1
|
Krishnan A, Ali LM, Prabhu SG, Pillai VN, Chameettachal A, Vivet-Boudou V, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of a putative Gag binding site critical for feline immunodeficiency virus genomic RNA packaging. RNA (NEW YORK, N.Y.) 2023; 30:68-88. [PMID: 37914398 PMCID: PMC10726167 DOI: 10.1261/rna.079840.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Anjana Krishnan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Suresha G Prabhu
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Segredo-Otero E, Sanjuán R. Cooperative Virus-Virus Interactions: An Evolutionary Perspective. BIODESIGN RESEARCH 2022; 2022:9819272. [PMID: 37850129 PMCID: PMC10521650 DOI: 10.34133/2022/9819272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Despite extensive evidence of virus-virus interactions, not much is known about their biological significance. Importantly, virus-virus interactions could have evolved as a form of cooperation or simply be a by-product of other processes. Here, we review and discuss different types of virus-virus interactions from the point of view of social evolution, which provides a well-established framework for interpreting the fitness costs and benefits of such traits. We also classify interactions according to their mechanisms of action and speculate on their evolutionary implications. As in any other biological system, the evolutionary stability of viral cooperation critically requires cheaters to be excluded from cooperative interactions. We discuss how cheater viruses exploit cooperative traits and how viral populations are able to counteract this maladaptive process.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| |
Collapse
|
3
|
A Stretch of Unpaired Purines in the Leader Region of Simian Immunodeficiency Virus (SIV) Genomic RNA is Critical for its Packaging into Virions. J Mol Biol 2021; 433:167293. [PMID: 34624298 DOI: 10.1016/j.jmb.2021.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV) is an important lentivirus used as a non-human primate model to study HIV replication, and pathogenesis of human AIDS, as well as a potential vector for human gene therapy. This study investigated the role of single-stranded purines (ssPurines) as potential genomic RNA (gRNA) packaging determinants in SIV replication. Similar ssPurines have been implicated as important motifs for gRNA packaging in many retroviruses like, HIV-1, MPMV, and MMTV by serving as Gag binding sites during virion assembly. In examining the secondary structure of the SIV 5' leader region, as recently deduced using SHAPE methodology, we identified four specific stretches of ssPurines (I-IV) in the region that harbors major packaging determinants of SIV. The significance of these ssPurine motifs were investigated by mutational analysis coupled with a biologically relevant single round of replication assay. These analyses revealed that while ssPurine II was essential, the others (ssPurines I, III, & IV) did not significantly contribute to SIV gRNA packaging. Any mutation in the ssPurine II, such as its deletion or substitution, or other mutations that caused base pairing of ssPurine II loop resulted in near abrogation of RNA packaging, further substantiating the crucial role of ssPurine II and its looped conformation in SIV gRNA packaging. Structure prediction analysis of these mutants further corroborated the biological results and further revealed that the unpaired nature of ssPurine II is critical for its function during SIV RNA packaging perhaps by enabling it to function as a specific binding site for SIV Gag.
Collapse
|
4
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
5
|
Ballandras-Colas A, Naraharisetty H, Li X, Serrao E, Engelman A. Biochemical characterization of novel retroviral integrase proteins. PLoS One 2013; 8:e76638. [PMID: 24124581 PMCID: PMC3790719 DOI: 10.1371/journal.pone.0076638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 01/28/2023] Open
Abstract
Integrase is an essential retroviral enzyme, catalyzing the stable integration of reverse transcribed DNA into cellular DNA. Several aspects of the integration mechanism, including the length of host DNA sequence duplication flanking the integrated provirus, which can be from 4 to 6 bp, and the nucleotide preferences at the site of integration, are thought to cluster among the different retroviral genera. To date only the spumavirus prototype foamy virus integrase has provided diffractable crystals of integrase-DNA complexes, revealing unprecedented details on the molecular mechanisms of DNA integration. Here, we characterize five previously unstudied integrase proteins, including those derived from the alpharetrovirus lymphoproliferative disease virus (LPDV), betaretroviruses Jaagsiekte sheep retrovirus (JSRV), and mouse mammary tumor virus (MMTV), epsilonretrovirus walleye dermal sarcoma virus (WDSV), and gammaretrovirus reticuloendotheliosis virus strain A (Rev-A) to identify potential novel structural biology candidates. Integrase expressed in bacterial cells was analyzed for solubility, stability during purification, and, once purified, 3′ processing and DNA strand transfer activities in vitro. We show that while we were unable to extract or purify accountable amounts of WDSV, JRSV, or LPDV integrase, purified MMTV and Rev-A integrase each preferentially support the concerted integration of two viral DNA ends into target DNA. The sequencing of concerted Rev-A integration products indicates high fidelity cleavage of target DNA strands separated by 5 bp during integration, which contrasts with the 4 bp duplication generated by a separate gammaretrovirus, the Moloney murine leukemia virus (MLV). By comparing Rev-A in vitro integration sites to those generated by MLV in cells, we concordantly conclude that the spacing of target DNA cleavage is more evolutionarily flexible than are the target DNA base contacts made by integrase during integration. Given their desirable concerted DNA integration profiles, Rev-A and MMTV integrase proteins have been earmarked for structural biology studies.
