.2001.4633] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Due to large sizes and complex nature, few large macromolecular complexes have been solved to atomic resolution. This has lead to an under-representation of these structures, which are composed of novel and/or homologous folds, in the library of known structures and folds. While it is often difficult to achieve a high-resolution model for these structures, X-ray crystallography and electron cryomicroscopy are capable of determining structures of large assemblies at low to intermediate resolutions. To aid in the interpretation and analysis of such structures, we have developed two programs: helixhunter and foldhunter. Helixhunter is capable of reliably identifying helix position, orientation and length using a five-dimensional cross-correlation search of a three-dimensional density map followed by feature extraction. Helixhunter's results can in turn be used to probe a library of secondary structure elements derived from the structures in the Protein Data Bank (PDB). From this analysis, it is then possible to identify potential homologous folds or suggest novel folds based on the arrangement of alpha helix elements, resulting in a structure-based recognition of folds containing alpha helices. Foldhunter uses a six-dimensional cross-correlation search allowing a probe structure to be fitted within a region or component of a target structure. The structural fitting therefore provides a quantitative means to further examine the architecture and organization of large, complex assemblies. These two methods have been successfully tested with simulated structures modeled from the PDB at resolutions between 6 and 12 A. With the integration of helixhunter and foldhunter into sequence and structural informatics techniques, we have the potential to deduce or confirm known or novel folds in domains or components within large complexes.
Collapse
Affiliation(s)
- W Jiang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Viruses assemble protective capsids from several copies of one or a few structural proteins. This is accomplished through a combination of conformational flexibility and control mechanisms that restrict this flexibility. This review will discuss some of these mechanisms in light of the many recent results in this area.
Collapse
Affiliation(s)
- T Dokland
- Institute of Molecular Agrobiology, The National University of Singapore.
| |
Collapse
|
26
|
Abstract
Human herpesviruses are large and structurally complex viruses that cause a variety of diseases. The three-dimensional structure of the herpesvirus capsid has been determined at 8.5 angstrom resolution by electron cryomicroscopy. More than 30 putative alpha helices were identified in the four proteins that make up the 0.2 billion-dalton shell. Some of these helices are located at domains that undergo conformational changes during capsid assembly and DNA packaging. The unique spatial arrangement of the heterotrimer at the local threefold positions accounts for the asymmetric interactions with adjacent capsid components and the unusual co-dependent folding of its subunits.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Weiner L, Roth E, Mazur Y, Silman I. Targeted cross-linking of a molten globule form of acetylcholinesterase by the virucidal agent hypericin. Biochemistry 1999; 38:11401-5. [PMID: 10471290 DOI: 10.1021/bi991147+] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natural product hypericin is a photosensitive polycyclic aromatic dione compound, which has been widely investigated because of its virucidal and antitumor properties. Although it has been suggested that singlet oxygen or a radical species might be responsible for its biological action, its mechanism of action remains unknown. Due to its amphiphilic characteristics, we considered the possibility that it might interact preferentially with partially unfolded proteins which exhibit exposed hydrophobic surfaces. We here demonstrate that hypericin binds to a molten globule species generated from Torpedo acetylcholinesterase, but not to the corresponding native enzyme. Irradiation with visible light, under aerobic conditions, causes chemical cross-linking of the catalytic subunits, to dimers and heavier species, under conditions where no cross-linking is observed for the native enzyme. Both anaerobiosis and sodium azide greatly reduce the extent of cross-linking, suggesting that singlet oxygen is responsible for the phenomenon. This agrees with our observation, using spin traps, that mainly singlet oxygen is produced by the complex of hypericin with the molten globule of acetylcholinesterase. Cross-linking is enhanced in the presence of liposomes to which the molten globule of acetylcholinesterase is quantitatively adsorbed. This may be due to high local concentrations of both hypericin and the protein resulting in close proximity, and hence in a high yield of cross-linking. Molten globule species are believed to be intermediates in both protein folding and translocation through biological membranes. Thus, hypericin may serve as a valuable tool for trapping such intermediates. This might also explain its therapeutic effectiveness toward virus-infected or tumor cells.
Collapse
Affiliation(s)
- L Weiner
- Departments of Chemical Services, Neurobiology, and Organic Chemistry, The Weizmann Institute of Science, Israel.
| | | | | | | |
Collapse
|
28
|
Saad A, Zhou ZH, Jakana J, Chiu W, Rixon FJ. Roles of triplex and scaffolding proteins in herpes simplex virus type 1 capsid formation suggested by structures of recombinant particles. J Virol 1999; 73:6821-30. [PMID: 10400780 PMCID: PMC112767 DOI: 10.1128/jvi.73.8.6821-6830.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typical herpes simplex virus (HSV) capsids contain seven proteins that form a T=16 icosahedron of 1,250-A diameter. Infection of cells with recombinant baculoviruses expressing two of these proteins, VP5 (which forms the pentons and hexons in typical HSV capsids) and VP19C (a component of the triplexes that connect adjacent capsomeres), results in the formation of spherical particles of 880-A diameter. Electron cryomicroscopy and computer reconstruction revealed that these particles possess a T=7 icosahedral symmetry, having 12 pentons and 60 hexons. Among the characteristic structural features of the particle are the skewed appearance of the hexons and the presence of intercapsomeric mass densities connecting the middle domain of one hexon subunit to the lower domain of a subunit in the adjacent hexon. We interpret these connecting masses as being formed by VP19C. Comparison of the connecting masses with the triplexes, which occupy equivalent positions in the T=16 capsid, reveals the probable locations of the single VP19C and two VP23 molecules that make up the triplex. Their arrangement suggests that the two triplex proteins have different roles in controlling intercapsomeric interactions and capsid stability. The nature of these particles and of other aberrant forms made in the absence of scaffold demonstrates the conformational adaptability of the capsid proteins and illustrates how VP23 and the scaffolding protein modulate the nature of the VP5-VP19C network to ensure assembly of the functional T=16 capsid.
Collapse
Affiliation(s)
- A Saad
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|