1
|
Tessmer C, Plotzky C, Fees J, Welsch H, Eudenbach R, Faber M, Simón A, Angelova A, Rommelaere J, Hofmann I, Nüesch JPF. Generation and Validation of Monoclonal Antibodies Suitable for Detecting and Monitoring Parvovirus Infections. Pathogens 2022; 11:pathogens11020208. [PMID: 35215151 PMCID: PMC8877868 DOI: 10.3390/pathogens11020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
For many applications it is necessary to detect target proteins in living cells. This is particularly the case when monitoring viral infections, in which the presence (or absence) of distinct target polypeptides potentially provides vital information about the pathology caused by the agent. To obtain suitable tools with which to monitor parvoviral infections, we thus generated monoclonal antibodies (mAbs) in order to detect the major non-structural protein NS1 in the intracellular environment and tested them for sensitivity and specificity, as well as for cross-reactivity towards related species. Using different immunogens and screening approaches based on indirect immunofluorescence, we describe here a panel of mAbs suitable for monitoring active infections with various parvovirus species by targeting the major non-structural protein NS1. In addition to mAbs detecting the NS1 of parvovirus H-1 (H-1PV) (belonging to the Rodent protoparvovirus 1 species, which is currently under validation as an anti-cancer agent), we generated tools with which to monitor infections by human cutavirus (CuV) and B19 virus (B19V) (belonging to the Primate protoparvovirus 3 and the Primate erythroparvovirus 1 species, respectively, which were both found to persistently infect human tissues). As well as mAbs able to detect NS1 from a broad range of parvoviruses, we obtained entities specific for either (distinct) members of the Rodent protoparvovirus 1 species, human CuV, or human B19V.
Collapse
Affiliation(s)
- Claudia Tessmer
- Genomics and Proteomics Core Facility, Unit Antibodies, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.T.); (I.H.)
| | - Claudia Plotzky
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Jana Fees
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Hendrik Welsch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Rebecca Eudenbach
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Martin Faber
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Alicia Simón
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Assia Angelova
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.A.); (J.R.)
| | - Jean Rommelaere
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.A.); (J.R.)
| | - Ilse Hofmann
- Genomics and Proteomics Core Facility, Unit Antibodies, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.T.); (I.H.)
| | - Jürg P. F. Nüesch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
- Correspondence: ; Tel.: +49-6221-424982; Fax: +49-6221-424971
| |
Collapse
|
2
|
Hung KC, Huang ZY, Yow JL, Hsu TC, Tzang BS. Effect of N‑terminal region of human parvovirus B19‑VP1 unique region on cardiac injury in naïve mice. Mol Med Rep 2021; 24:759. [PMID: 34476499 PMCID: PMC8436207 DOI: 10.3892/mmr.2021.12399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
A unique region of human parvovirus B19 virus-VP1 (B19V–VP1u) has been linked to a variety of cardiac disorders. However, the precise role of B19V–VP1u in inducing cardiac injury remains unknown. The present study investigated the effects of B19V–VP1u and different regions of B19V–VP1u, including B19V–VP1uA (residues 1–60), B19V–VP1uB (residues 61–129), B19V–VP1uC (residues 130–195) and B19V–VP1uD (residues 196–227), on inducing cardiac injury in naïve mice by zymography, immunoblotting, H&E staining and cytokine immunoassay. A significantly higher MMP-9/MMP-2 ratio and increased levels of inflammatory cytokines, including IL-6 and IL-1β, were detected in the left ventricles of the mice injected with B19V-non-structural protein 1 (B19V-NS1) and B19V–VP1u, accompanied by increased expression levels of phosphorylated (p-)ERK and p-P38. Significantly upregulated expression levels of atrial natriuretic peptide (ANP), heart-type fatty acid-binding protein (H-FABP) and creatine kinase isoenzyme-MB (CK-MB), which are well-known cardiac injury markers, as well as increased infiltration of lymphocytes, were detected in the left ventricles of the mice injected with B19V–VP1, B19V-NS1 and B19V–VP1u. Moreover, a significantly higher MMP-9/MMP-2 ratio and increased levels of IL-6 and IL-1β were observed in the left ventricles of the mice injected with B19V–VP1u, B19V–VP1u-A, B19V–VP1u-B and B19V–VP1u-C, accompanied by upregulated p-ERK and p-P38 expression. Notably, significantly lower levels of IL-6 and IL-1β were observed in the left ventricles of the mice injected with B19V–VP1uD. Furthermore, significantly increased ANP, H-FABP and CK-MB expression levels were detected in the left ventricles of the mice injected with B19V–VP1u, B19V–VP1u-A and B19V–VP1u-B, along with enhanced infiltration of lymphocytes. Significantly higher serum IL-1β, IL-6, TNF-α and IFN-γ levels were also detected in the mice injected with B19V–VP1u, B19V–VP1u-A and B19V–VP1u-B. To the best of our knowledge, the findings of the present study were the first to demonstrate that the N-terminal region (residues 1–129) of B19V–VP1u induces an increase in the levels of cardiac injury markers, thus providing evidence for understanding the possible functional regions within B19V–VP1u.
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Zi-Yun Huang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jia Le Yow
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Neulinger-Muñoz M, Schaack D, Grekova SP, Bauer AS, Giese T, Salg GA, Espinet E, Leuchs B, Heller A, Nüesch JPF, Schenk M, Volkmar M, Giese NA. Human Retrotransposons and the Global Shutdown of Homeostatic Innate Immunity by Oncolytic Parvovirus H-1PV in Pancreatic Cancer. Viruses 2021; 13:v13061019. [PMID: 34071585 PMCID: PMC8228339 DOI: 10.3390/v13061019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Although the oncolytic parvovirus H-1PV has entered clinical trials, predicting therapeutic success remains challenging. We investigated whether the antiviral state in tumor cells determines the parvoviral oncolytic efficacy. The interferon/interferon-stimulated genes (IFN/ISG)-circuit and its major configurator, human endogenous retroviruses (HERVs), were evaluated using qRT-PCR, ELISA, Western blot, and RNA-Seq techniques. In pancreatic cancer cell lines, H-1PV caused a late global shutdown of innate immunity, whereby the concomitant inhibition of HERVs and IFN/ISGs was co-regulatory rather than causative. The growth-inhibitory IC50 doses correlated with the power of suppression but not with absolute ISG levels. Moreover, H-1PV was not sensitive to exogenous IFN despite upregulated antiviral ISGs. Such resistance questioned the biological necessity of the oncotropic ISG-shutdown, which instead might represent a surrogate marker for personalized oncolytic efficacy. The disabled antiviral homeostasis may modify the activity of other viruses, as demonstrated by the reemergence of endogenous AluY-retrotransposons. This way of suppression may compromise the interferogenicity of drugs having gemcitabine-like mechanisms of action. This shortcoming in immunogenic cell death induction is however amendable by immune cells which release IFN in response to H-1PV.