Collapse
Affiliation(s)
- Allison Ballandras-Colas
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hema Naraharisetty
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiang Li
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Serrao
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan Engelman
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Determining the frequency and mechanisms of HIV-1 and HIV-2 RNA copackaging by single-virion analysis. J Virol 2011; 85:10499-508. [PMID: 21849448 DOI: 10.1128/jvi.05147-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 and HIV-2 are derived from two distinct primate viruses and share only limited sequence identity. Despite this, HIV-1 and HIV-2 Gag polyproteins can coassemble into the same particle and their genomes can undergo recombination, albeit at an extremely low frequency, implying that HIV-1 and HIV-2 RNA can be copackaged into the same particle. To determine the frequency of HIV-1 and HIV-2 RNA copackaging and to dissect the mechanisms that allow the heterologous RNA copackaging, we directly visualized the RNA content of each particle by using RNA-binding proteins tagged with fluorescent proteins to label the viral genomes. We found that when HIV-1 and HIV-2 RNA are present in viral particles at similar ratios, ∼10% of the viral particles encapsidate both HIV-1 and HIV-2 RNAs. Furthermore, heterologous RNA copackaging can be promoted by mutating the 6-nucleotide (6-nt) dimer initiation signal (DIS) to discourage RNA homodimerization or to encourage RNA heterodimerization, indicating that HIV-1 and HIV-2 RNA can heterodimerize prior to packaging using the DIS sequences. We also observed that the coassembly of HIV-1 and HIV-2 Gag proteins is not required for the heterologous RNA copackaging; HIV-1 Gag proteins are capable of mediating HIV-1 and HIV-2 RNA copackaging. These results define the cis- and trans-acting elements required for and affecting the heterologous RNA copackaging, a prerequisite for the generation of chimeric viruses by recombination, and also shed light on the mechanisms of RNA-Gag recognition essential for RNA encapsidation.
Collapse
|
7
|
Al Shamsi IR, Al Dhaheri NS, Phillip PS, Mustafa F, Rizvi TA. Reciprocal cross-packaging of primate lentiviral (HIV-1 and SIV) RNAs by heterologous non-lentiviral MPMV proteins. Virus Res 2010; 155:352-7. [PMID: 20875467 DOI: 10.1016/j.virusres.2010.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/18/2010] [Accepted: 09/19/2010] [Indexed: 11/18/2022]
Abstract
Retroviral RNA packaging signal (ψ) allows the preferential packaging of genomic RNA into virus particles through its interaction with the nucleocapsid protein. The specificity of this interaction came into question when it was shown that primate retroviruses, such as HIV-1, could cross-package RNA from its simian cousin, SIV, and vice versa and that feline retrovirus, FIV could cross-package RNA from a distantly related primate retrovirus, MPMV. To study the generality of this phenomenon further, we determined whether there is a greater packaging restriction between the lentiviral class of retroviruses (HIV-1 and SIV) and a non-lentivirus, MPMV. Our results revealed that primate lentiviral RNAs can be cross-packaged by primate non-lentiviral particles reciprocally, but the cross-packaged RNAs could not be propagated by the heterologous particles. Packaging of RNA in the context of both retroviral vectors as well as non-retroviral RNA containing SIV, HIV, and MPMV packaging determinants by each others proteins further confirmed the specificity of cross-packaging conferred by the packaging sequences. These results reveal the promiscuous nature of retroviral packaging determinants and raise caution against their wide spread presence on retroviral vectors to be used for human gene therapy.
Collapse
Affiliation(s)
- Iman Rashed Al Shamsi
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | |
Collapse
|
8
|
DaPalma T, Doonan BP, Trager NM, Kasman LM. A systematic approach to virus-virus interactions. Virus Res 2010; 149:1-9. [PMID: 20093154 PMCID: PMC7172858 DOI: 10.1016/j.virusres.2010.01.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 01/02/2010] [Accepted: 01/06/2010] [Indexed: 02/02/2023]
Abstract
A virus–virus interaction is a measurable difference in the course of infection of one virus as a result of a concurrent or prior infection by a different species or strain of virus. Many such interactions have been discovered by chance, yet they have rarely been studied systematically. Increasing evidence suggests that virus–virus interactions are common and may be critical to understanding viral pathogenesis in natural hosts. In this review we propose a system for classifying virus–virus interactions by organizing them into three main categories: (1) direct interactions of viral genes or gene products, (2) indirect interactions that result from alterations in the host environment, and (3) immunological interactions. We have so far identified 15 subtypes of interaction and assigned each to one of these categories. It is anticipated that this framework will provide for a more systematic approach to investigating virus–virus interactions, both at the cellular and organismal levels.
Collapse
Affiliation(s)
- T DaPalma
- Dept. of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States
| | | | | | | |
Collapse
|
9
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
10
|
Al Dhaheri NS, Phillip PS, Ghazawi A, Ali J, Beebi E, Jaballah SA, Rizvi TA. Cross-packaging of genetically distinct mouse and primate retroviral RNAs. Retrovirology 2009; 6:66. [PMID: 19602292 PMCID: PMC2723071 DOI: 10.1186/1742-4690-6-66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 07/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background The mouse mammary tumor virus (MMTV) is unique from other retroviruses in having multiple viral promoters, which can be regulated by hormones in a tissue specific manner. This unique property has lead to increased interest in studying MMTV replication with the hope of developing MMTV based vectors for human gene therapy. However, it has recently been reported that related as well as unrelated retroviruses can cross-package each other's genome raising safety concerns towards the use of candidate retroviral vectors for human gene therapy. Therefore, using a trans complementation assay, we looked at the ability of MMTV RNA to be cross-packaged and propagated by an unrelated primate Mason-Pfizer monkey virus (MPMV) that has intracellular assembly process similar to that of MMTV. Results Our results revealed that MMTV and MPMV RNAs could be cross-packaged by the heterologous virus particles reciprocally suggesting that pseudotyping between two genetically distinct retroviruses can take place at the RNA level. However, the cross-packaged RNAs could not be propagated further indicating a block at post-packaging events in the retroviral life cycle. To further confirm that the specificity of cross-packaging was conferred by the packaging sequences (ψ), we cloned the packaging sequences of these viruses on expression plasmids that generated non-viral RNAs. Test of these non-viral RNAs confirmed that the reciprocal cross-packaging was primarily due to the recognition of ψ by the heterologous virus proteins. Conclusion The results presented in this study strongly argue that MPMV and MMTV are promiscuous in their ability to cross-package each other's genome suggesting potential RNA-protein interactions among divergent retroviral RNAs proposing that these interactions are more complicated than originally thought. Furthermore, these observations raise the possibility that MMTV and MPMV genomes could also co-package providing substrates for exchanging genetic information.