Collapse
Affiliation(s)
- Matthias Neulinger-Muñoz
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Dominik Schaack
- Department of Anesthesiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Svetlana P. Grekova
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Andrea S. Bauer
- German Cancer Research Center (DKFZ), Division of Functional Genome Analysis, 69120 Heidelberg, Germany;
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Partner Site Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Gabriel A. Salg
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Elisa Espinet
- German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, 69120 Heidelberg, Germany;
- HI-STEM—Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- German Cancer Research Center (DKFZ), Division of Tumor Virology, 69120 Heidelberg, Germany;
| | - Anette Heller
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Jürg P. F. Nüesch
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis F170, 69120 Heidelberg, Germany;
| | - Miriam Schenk
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Michael Volkmar
- German Cancer Research Center (DKFZ), Division of Molecular Oncology of Gastrointestinal Tumors, 69120 Heidelberg, Germany;
| | - Nathalia A. Giese
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Minute Virus of Canines NP1 Protein Governs the Expression of a Subset of Essential Nonstructural Proteins via Its Role in RNA Processing. J Virol 2017; 91:JVI.00260-17. [PMID: 28356522 DOI: 10.1128/jvi.00260-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/24/2017] [Indexed: 12/24/2022] Open
Abstract
Parvoviruses use a variety of means to control the expression of their compact genomes. The bocaparvovirus minute virus of canines (MVC) encodes a small, genus-specific protein, NP1, which governs access to the viral capsid gene via its role in alternative polyadenylation and alternative splicing of the single MVC pre-mRNA. In addition to NP1, MVC encodes five additional nonstructural proteins (NS) that share an initiation codon at the left end of the genome and which are individually encoded by alternative multiply spliced mRNAs. We found that three of these proteins were encoded by mRNAs that excise the NP1-regulated MVC intron immediately upstream of the internal polyadenylation site, (pA)p, and that generation of these proteins was thus regulated by NP1. Splicing of their progenitor mRNAs joined the amino termini of these proteins to the NP1 open reading frame, and splice site mutations that prevented their expression inhibited virus replication in a host cell-dependent manner. Thus, in addition to controlling capsid gene access, NP1 also controls the expression of three of the five identified NS proteins via its role in governing MVC pre-mRNA splicing.IMPORTANCE The Parvovirinae are small nonenveloped icosahedral viruses that are important pathogens in many animal species, including humans. Minute virus of canine (MVC) is an autonomous parvovirus in the genus Bocaparvovirus It has a single promoter that generates a single pre-mRNA. NP1, a small genus-specific MVC protein, participates in the processing of this pre-mRNA and so controls capsid gene access via its role in alternative internal polyadenylation and splicing. We show that NP1 also controls the expression of three of the five identified NS proteins via its role in governing MVC pre-mRNA splicing. These NS proteins together are required for virus replication in a host cell-dependent manner.
Collapse
|
5
|
Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC. DNA Binding and Cleavage by the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry 2016; 55:6577-6593. [PMID: 27809499 DOI: 10.1021/acs.biochem.6b00534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infection with human parvovirus B19 (B19V) has been associated with a myriad of illnesses, including erythema infectiosum (Fifth disease), hydrops fetalis, arthropathy, hepatitis, and cardiomyopathy, and also possibly the triggering of any number of different autoimmune diseases. B19V NS1 is a multidomain protein that plays a critical role in viral replication, with predicted nuclease, helicase, and gene transactivation activities. Herein, we investigate the biochemical activities of the nuclease domain (residues 2-176) of B19V NS1 (NS1-nuc) in sequence-specific DNA binding of the viral origin of replication sequences, as well as those of promoter sequences, including the viral p6 and the human p21, TNFα, and IL-6 promoters previously identified in NS1-dependent transcriptional transactivation. NS1-nuc was found to bind with high cooperativity and with multiple (five to seven) copies to the NS1 binding elements (NSBE) found in the viral origin of replication and the overlapping viral p6 promoter DNA sequence. NS1-nuc was also found to bind cooperatively with at least three copies to the GC-rich Sp1 binding sites of the human p21 gene promoter. Only weak or nonspecific binding of NS1-nuc to the segments of the TNFα and IL-6 promoters was found. Cleavage of DNA by NS1-nuc occurred at the expected viral sequence (the terminal resolution site), but only in single-stranded DNA, and NS1-nuc was found to covalently attach to the 5' end of the DNA at the cleavage site. Off-target cleavage by NS1-nuc was also identified.
Collapse
Affiliation(s)
- Jonathan L Sanchez
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Zachary Romero
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States
| | - Angelica Quinones
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States.,BUILDing SCHOLARS Program, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Kristiane R Torgeson
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Hou Q, Su J, Wang J, Li Z, Mao Y, Wang S, Xi J, Liu W. The phosphorylation of Ser221 in VP2 of mink enteritis virus and its roles in virus amplification. Virus Res 2016; 217:76-84. [PMID: 26972166 DOI: 10.1016/j.virusres.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
Recent reports have indicated that phosphorylation of capsid proteins plays an important role in virion assemblage. Autonomous parvoviruses are among the smallest known viruses with an ssDNA genome enclosed within an icosahedral capsid. Here, we demonstrate that a structural protein (VP2) of one member, mink enteritis virus (MEV), is phosphorylated at serine-221 (Ser221) in vivo. Mutant viruses containing an S221A non-phosphorylatable alanine substitution, or an S221E glutamic acid substitution to mimic serine phosphorylation, were able to express VP2 but had either limited ability or were unable to propagate in feline F81 cells. We propose a new mechanism whereby VP2 phosphorylation plays an essential role in amplification during MEV infection.