Collapse
Affiliation(s)
- Noura Salem Al Dhaheri
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee SK, Boyko V, Hu WS. Capsid is an important determinant for functional complementation of murine leukemia virus and spleen necrosis virus Gag proteins. Virology 2006; 360:388-97. [PMID: 17156810 PMCID: PMC2706498 DOI: 10.1016/j.virol.2006.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/14/2006] [Accepted: 10/26/2006] [Indexed: 01/20/2023]
Abstract
In this report, we examined the abilities and requirements of heterologous Gag proteins to functionally complement each other to support viral replication. Two distantly related gammaretroviruses, murine leukemia virus (MLV) and spleen necrosis virus (SNV), were used as a model system because SNV proteins can support MLV vector replication. Using chimeric or mutant Gag proteins that could not efficiently support MLV vector replication, we determined that a homologous capsid (CA) domain was necessary for the functional complementation of MLV and SNV Gag proteins. Findings from the bimolecular fluorescence complementation assay revealed that MLV and SNV Gag proteins were capable of colocalizing and interacting in cells. Taken together, our results indicated that MLV and SNV Gag proteins can interact in cells; however, a homologous CA domain is needed for functional complementation of MLV and SNV Gag proteins to complete virus replication. This requirement of homologous Gag most likely occurs at a postassembly step(s) of the viral replication.
Collapse
Affiliation(s)
| | | | - Wei-Shau Hu
- Corresponding author. Fax: +1 301 846 6013., E-mail address: (W.-S. Hu)
| |
Collapse
|
12
|
Strappe PM, Hampton DW, Brown D, Cachon-Gonzalez B, Caldwell M, Fawcett JW, Lever AML. Identification of unique reciprocal and non reciprocal cross packaging relationships between HIV-1, HIV-2 and SIV reveals an efficient SIV/HIV-2 lentiviral vector system with highly favourable features for in vivo testing and clinical usage. Retrovirology 2005; 2:55. [PMID: 16168051 PMCID: PMC1253535 DOI: 10.1186/1742-4690-2-55] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 09/16/2005] [Indexed: 11/24/2022] Open
Abstract
Background Lentiviral vectors have shown immense promise as vehicles for gene delivery to non-dividing cells particularly to cells of the central nervous system (CNS). Improvements in the biosafety of viral vectors are paramount as lentiviral vectors move into human clinical trials. This study investigates the packaging relationship between gene transfer (vector) and Gag-Pol expression constructs of HIV-1, HIV-2 and SIV. Cross-packaged vectors expressing GFP were assessed for RNA packaging, viral vector titre and their ability to transduce rat primary glial cell cultures and human neural stem cells. Results HIV-1 Gag-Pol demonstrated the ability to cross package both HIV-2 and SIV gene transfer vectors. However both HIV-2 and SIV Gag-Pol showed a reduced ability to package HIV-1 vector RNA with no significant gene transfer to target cells. An unexpected packaging relationship was found to exist between HIV-2 and SIV with SIV Gag-Pol able to package HIV-2 vector RNA and transduce dividing SV2T cells and CNS cell cultures with an efficiency equivalent to the homologous HIV-1 vector however HIV-2 was unable to deliver SIV based vectors. Conclusion This new non-reciprocal cross packaging relationship between SIV and HIV-2 provides a novel way of significantly increasing bio-safety with a reduced sequence homology between the HIV-2 gene transfer vector and the SIV Gag-Pol construct thus ensuring that vector RNA packaging is unidirectional.
Collapse
Affiliation(s)
- Padraig M Strappe
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| | - David W Hampton
- Centre for Brain Repair, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Douglas Brown
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| | - Begona Cachon-Gonzalez
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| | - Maeve Caldwell
- Centre for Brain Repair, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - James W Fawcett
- Centre for Brain Repair, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Andrew ML Lever
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| |
Collapse
|
13
|
Abstract
As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein-RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.