Collapse
Affiliation(s)
- Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhili Li
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Shuang Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Li G, Li M, Xu W, Zhou Q, Hu Z, Tang Q, Chen K, Yao Q. Regulation of BmBDV NS1 by phosphorylation: Impact of mutagenesis at consensus phosphorylation sites on ATPase activity and cytopathic effects. J Invertebr Pathol 2015; 133:66-72. [PMID: 26686834 DOI: 10.1016/j.jip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Bombyx mori bidensovirus (BmBDV) is a single-stranded DNA virus belonging to the Bidensovirus genus, Bidnaviridae family. Previous studies showed that parvovirus nonstructural protein 1 (NS1) contains endonuclease, helicase, and ATPase activities and that these activities are regulated by serine/threonine phosphorylation. We have reported that residue Thr-184 site of BmBDV NS1 is phosphorylated, and that residues of Thr-181 and Thr-191 are potentially phosphorylated. However, whether phosphorylation affects BmBDV NS1 activities remains unclear. In this study, the substitution of threonine with Glycine at positions 181, 184 and 191 of BmBDV NS1 reduced its ATPase activity. After wild-type NS1 was treated with calf intestinal alkaline phosphatase (CIP), ATPase activity decreased significantly. Moreover, silkworms that were injected with recombinant viruses carrying these NS1 mutations exhibited significant increases in the median lethal time to death compared with silkworms that were injected with a virus that expressed wild-type NS1. In conclusion, these results showed that the ATPase activity and virulence of BmBDV NS1 are regulated via phosphorylation.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | - Mangmang Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Wu Xu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qian Zhou
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
8
|
Sun J, Huang L, Wei Y, Wang Y, Chen D, Du W, Wu H, Feng L, Liu C. Identification of three PPV1 VP2 protein-specific B cell linear epitopes using monoclonal antibodies against baculovirus-expressed recombinant VP2 protein. Appl Microbiol Biotechnol 2015; 99:9025-36. [PMID: 26153140 DOI: 10.1007/s00253-015-6790-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022]
Abstract
Porcine parvovirus type 1 (PPV1) is a major causative agent of embryonic and fetal death in swine. The PPV1 VP2 protein is closely associated with viral immunogenicity for eliciting neutralizing antibodies, but its antigenic structures have been largely unknown. We generated three monoclonal antibodies (MAbs) against baculovirus-expressed recombinant PPV1 VP2 protein. A PEPSCAN analysis identified the minimal B cell linear epitopes of PPV1 VP2 based on these MAbs. Three core epitopes, (228)QQITDA(233), (284)RSLGLPPK(291), and (344)FEYSNGGPFLTPI(356), were defined and mapped onto three-dimensional models of the PPV1 virion and VP2 monomer. The epitope (228)QQITDA(233) is exposed on the virion surface, and the other two are located inside the protein. An alignment of the PPV1 VP2 amino acid sequences showed that (284)RSLGLPPK(291) and (344)FEYSNGGPFLTPI(356) are absolutely conserved, whereas (228)QQITDA(233) has a single substitution at residue 233 in some (S → A or T). We developed a VP2 epitope-based indirect enzyme-linked immunosorbent assay (iELISA) to test for anti-PPV1 antibodies. In a comparative analysis with an immunoperoxidase monolayer assay using 135 guinea pig sera, the VP2-epitope-based iELISA had a concordance rate of 85.19 %, sensitivity of 83.33 %, and specificity of 85.47 %. MAb 8H6 was used to monitor VP2 during the PPV1 replication cycle in vitro with an indirect immunofluorescence assay, which indicated that newly encapsulated virions are released from the nucleus at 24 h postinfection and the PPV1 replication cycle takes less than 24 h. This study provides valuable information clarifying the antigenic structure of PPV1 VP2 and lays the foundations for PPV1 serodiagnosis and antigen detection.
Collapse
Affiliation(s)
- Jianhui Sun
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Liping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Yanwu Wei
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Yiping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Dongjie Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Wenjuan Du
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Hongli Wu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Changming Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.
| |
Collapse
|
9
|
Geletneky K, Nüesch JP, Angelova A, Kiprianova I, Rommelaere J. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13:17-24. [PMID: 25841215 DOI: 10.1016/j.coviro.2015.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
The H-1 parvovirus (H-1PV) exerts oncosuppressive action that has two components: oncotoxicity and immunostimulation. While many human tumor cells, including conventional drug-resistant ones, can be killed by H-1PV, some fail to support progeny virus production, necessary for infection propagation in neoplastic tissues. This limitation can be overcome through forced selection of H-1PV variants capable of enhanced multiplication and spreading in human tumor cells. In the context of further developing H-1PV for use in cancer therapy, arming it with immunostimulatory CpG motifs under conditions preserving replication and oncolysis enhances its action as an anticancer vaccine adjuvant. A first clinical study of H-1PV treatment in glioma patients has yielded evidence of intratumoral synthesis of the viral oncotoxic protein NS1 and immune cell infiltration.
Collapse
Affiliation(s)
- Karsten Geletneky
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany; Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany
| | - Jürg Pf Nüesch
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Assia Angelova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Irina Kiprianova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Nüesch JPF, Rommelaere J. Tumor suppressing properties of rodent parvovirus NS1 proteins and their derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:99-124. [PMID: 25001533 DOI: 10.1007/978-1-4471-6458-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer chemotherapy with monospecific agents is often hampered by the rapid development of tumor resistance to the drug used. Therefore, combination treatments aiming at several different targets are sought. Viral regulatory proteins, modified or not, appear ideal for this purpose because of their multimodal killing action against neoplastically transformed cells. The large nonstructural protein NS1 of rodent parvoviruses is an excellent candidate for an anticancer agent, shown to interfere specifically with cancer cell growth and survival. The present review describes the structure, functions, and regulation of the multifunctional protein NS1, its specific interference with cell processes and cell protein activities, and what is known so far about the mechanisms underlying NS1 interference with cancer growth. It further outlines prospects for the development of new, multimodal cancer toxins and their potential applications.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program "Infection and Cancer", Division Tumor Virology (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, D-69120, Heidelberg, Germany,
| | | |
Collapse
|
11
|
Han Y, Wang Q, Qiu Y, Wu W, He H, Zhang J, Hu Y, Zhou X. Periplaneta fuliginosa densovirus nonstructural protein NS1 contains an endonuclease activity that is regulated by its phosphorylation. Virology 2013; 437:1-11. [PMID: 23290078 DOI: 10.1016/j.virol.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 10/26/2012] [Accepted: 12/10/2012] [Indexed: 01/26/2023]
Abstract
Periplaneta fuliginosa densovirus (PfDNV) is a single-stranded DNA virus, belonging to Densovirinae subfamily, Parvoviridae family. Parvovirus nonstructural protein 1 (NS1) contains various activities required for parvoviral DNA replication, like endonuclease, helicase and ATPase, which are regulated by serine/threonine phosphorylation. However, for PfDNV, NS1 endonuclease activity has not been determined. Moreover, for densoviruses, whether NS1 is phosphorylated, and if so, phosphorylation pattern and impact on NS1 activities have not been investigated. Here, we demonstrated that PfDNV NS1 possesses endonuclease activity, covalently attaches to 5'-end of nicking site, and includes an active-site tyrosine (Y178). Moreover, using different phosphatases, we uncovered that both serine/threonine and tyrosine phosphorylations are critical for NS1 endonuclease and helicase activities. Further mass-spec and mutational analyses revealed that Y345 is phosphorylated and functions as a critical regulatory site for NS1 activities. This study should foster our understanding of NS1 activities and regulations in PfDNV and other densoviruses.
Collapse
Affiliation(s)
- Yajuan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Genetic elements in the VP region of porcine parvovirus are critical to replication efficiency in cell culture. J Virol 2011; 85:3025-9. [PMID: 21209104 DOI: 10.1128/jvi.02215-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Factors controlling porcine parvovirus (PPV) replication efficiency are poorly characterized. Two prototype strains of PPV, NADL-2 and Kresse, differ greatly in pathogenic capacity both in vivo and in vitro, yet their genomic sequence is nearly identical (13 single-nucleotide substitutions and a 127-nucleotide noncoding repeated sequence). We have created a series of chimeras of these strains to identify the genetic elements involved in replication efficiency in the host porcine cell line. While the capsid proteins ultimately determine viral replication fitness, interaction between the NS1 protein and the VP gene occurs and involves interaction with the noncoding repeated sequence.
Collapse
|
13
|
Abstract
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | |
Collapse
|
14
|
Ezrin-radixin-moesin family proteins are involved in parvovirus replication and spreading. J Virol 2009; 83:5854-63. [PMID: 19321616 DOI: 10.1128/jvi.00039-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The propagation of autonomous parvoviruses is strongly dependent on the phosphorylation of the major nonstructural protein NS1 by members of the protein kinase C (PKC) family. Minute virus of mice (MVM) replication is accompanied by changes in the overall phosphorylation pattern of NS1, which is newly modified at consensus PKC sites. These changes result, at least in part, from the ability of MVM to modulate the PDK-1/PKC pathway, leading to activation and redistribution of both PDK-1 and PKCeta. We show that proteins of the ezrin-radixin-moesin (ERM) family are essential for virus propagation and spreading through their functions as adaptors for PKCeta. MVM infection led to redistribution of radixin and moesin in the cell, resulting in increased colocalization of these proteins with PKCeta. Radixin was found to control the PKCeta-driven phosphorylation of NS1 and newly synthesized capsids in vivo. Conversely, radixin phosphorylation and activation were driven by the NS1/CKIIalpha complex. Altogether, these data argue for ERM proteins being both targets and modulators of parvovirus infection.
Collapse
|
15
|
Kumaraswamy E, Shiekhattar R. Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol 2007; 27:6733-41. [PMID: 17664283 PMCID: PMC2099226 DOI: 10.1128/mcb.00961-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACH1 (also known as FANCJ and BRIP1) is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1. Previous biochemical and functional analyses have suggested a role for the BACH1 homolog in Caenorhabditis elegans during DNA replication. Here, we report the association of BACH1 with a distinct BRCA1/BRCA2-containing complex during the S phase of the cell cycle. Depletion of BACH1 or BRCA1 using small interfering RNAs results in delayed entry into the S phase of the cell cycle. Such timely progression through S phase requires the helicase activity of BACH1. Importantly, cells expressing a dominant negative mutation in BACH1 that results in a defective helicase displayed increased activation of DNA damage checkpoints and genomic instability. BACH1 helicase is silenced during the G(1) phase of the cell cycle and is activated through a dephosphorylation event as cells enter S phase. These results point to a critical role for BACH1 helicase activity not only in the timely progression through the S phase but also in maintaining genomic stability.
Collapse
|
16
|
Nüesch JPF, Rommelaere J. NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol 2006; 80:4729-39. [PMID: 16641266 PMCID: PMC1472057 DOI: 10.1128/jvi.80.10.4729-4739.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During a productive infection, the prototype strain of the parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations in permissive A9 fibroblasts, culminating in cell lysis at the end of infection. These cytopathic effects (CPE) result from rearrangements and destruction of the cytoskeletal micro- and intermediate filaments, while other structures such as the nuclear lamina and particularly the microtubule network remain protected throughout the infection (J. P. F. Nüesch et al., Virology 331:159-174, 2005). In order to unravel the mechanism(s) by which parvoviruses trigger CPE, we searched for NS1 interaction partners by differential affinity chromatography, using distinct NS1 mutants debilitated specifically for this function. Thereby, we isolated an NS1 partner polypeptide, whose interaction with NS1 correlated with the competence of the viral product for CPE induction, and further identified it by tandem mass spectrometry and Western blotting analyses to consist of the catalytic subunit of casein kinase II, CKIIalpha. This interaction of NS1 with CKIIalpha suggested interference by the viral protein with intracellular signaling. Using permanent cell lines expressing dominant-negative CKIIalpha mutants, we were able to show that this kinase activity was indeed specifically involved in parvoviral CPE and progeny particle release. Furthermore, the NS1/CKIIalpha complex proved to be able to specifically phosphorylate viral capsids, indicating a mediator function of NS1 for CKII activity and specificity, at least in vitro. Altogether our data suggest that parvovirus-induced CPE is mediated by NS1 interference with intracellular CKII signaling.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program Infection and Cancer, Abt. F010 and INSERM U701, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|
17
|
Servais C, Caillet-Fauquet P, Draps ML, Velu T, de Launoit Y, Brandenburger A. Hypoxic-response elements in the oncolytic parvovirus Minute virus of mice do not allow for increased vector production at low oxygen concentration. J Gen Virol 2006; 87:1197-1201. [PMID: 16603521 DOI: 10.1099/vir.0.81754-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vectors derived from the autonomous parvovirus Minute virus of mice, MVM(p), are promising tools for the gene therapy of cancer. The validation of their in vivo anti-tumour effect is, however, hampered by the difficulty to produce high-titre stocks. In an attempt to increase vector titres, host cells were subjected to low oxygen tension (hypoxia). It has been shown that a number of viruses are produced at higher titres under these conditions. This is the case, among others, for another member of the family Parvoviridae, the erythrovirus B19 virus. Hypoxia stabilizes a hypoxia-inducible transcription factor (HIF-1alpha) that interacts with a 'hypoxia-responsive element' (HRE), the consensus sequence of which ((A)/(G)CGTG) is present in the B19 and MVM promoters. Whilst the native P4 promoter was induced weakly in hypoxia, vector production was reduced dramatically, and adding HRE elements to the P4 promoter of the vector did not alleviate this reduction. Hypoxia has many effects on cell metabolism. Therefore, even if the P4 promoter is activated, the cellular factors that are required for the completion of the parvoviral life cycle may not be expressed.