Collapse
Affiliation(s)
- Victoria D'Souza
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
14
|
Parveen Z, Mukhtar M, Goodrich A, Acheampong E, Dornburg R, Pomerantz RJ. Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors. J Virol 2004; 78:6480-8. [PMID: 15163741 PMCID: PMC416548 DOI: 10.1128/jvi.78.12.6480-6488.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of the nonlentiviral retrovirus spleen necrosis virus (SNV) to cross-package the genomic RNA of the distantly related human immunodeficiency virus type 1 (HIV-1) and vice versa was analyzed. Such a model may allow us to further study HIV-1 replication and pathogenesis, as well as to develop safe gene therapy vectors. Our results suggest that SNV can cross-package HIV-1 genomic RNA but with lower efficiency than HIV-1 proteins. However, HIV-1-specific proteins were unable to cross-package SNV RNA. We also constructed SNV-based gag-pol chimeric variants by replacing the SNV integrase with the HIV-1 integrase, based on multiple sequence alignments and domain analyses. These analyses revealed that there are conserved domains in all retroviral integrase open reading frames (orf), despite the divergence in the primary sequences. The transcomplementation assays suggested that SNV proteins recognized one of the chimeric variants. This demonstrated that HIV-1 integrase is functional in the SNV gag-pol orf with a lower transduction efficiency, utilizing homologous (SNV) RNA, as well as the heterologous vector RNA of HIV-1. These findings suggest that homology in the conserved sequences of the integrase protein may not be fully competent in the replacement of protein(s) from one retrovirus to another, and there are likely several other factors involved in each of the steps related to replication, integration, and infection. However, further studies to dissect the gag-pol region will be critical for understanding the mechanisms involved in the cleavage of reverse transcriptase, RNase H, and integrase. These studies should provide further insight into the design and development of novel molecular approaches to block HIV-1 replication and to construct a new generation of SNV-based vectors.
Collapse
Affiliation(s)
- Zahida Parveen
- Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, 1020 Locust St., Ste. 329, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wang H, Norris KM, Mansky LM. Involvement of the matrix and nucleocapsid domains of the bovine leukemia virus Gag polyprotein precursor in viral RNA packaging. J Virol 2003; 77:9431-8. [PMID: 12915558 PMCID: PMC187409 DOI: 10.1128/jvi.77.17.9431-9438.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA packaging process for retroviruses involves a recognition event of the genome-length viral RNA by the viral Gag polyprotein precursor (PrGag), an important step in particle morphogenesis. The mechanism underlying this genome recognition event for most retroviruses is thought to involve an interaction between the nucleocapsid (NC) domain of PrGag and stable RNA secondary structures that form the RNA packaging signal. Presently, there is limited information regarding PrGag-RNA interactions involved in RNA packaging for the deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and -2, respectively). To address this, alanine-scanning mutagenesis of BLV PrGag was done with a virus-like particle (VLP) system. As predicted, mutagenesis of conserved basic residues as well as residues of the zinc finger domains in the BLV NC domain of PrGag revealed residues that led to a reduction in viral RNA packaging. Interestingly, when conserved basic residues in the BLV MA domain of PrGag were mutated to alanine or glycine, but not when mutated to another basic residue, reductions in viral RNA packaging were also observed. The ability of PrGag to be targeted to the cell membrane was not affected by these mutations in MA, indicating that PrGag membrane targeting was not associated with the reduction in RNA packaging. These observations indicate that these basic residues in the MA domain of PrGag influence RNA packaging, without influencing Gag membrane localization. It was further observed that (i) a MA/NC double mutant had a more severe RNA packaging defect than either mutant alone, and (ii) RNA packaging was not found to be associated with transient localization of Gag in the nucleus. In summary, this report provides the first direct evidence for the involvement of both the BLV MA and NC domains of PrGag in viral RNA packaging.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Cattle
- DNA, Viral/genetics
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/physiology
- Humans
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/growth & development
- Leukemia Virus, Bovine/physiology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Precursors/chemistry
- Protein Precursors/genetics
- Protein Precursors/physiology
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA, Viral/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Transfection
Collapse
Affiliation(s)
- Huating Wang
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
16
|
Fu W, Hu WS. Functional replacement of nucleocapsid flanking regions by heterologous counterparts with divergent primary sequences: effects of chimeric nucleocapsid on the retroviral replication cycle. J Virol 2003; 77:754-61. [PMID: 12477882 PMCID: PMC140598 DOI: 10.1128/jvi.77.1.754-761.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleocapsid (NC) proteins in most retroviruses have a well-conserved Cys-His box(es) as well as more divergent flanking regions that are rich in basic residues. Mutations in the flanking regions can affect RNA packaging, virus assembly, and reverse transcription of the viral RNA. To gain a further understanding of the roles of NC flanking regions in the retroviral replication cycle, we generated and characterized chimeric gag-pol expression constructs derived from murine leukemia virus and spleen necrosis virus by replacing an NC flanking region from one virus with the counterpart from the other virus. We found that all four chimeras were able to generate virions, package viral RNA, and complete the viral replication cycle. Two chimeras had mild defects in virus assembly that correlated with a decrease in the isoelectric points of NCs, suggesting that the basic nature of NC is important in virus assembly. This finding indicates that, although the primary sequences of these flanking regions have little homology, the heterologous sequences are functional both as part of the Gag polyprotein and as processed NC protein.