Collapse
Affiliation(s)
- Charlotte Servais
- Laboratoire de Cytologie et de Cancérologie Expérimentale, IBMM-IRIBHM, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Perrine Caillet-Fauquet
- Laboratoire de Virologie Moléculaire, Faculté de Médecine, Campus Erasme, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Bruxelles, Belgium
| | - Marie-Louise Draps
- Laboratoire de Virologie Moléculaire, Faculté de Médecine, Campus Erasme, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Bruxelles, Belgium
| | - Thierry Velu
- Laboratoire de Cytologie et de Cancérologie Expérimentale, IBMM-IRIBHM, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Yvan de Launoit
- UMR 8117 CNRS, Université de Lille 1, Institut Pasteur Lille, Institut de Biologie de Lille, Lille, France
- Laboratoire de Virologie Moléculaire, Faculté de Médecine, Campus Erasme, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Bruxelles, Belgium
| | - Annick Brandenburger
- Laboratoire de Cytologie et de Cancérologie Expérimentale, IBMM-IRIBHM, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| |
Collapse
|
18
|
Ruiz Z, D'Abramo A, Tattersall P. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells. Virology 2006; 349:382-95. [PMID: 16504232 DOI: 10.1016/j.virol.2006.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/22/2005] [Accepted: 01/26/2006] [Indexed: 11/18/2022]
Abstract
The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.
Collapse
Affiliation(s)
- Zandra Ruiz
- Graduate Program in Microbiology, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
19
|
Parrish CR, Kawaoka Y. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu Rev Microbiol 2006; 59:553-86. [PMID: 16153179 DOI: 10.1146/annurev.micro.59.030804.121059] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transfer of viruses between hosts to create a new self-sustaining epidemic is rare; however, those new viruses can cause severe outbreaks. Examples of such viruses include three pandemic human influenza A viruses and canine parvovirus in dogs. In each case one virus made the original transfer and spread worldwide, and then further adaptation resulted in the emergence of variants worldwide. For the influenza viruses several changes were required for growth and spread between humans, and the emergence of human H2N2 and H3N2 strains in 1957 and 1968 involved the acquisition of three or two new genomic segments, respectively. Adaptation to humans involved several viral genes including the hemagglutinin, the neuraminidase, and the replication proteins. The canine adaptation of the parvoviruses involved capsid protein changes altering the recognition of the host transferrin receptors, allowing canine transferrin receptor binding and its use as a receptor for cell infection.
Collapse
Affiliation(s)
- Colin R Parrish
- J. A. Baker Institute, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
20
|
Nüesch JPF, Lachmann S, Rommelaere J. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice. Virology 2005; 331:159-74. [PMID: 15582663 DOI: 10.1016/j.virol.2004.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/10/2004] [Accepted: 10/08/2004] [Indexed: 11/19/2022]
Abstract
During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of alpha/beta tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program of Applied Tumor Virology, Abteilung F010 and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
21
|
Daeffler L, Hörlein R, Rommelaere J, Nüesch JPF. Modulation of minute virus of mice cytotoxic activities through site-directed mutagenesis within the NS coding region. J Virol 2004; 77:12466-78. [PMID: 14610171 PMCID: PMC262581 DOI: 10.1128/jvi.77.23.12466-12478.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Late in infection, parvovirus minute virus of mice (MVMp) induces the lysis of mouse A9 fibroblasts. This effect depends on the large nonstructural phosphoprotein NS1, which plays in addition a major role in viral DNA replication and progeny particle production. Since the NS1 C-terminal region is subjected to late phosphorylation events and protein kinase C (PKC) family members regulate NS1 replicative activities, the present study was conducted to determine the impact of PKCs on NS1 cytotoxic functions. To this end, we performed site-directed mutagenesis, substituting alanine residues for two consensus PKC-phosphorylation sites located within the NS1 C-terminal region, T585 and S588. Although these substitutions had no detectable effect on virus multiplication in a single-round infection, the NS1-585A mutant virus was significantly less toxic to A9 cells than wild-type MVMp, whereas the NS1-588A mutant virus was endowed with a higher killing potential. These alterations correlated with specific changes in the late phosphorylation pattern of the mutant NS1 proteins compared to the wild-type polypeptide. Since the mutations introduced in this region of the viral genome also made changes in the minor nonstructural protein NS2, a contribution of this polypeptide to the above-mentioned phenotypes of mutant viruses cannot be excluded at present. However, the involvement of NS1 in these phenotypes was directly supported by the respective reduced and enhanced capacity of NS1-585A and NS1-588A recombinant proteins for inducing morphological alterations and cell detachment in transfected A9 cultures. Altogether, these data suggest that late-occurring phosphorylation of NS1 specifically regulates the cytotoxic functions of the viral product and that residues T585 and S588 contribute to this control in an antagonistic way.
Collapse
Affiliation(s)
- Laurent Daeffler
- Division F010, Applied Tumour Virology Program, and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Lachmann S, Rommeleare J, Nüesch JPF. Novel PKCeta is required to activate replicative functions of the major nonstructural protein NS1 of minute virus of mice. J Virol 2003; 77:8048-60. [PMID: 12829844 PMCID: PMC161934 DOI: 10.1128/jvi.77.14.8048-8060.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional protein NS1 of minute virus of mice (MVMp) is posttranslationally modified and at least in part regulated by phosphorylation. The atypical lambda isoform of protein kinase C (PKClambda) phosphorylates residues T435 and S473 in vitro and in vivo, leading directly to an activation of NS1 helicase function, but it is insufficient to activate NS1 for rolling circle replication. The present study identifies an additional cellular protein kinase phosphorylating and regulating NS1 activities. We show in vitro that the recombinant novel PKCeta phosphorylates NS1 and in consequence is able to activate the viral polypeptide in concert with PKClambda for rolling circle replication. Moreover, this role of PKCeta was confirmed in vivo. We thereby created stably transfected A9 mouse fibroblasts, a typical MVMp-permissive host cell line with Flag-tagged constitutively active or inactive PKCeta mutants, in order to alter the activity of the NS1 regulating kinase. Indeed, tryptic phosphopeptide analyses of metabolically (32)P-labeled NS1 expressed in the presence of a dominant-negative mutant, PKCetaDN, showed a lack of distinct NS1 phosphorylation events. This correlates with impaired synthesis of viral DNA replication intermediates, as detected by Southern blotting at the level of the whole cell population and by BrdU incorporation at the single-cell level. Remarkably, MVM infection triggers an accumulation of endogenous PKCeta in the nuclear periphery, suggesting that besides being a target for PKCeta, parvovirus infections may also affect the regulation of this NS1 regulating kinase. Altogether, our results underline the tight interconnection between PKC-mediated signaling and the parvoviral life cycle.
Collapse
Affiliation(s)
- Sylvie Lachmann
- Applied Tumour Virology Program, Department F010 and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Nüesch JPF, Lachmann S, Corbau R, Rommelaere J. Regulation of minute virus of mice NS1 replicative functions by atypical PKClambda in vivo. J Virol 2003; 77:433-42. [PMID: 12477848 PMCID: PMC140590 DOI: 10.1128/jvi.77.1.433-442.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice NS1 protein is a multifunctional phosphoprotein endowed with a variety of enzymatic and regulatory activities necessary for progeny virus particle production. To regulate all of its different functions in the course of a viral infection, NS1 has been proposed to be modulated by posttranslational modifications, in particular, phosphorylation. Indeed, it was shown that the NS1 phosphorylation pattern is altered during the infectious cycle and that the biochemical profile of the protein is dependent on the phosphorylation state of the polypeptide. Moreover, in vitro approaches have identified members of the protein kinase C (PKC) family, in particular, atypical PKC, as regulators of viral DNA replication through the phosphorylation of NS1 residues T435 and S473, thereby activating the protein for DNA unwinding activities. In order to substantiate these findings in vivo, we produced NS1 in the presence of a dominant-negative PKClambda mutant and characterized the purified protein in vitro. The NS1 protein produced under these conditions was found to be only partially phosphorylated and as a consequence to be deficient for viral DNA replication. However, it could be rescued for this viral function by treatment with recombinant activated PKClambda. Our data clearly demonstrate that NS1 is a target for PKClambda phosphorylation in vivo and that this modification is essential for the helicase activity of the viral polypeptide. In addition, the phosphorylation of NS1 at residues T435 and S473 appeared to occur mainly in the nucleus, providing further evidence for the involvement of PKClambda which, unlike PKCzeta, accumulates in the nuclear compartment of infected cells.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | |
Collapse
|
24
|
Narasimhan D, Collaco R, Kalman-Maltese V, Trempe JP. Hyper-phosphorylation of the adeno-associated virus Rep78 protein inhibits terminal repeat binding and helicase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:298-305. [PMID: 12084576 DOI: 10.1016/s0167-4781(02)00394-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The replication (Rep) proteins of adeno-associated virus (AAV) play prominent roles in regulation of viral DNA replication, RNA transcription, assembly of an infectious virion and establishment of the provirus. We have previously demonstrated that all four Rep proteins are phosphorylated on serine residues [Virology 23 (1997) 332-336]. Reversible phosphorylation may provide a mechanism for regulating Rep protein function. To test this hypothesis, we used the phosphatase inhibitor okadaic acid (OA) to obtain hyper-phosphorylated Rep proteins. OA treatment of AAV- and adenovirus (Ad)-infected cells and baculovirus-infected insect cells at a concentration of 100 nM resulted in a significant increase in Rep protein phosphorylation. This concentration suggests that protein phosphatase 2A (PP2A) is one of the enzymes involved in regulation of Rep phosphorylation. The increased phosphorylation occurred primarily on serine residues with a detectable amount of phosphate on threonine. Hyper-phosphorylation of Rep78 resulted in reduced binding to the AAV origin of DNA replication. Hyper-phosphorylated Rep78 also had diminished helicase activity. These results suggest that regulated phosphorylation of Rep78 plays a role in controlling Rep functions in the virus replication cycle.
Collapse
Affiliation(s)
- Diwahar Narasimhan
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | | | |
Collapse
|
25
|
Karmakar P, Piotrowski J, Brosh RM, Sommers JA, Miller SPL, Cheng WH, Snowden CM, Ramsden DA, Bohr VA. Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 2002; 277:18291-302. [PMID: 11889123 DOI: 10.1074/jbc.m111523200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates WRN exonuclease activity. Because Ku and DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), form a complex at DNA ends, we have now explored the possibility of functional modulation of WRN exonuclease activity by DNA-PK. We find that although DNA-PKcs alone does not affect the WRN exonuclease activity, the additional presence of Ku mediates a marked inhibition of it. The inhibition of WRN exonuclease by DNA-PKcs requires the kinase activity of DNA-PKcs. WRN is a target for DNA-PKcs phosphorylation, and this phosphorylation requires the presence of Ku. We also find that treatment of recombinant WRN with a Ser/Thr phosphatase enhances WRN exonuclease and helicase activities and that WRN catalytic activity can be inhibited by rephosphorylation of WRN with DNA-PK. Thus, the level of phosphorylation of WRN appears to regulate its catalytic activities. WRN forms a complex, both in vitro and in vivo, with DNA-PKC. WRN is phosphorylated in vivo after treatment of cells with DNA-damaging agents in a pathway that requires DNA-PKcs. Thus, WRN protein is a target for DNA-PK phosphorylation in vitro and in vivo, and this phosphorylation may be a way of regulating its different catalytic activities, possibly in the repair of DNA dsb.
Collapse
Affiliation(s)
- Parimal Karmakar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rubio MP, Guerra S, Almendral JM. Genome replication and postencapsidation functions mapping to the nonstructural gene restrict the host range of a murine parvovirus in human cells. J Virol 2001; 75:11573-82. [PMID: 11689639 PMCID: PMC114744 DOI: 10.1128/jvi.75.23.11573-11582.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infection outcome of the Parvoviridae largely relies on poorly characterized intracellular factors modulated by proliferation, differentiation, and transformation of host cells. We have studied the interactions displayed by the highly homologous p and i strains of the murine parvovirus minute virus of mice (MVM), with a series of transformed cells of rat (C6) and human (U373, U87, SW1088, SK-N-SH) nervous system origin, seeking for molecular mechanisms governing parvovirus host range. The MVMp infection of C6 and U373 cells was cytotoxic and productive, whereas the other nervous cells behaved essentially as resistant to this virus. In contrast, MVMi did not complete its life cycle in any of the human nervous cells, though it efficiently killed the astrocytic tumor cells by two types of nonproductive infections: (i) normal synthesis of all viral macromolecules with a late defect in infectious virion maturation and release to the medium in U373; and (ii) high levels of accumulation of the full set of viral messenger RNAs and of both nonstructural (NS-1) and structural (VP-1 and VP-2) proteins, under a very low viral DNA amplification, in U87 and SW1088 cells. Further analyses showed that U87 was permissive for nuclear transport of MVMi proteins, leading to efficient assembly of empty viral capsids with a normal phosphorylation and VP1-to-VP2 ratio. The DNA amplification blockade in U87 occurred after conversion of the incoming MVMi genome to the monomeric replicative form, and it operated independently of the delivery pathway used by the viral particle, since it could not be overcome by transfection with cloned infectious viral DNA. Significantly, a chimeric MVMi virus harboring the coding region of the nonstructural (NS) gene replaced with that of MVMp showed a similar pattern of restriction in U87 cells as the parental MVMi virus, and it attained in U373 cultures an infectious titer above 100-fold higher under equal levels of DNA amplification and genome encapsidation. The results suggest that the activity of complexes formed by the NS polypeptides and recruited cellular factors restrict parvovirus DNA amplification in a cell type-dependent manner and that NS functions may in addition determine MVM host range acting at postencapsidation steps of viral maturation. These data are relevant for understanding the increased multiplication of autonomous parvovirus in some transformed cells and the transduction efficacy of nonreplicative parvoviral vectors, as well as a general remark on the mechanisms by which NS genes may regulate viral tropism and pathogenesis.