Collapse
Affiliation(s)
- William Fu
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland 21702, USA
| | | |
Collapse
|
17
|
Mansky LM, Gajary LC. The primary nucleotide sequence of the bovine leukemia virus RNA packaging signal can influence efficient RNA packaging and virus replication. Virology 2002; 301:272-80. [PMID: 12359429 DOI: 10.1006/viro.2002.1578] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two RNA stem-loop structures in the gag gene have been implicated as representing the primary encapsidation (packaging) signal for bovine leukemia virus (BLV), a member of the Delta retrovirus of the Retroviridae. In this study, we conducted an analysis of these RNA structures, stem loop 1 (SL1) and stem loop 2 (SL2), to determine if both the loop and the stem nucleotide bases are important for RNA encapsidation. We have found that the primary sequence of the unpaired bases located in the loop regions of both SL1 and SL2 are important for efficient RNA encapsidation and virus replication. The primary sequence of the bases that form the stems for both SL1 and SL2 was observed to aid in efficient encapsidation and replication. We also observed that the order of SL1 and SL2 is important for RNA encapsidation and virus replication efficiency. A viral RNA with two copies of either SL1 or SL2 was found to replicate and package RNA as efficiently as a viral RNA with only one copy of SL1 or SL2. This provides evidence that SL1 and SL2 are not functionally equivalent. Sequences from human T cell leukemia virus type 1 (HTLV-1) that are located in the same region of HTLV-1 as the SL1 and SL2 of BLV were used to replace the BLV SL1, SL2, or both in a BLV RNA. These BLV RNAs were still encapsidated and replicated, suggesting that these sequences may function as an encapsidation signal in HTLV-1. The chimeric RNAs did not replicate as well as the parental, indicating that the primary nucleotide sequence along with the secondary and tertiary structure of the RNA plays a role in efficient RNA encapsidation and replication.
Collapse
Affiliation(s)
- Louis M Mansky
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer, Center, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
18
|
Abstract
Spleen necrosis virus (SNV) proteins can package RNA from distantly related murine leukemia virus (MLV), whereas MLV proteins cannot package SNV RNA efficiently. We used this nonreciprocal recognition to investigate regions of packaging signals that influence viral RNA encapsidation specificity. Although the MLV and SNV packaging signals (Psi and E, respectively) do not contain significant sequence homology, they both contain a pair of hairpins. This hairpin pair was previously proposed to be the core element in MLV Psi. In the present study, MLV-based vectors were generated to contain chimeric SNV/MLV packaging signals in which the hairpins were replaced with the heterologous counterpart. The interactions between these chimeras and MLV or SNV proteins were examined by virus replication and RNA analyses. SNV proteins recognized all of the chimeras, indicating that these chimeras were functional. We found that replacing the hairpin pair did not drastically alter the ability of MLV proteins to package these chimeras. These results indicate that, despite the important role of the hairpin pair in RNA packaging, it is not the major motif responsible for the ability of MLV proteins to discriminate between the MLV and SNV packaging signals. To determine the role of sequences flanking the hairpins in RNA packaging specificity, vectors with swapped flanking regions were generated and evaluated. SNV proteins packaged all of these chimeras efficiently. In contrast, MLV proteins strongly favored chimeras with the MLV 5'-flanking regions. These data indicated that MLV Gag recognizes multiple elements in the viral packaging signal, including the hairpin structure and flanking regions.