Collapse
Affiliation(s)
- M P Rubio
- Centro de Biología Molecular "Severo Ochoa" (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
27
|
Asabe S, Nishizawa T, Iwanari H, Okamoto H. Phosphorylation of serine-rich protein encoded by open reading frame 3 of the TT virus genome. Biochem Biophys Res Commun 2001; 286:298-304. [PMID: 11500036 DOI: 10.1006/bbrc.2001.5385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
TT virus (TTV) is a newly discovered human virus with a single-stranded, circular DNA genome. The TTV DNA sequence includes two major open reading frames (ORFs), ORF1 and ORF2. Recently, spliced TTV mRNAs were detected and revealed two additional coding regions, ORF3 and ORF4. We found sequence similarity between the TTV ORF3 protein and hepatitis C virus (HCV) nonstructural 5A (NS5A) protein, which is a phosphoprotein and is thought to associate with various cellular proteins. To test whether the TTV ORF3 protein is phosphorylated, the state of phosphorylation was analyzed with a transient protein production system. The TTV ORF3 protein was phosphorylated at the serine residues in its C-terminal portion. Furthermore, the TTV ORF3 gene generated two forms of proteins with a different phosphorylation state, similar to the HCV NS5A region, suggesting that TTV ORF3 protein has function(s) similar to phosphorylated viral proteins such as the HCV NS5A protein.
Collapse
Affiliation(s)
- S Asabe
- Immunology Division, Jichi Medical School, Minamikawachi-Machi, Tochigi-Ken, 329-0498, Japan.
| | | | | | | |
Collapse
|
28
|
Nüesch JP, Christensen J, Rommelaere J. Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1. J Virol 2001; 75:5730-9. [PMID: 11390575 PMCID: PMC114289 DOI: 10.1128/jvi.75.13.5730-5739.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice nonstructural protein NS1 is a multifunctional protein that is involved in many processes necessary for virus propagation. To perform its distinct activities in timely coordinated manner, NS1 was suggested to be regulated by posttranslational modifications, in particular phosphorylation. In fact, NS1 replicative functions are dependent on protein kinase C (PKC) phosphorylation, most likely due to alteration of the biochemical profile of the viral product as determined by comparing native NS1 with its dephosphorylated counterpart. Through the characterization of NS1 mutants at individual PKC consensus phosphorylation sites for their biochemical activities and nickase function, we were able to identify two target atypical PKC phosphorylation sites, T435 and S473, serving as regulatory elements for the initiation of viral DNA replication. Furthermore, by dissociating the energy-dependent helicase activity from the ATPase-independent trans esterification reaction using partially single-stranded substrates, we could demonstrate that atypical PKC regulation of NS1 nickase activity occurs at the level of origin unwinding prior to trans esterification.
Collapse
Affiliation(s)
- J P Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, INSERM U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
29
|
Bashir T, Rommelaere J, Cziepluch C. In vivo accumulation of cyclin A and cellular replication factors in autonomous parvovirus minute virus of mice-associated replication bodies. J Virol 2001; 75:4394-8. [PMID: 11287588 PMCID: PMC114184 DOI: 10.1128/jvi.75.9.4394-4398.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autonomous parvovirus minute virus of mice (MVM) DNA replication is strictly dependent on cellular factors expressed during the S phase of the cell cycle. Here we report that MVM DNA replication proceeds in specific nuclear structures termed autonomous parvovirus-associated replication bodies, where components of the basic cellular replication machinery accumulate. The presence of DNA polymerases alpha and delta in these bodies suggests that MVM utilizes partially preformed cellular replication complexes for its replication. The recruitment of cyclin A points to a role for this cell cycle factor in MVM DNA replication beyond its involvement in activating the conversion of virion single-stranded DNA to the duplex replicative form.
Collapse
Affiliation(s)
- T Bashir
- Applied Tumor Virology Unit F0100 and Institut National de la Santé et de la Recherche Médicale U 375, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Corbau R, Duverger V, Rommelaere J, Nüesch JP. Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 2000; 278:151-67. [PMID: 11112491 DOI: 10.1006/viro.2000.0600] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Minute virus of mice NS1, an 83-kDa mainly nuclear phosphoprotein, is the only viral nonstructural protein required in all cell types and it is involved in multiple processes necessary for virus propagation. The diversity of functions assigned to NS1, together with the variation of its complex phosphorylation pattern during infection, suggested that the various activities of NS1 could be regulated by distinct phosphorylation events. So far, it has been demonstrated that NS1 replicative functions, in particular, DNA-unwinding activities, are regulated by protein kinase C (PKC), as exemplified by the modulation of NS1 helicase activity by PKClambda phosphorylation. In order to determine further impact of phosphorylation on NS1 functions, including the induction of cytopathic effects, a mutational approach was pursued in order to produce NS1 variants harboring amino acid substitutions at candidate PKC target residues. Besides the determination of two additional in vivo phosphorylation sites in NS1, this mutagenesis allowed the segregation of distinct NS1 functions from one another, generating NS1 variants with a distinct activity profile. Thus, we obtained NS1 mutants that were fully proficient for trans activation of the viral P38 promoter, while being impaired in their replicative functions. Moreover, the alterations of specific PKC phosphorylation sites gave rise to NS1 polypeptides that exerted reduced cytotoxicity, leading to sustained gene expression, while keeping functions necessary for progeny virus production, i.e., viral DNA replication and activation of the capsid gene promoter. These data suggested that in the course of a viral infection, NS1 may undergo a shift from productive to cytotoxic functions as a result of a phosphorylation-dependent regulation.