Collapse
Affiliation(s)
- Benjamin E Beasley
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
19
|
Browning MT, Schmidt RD, Lew KA, Rizvi TA. Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J Virol 2001; 75:5129-40. [PMID: 11333894 PMCID: PMC114918 DOI: 10.1128/jvi.75.11.5129-5140.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of safe and effective gene transfer systems is critical to the success of gene therapy protocols for human diseases. Currently, several primate lentivirus-based gene transfer systems, such as those based on human and simian immunodeficiency viruses (HIV/SIV), are being tested; however, their use in humans raises safety concerns, such as the generation of replication-competent viruses through recombination with related endogenous retroviruses or retrovirus-like elements. Due to the greater phylogenetic distance from primate lentiviruses, feline immunodeficiency virus (FIV) is becoming the lentivirus of choice for human gene transfer systems. However, the safety of FIV-based vector systems has not been tested experimentally. Since lentiviruses such as HIV-1 and SIV have been shown to cross-package their RNA genomes, we tested the ability of FIV RNA to get cross-packaged into primate lentivirus particles such as HIV-1 and SIV, as well as a nonlentiviral retrovirus such as Mason-Pfizer monkey virus (MPMV), and vice versa. Our results reveal that FIV RNA can be cross-packaged by primate lentivirus particles such as HIV-1 and SIV and vice versa; however, a nonlentivirus particle such as MPMV is unable to package FIV RNA. Interestingly, FIV particles can package MPMV RNA but cannot propagate the vector RNA further for other steps of the retrovirus life cycle. These findings reveal that diverse retroviruses are functionally more similar than originally thought and suggest that upon coinfection of the same host, cross- or copackaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential.
Collapse
Affiliation(s)
- M T Browning
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, Texas 78602, USA
| | | | | | | |
Collapse
|
20
|
Certo JL, Kabdulov TO, Paulson ML, Anderson JA, Hu WS. The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA. J Virol 1999; 73:9170-7. [PMID: 10516024 PMCID: PMC112950 DOI: 10.1128/jvi.73.11.9170-9177.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cell Line
- Dogs
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Products, gag
- Genetic Vectors
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Mice
- Molecular Sequence Data
- Nucleocapsid/chemistry
- Nucleocapsid/metabolism
- Plasmids/genetics
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reticuloendotheliosis virus/genetics
- Reticuloendotheliosis virus/physiology
- Sequence Analysis, DNA
- Transfection
- Virus Assembly
Collapse
Affiliation(s)
- J L Certo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | |
Collapse
|
21
|
White SM, Renda M, Nam NY, Klimatcheva E, Zhu Y, Fisk J, Halterman M, Rimel BJ, Federoff H, Pandya S, Rosenblatt JD, Planelles V. Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 1999; 73:2832-40. [PMID: 10074131 PMCID: PMC104041 DOI: 10.1128/jvi.73.4.2832-2840.1999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentivirus vectors based on human immunodeficiency virus (HIV) type 1 (HIV-1) constitute a recent development in the field of gene therapy. A key property of HIV-1-derived vectors is their ability to infect nondividing cells. Although high-titer HIV-1-derived vectors have been produced, concerns regarding safety still exist. Safety concerns arise mainly from the possibility of recombination between transfer and packaging vectors, which may give rise to replication-competent viruses with pathogenic potential. We describe a novel lentivirus vector which is based on HIV, simian immunodeficiency virus (SIV), and vesicular stomatitis virus (VSV) and which we refer to as HIV/SIVpack/G. In this system, an HIV-1-derived genome is encapsidated by SIVmac core particles. These core particles are pseudotyped with VSV glycoprotein G. Because the nucleotide homology between HIV-1 and SIVmac is low, the likelihood of recombination between vector elements should be reduced. In addition, the packaging construct (SIVpack) for this lentivirus system was derived from SIVmac1A11, a nonvirulent SIV strain. Thus, the potential for pathogenicity with this vector system is minimal. The transduction ability of HIV/SIVpack/G was demonstrated with immortalized human lymphocytes, human primary macrophages, human bone marrow-derived CD34(+) cells, and primary mouse neurons. To our knowledge, these experiments constitute the first demonstration that the HIV-1-derived genome can be packaged by an SIVmac capsid. We demonstrate that the lentivirus vector described here recapitulates the biological properties of HIV-1-derived vectors, although with increased potential for safety in humans.
Collapse
Affiliation(s)
- S M White
- Departments of Medicine, University of Rochester Cancer Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|