Collapse
Affiliation(s)
- R Corbau
- Program of Applied Tumor Virology, Institut National de la Santé et de la Recherche Médicale U375, Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Cziepluch C, Lampel S, Grewenig A, Grund C, Lichter P, Rommelaere J. H-1 parvovirus-associated replication bodies: a distinct virus-induced nuclear structure. J Virol 2000; 74:4807-15. [PMID: 10775619 PMCID: PMC112003 DOI: 10.1128/jvi.74.10.4807-4815.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a nuclear structure that is induced after infection with the autonomous parvovirus H-1. Using fluorescence microscopy, we observed that the major nonstructural protein (NS1) of H-1 virus which is essential for viral DNA amplification colocalized with virus-specific DNA sequences and sites of ongoing viral DNA replication in distinct nuclear bodies which we designated H-1 parvovirus-associated replication bodies (H-1 PAR-bodies). In addition, two cellular proteins were shown to accumulate in H1 PAR-bodies: (i) the proliferating cell nuclear antigen (PCNA) which is essential for chromosomal and parvoviral replication and (ii) the NS1-interacting small glutamine-rich TPR-containing protein (SGT), suggesting a role for the latter in parvoviral replication and/or gene expression. Since many DNA viruses target preexisting nuclear structures, known as PML-bodies, for viral replication and gene expression, we have determined the localization of H-1 PAR- and PML-bodies by double-fluorescence labeling and confocal microscopy and found them to be spatially unrelated. Furthermore, H-1 PAR-bodies did not colocalize with other prominent nuclear structures such as nucleoli, coiled bodies, and speckled domains. Electron microscopy analysis revealed that NS1, as detected by indirect immunogold labeling, was localized in ring-shaped electron-dense nuclear structures corresponding in size and frequency to H-1 PAR-bodies. These structures were also clearly visible without immunogold labeling and could be detected only in infected cells. Our results suggest that H-1 virus does not target known nuclear bodies for DNA replication but rather induces the formation of a novel structure in the nucleus of infected cells.
Collapse
Affiliation(s)
- C Cziepluch
- Applied Tumor Virology Unit, F0100 and Institut National de la Santé et de la Recherche Médicale U 375, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Brister JR, Muzyczka N. Rep-mediated nicking of the adeno-associated virus origin requires two biochemical activities, DNA helicase activity and transesterification. J Virol 1999; 73:9325-36. [PMID: 10516041 PMCID: PMC112967 DOI: 10.1128/jvi.73.11.9325-9336.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-stranded adeno-associated virus (AAV) genome is flanked by terminal hairpinned origins of DNA replication (terminal repeats [TRs]) that are nicked at the terminal resolution site (trs) by the AAV Rep protein in an ATP-dependent, site-specific manner. Here we determine the minimal trs sequence necessary for Rep cleavage, 3'-CCGGT/TG-5', and show that this 7-base core sequence is required only on the nicked strand. We also identify a potential stem-loop structure at the trs. Interestingly, Rep nicking on a TR substrate that fixes this trs stem-loop in the extruded form no longer requires ATP. This suggests that ATP-dependent Rep helicase activity is necessary to unwind the duplex trs and extrude the stem-loop structure, prior to the ATP-independent Rep transesterification reaction. The extrusion of origin stem-loop structures prior to nicking appears to be a general mechanism shared by plant and animal viruses and bacterial plasmids. In the case of AAV, this mechanism of TR nicking would provide a possible regulatory function.
Collapse
Affiliation(s)
- J R Brister
- Department of Molecular Genetics, University of Florida Gene Therapy Center, College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
33
|
Abstract
Parvoviruses have small genomes and, consequently, are highly dependent on their host for various functions in their reproduction. Since these viruses generally use ubiquitous receptors, restrictions are usually intracellularly regulated. A lack of mitosis, and hence absence of enzymes required for DNA replication, is a powerful block of virus infection. Allotropic determinants have been identified for several parvoviruses: porcine parvovirus, canine parvovirus (CPV), feline parvovirus (feline panleukopenia virus), minute virus of mice, Aleutian disease virus, and GmDNV (an insect parvovirus). Invariably, these identifications involved the use of infectious clones of these viruses and the exchange of restriction fragments to create chimeric viruses, of which the resulting phenotype was then established by transfection in appropriate cell lines. The tropism of these viruses was found to be governed by minimal changes in the sequence of the capsid proteins and, often, only 2 or 3 critical amino acids are responsible for a given tropism. These amino acids are usually located on the outside of the capsid near or on the spike of the threefold axis for the vertebrate parvoviruses and on loops 2 or 3 for the insect parvoviruses. This tropism is not mediated via specific cellular receptors but by interactions with intracellular factors. The nature of these factors is unknown but most data point to a stage beyond the conversion of the single-stranded DNA genome by host cell DNA polymerase into monomeric duplex intermediates of the replicative form. The sudden and devastating emergence of mink enteritis virus (MEV) and CPV in the last 50 years, and the possibility of more future outbreaks, demonstrates the importance of understanding parvovirus tropism.
Collapse
Affiliation(s)
- P Tijssen
- Laboratory of Structural and Molecular Virology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada.
| |
Collapse
|
34
|
Dettwiler S, Rommelaere J, Nüesch JP. DNA unwinding functions of minute virus of mice NS1 protein are modulated specifically by the lambda isoform of protein kinase C. J Virol 1999; 73:7410-20. [PMID: 10438831 PMCID: PMC104268 DOI: 10.1128/jvi.73.9.7410-7420.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966-9977, 1998). The present study led to the identification of atypical PKClambda/iota as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKClambda phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKClambda phosphorylation at residue S473.
Collapse
Affiliation(s)
- S Dettwiler
- Applied Tumor Virology and Institut National de la Santé et de la Recherche Médicale U375, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Corbau R, Salom N, Rommelaere J, Nüesch JP. Phosphorylation of the viral nonstructural protein NS1 during MVMp infection of A9 cells. Virology 1999; 259:402-15. [PMID: 10388664 DOI: 10.1006/viro.1999.9786] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major nonstructural protein of parvovirus MVMp, NS1, is an 83-kDa nuclear phosphoprotein which exerts a variety of functions during a viral infection. These multiple tasks range from its major involvement in viral DNA amplification and promoter regulation to the cytotoxic action on the host cell. Since these most divergent functions are exerted in an orderly fashion, it has been proposed that NS1 is regulated by posttranslational modifications, in particular phosphorylation. So far it has been shown that the capacity of NS1 for initiation of replication is regulated in vitro by phosphorylation through members of the protein kinase C family, most likely as a result of control of the DNA unwinding activity (J. P. F. Nüesch et al., 1998, J. Virol. 72, 9966-9977). To substantiate these in vitro findings in vivo, we investigated NS1 phosphorylation during an MVMp infection in a natural host cell, A9 fibroblasts, with reference to characteristic features of the virus cycle. The NS1 phosphorylation pattern was found to change throughout the infection, raising the possibility that distinct tasks of NS1 might be achieved through differential phosphorylation of the polypeptide. In addition, we present in vivo evidence that a phosphorylated form of NS1 is able to initiate viral DNA replication and becomes covalently attached to replicated DNA. Moreover, NS1 was found to be phosphorylated in vivo within the helicase domain, showing alignment with at least one phosphopeptide generated by an "activating" kinase in vitro. These data suggest that phosphorylation-mediated regulation of NS1 for replicative functions as observed in vitro may also take place during a natural virus infection.
Collapse
Affiliation(s)
- R Corbau
- Applied Tumor Virology Program, Institute National de la Santé et de la Recherche Médicale U375-, Heidelberg, D-69120, Germany
| | | | | | | |
Collapse
|