1
|
Baker EK, Solivio B, Pode-Shakked B, Cross LA, Sullivan B, Raas-Rothschild A, Chorin O, Barel O, Bar-Yosef O, Husami A, Hopkin RJ, Prada CE, Stottmann RW, Weaver KN. PPP2R1A neurodevelopmental disorder is associated with congenital heart defects. Am J Med Genet A 2022; 188:3262-3277. [PMID: 36209351 DOI: 10.1002/ajmg.a.62946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase that regulates numerous biological processes. PPP2R1A encodes the scaffolding "Aα" subunit of PP2A. To date, nearly 40 patients have been previously reported with 19 different pathogenic PPP2R1A variants, with phenotypes including intellectual disability, developmental delay, epilepsy, infant agenesis/dysgenesis of the corpus callosum, and dysmorphic features. Apart from a single case, severe congenital heart defects (CHD) have not been described. We report four new unrelated individuals with pathogenic heterozygous PPP2R1A variants and CHD and model the crystal structure of several variants to investigate mechanisms of phenotype disparity. Individuals 1 and 2 have a previously described variant (c.548G>A, p.R183Q) and similar phenotypes with severe ventriculomegaly, agenesis/dysgenesis of the corpus callosum, and severe CHD. Individual 3 also has a recurrent variant (c.544C>T, p.R182W) and presented with agenesis of corpus callosum, ventriculomegaly, mild pulmonic stenosis, and small patent foramen ovale. Individual 4 has a novel variant (c.536C>A, p.P179H), ventriculomegaly, and atrial septal defect. To conclude, we propose expansion of the phenotype of PPP2R1A neurodevelopmental disorder to include CHD. Further, the R183Q variant has now been described in three individuals, all with severe neurologic abnormalities, severe CHD, and early death suggesting that this variant may be particularly deleterious.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Beulah Solivio
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Steve & Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ben Pode-Shakked
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura Ann Cross
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Bonnie Sullivan
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Annick Raas-Rothschild
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Odelia Chorin
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Omer Bar-Yosef
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Steve & Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, Ohio, USA
| | - Kathryn Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Jong CJ, Merrill RA, Wilkerson EM, Herring LE, Graves LM, Strack S. Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'δ holoenzyme. J Biol Chem 2020; 295:5654-5668. [PMID: 32156701 PMCID: PMC7186168 DOI: 10.1074/jbc.ra119.011270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge-swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge-swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal-regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.
Collapse
Affiliation(s)
- Chian Ju Jong
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Emily M Wilkerson
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Laura E Herring
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Lee M Graves
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
3
|
Lan J, Zhong Z, Wang Y, Xiong Y, Ye Q. Endoplasmic reticulum stress induces liver cells apoptosis after brain death by suppressing the phosphorylation of protein phosphatase 2A. Mol Med Rep 2019; 21:567-574. [PMID: 31974600 PMCID: PMC6947944 DOI: 10.3892/mmr.2019.10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/12/2019] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to investigate whether brain death (BD) induces the activation of endoplasmic reticulum stress (ERS) and protein phosphatase 2A (PP2A), and reveal the possible association with BD-induced liver cell apoptosis. A total of 30 healthy adult male Sprague-Dawley rats were randomized into three groups: Sham-operated group (S), BD group and 4-phenylbutyric acid group (BD + 4-PBA), with 10 rats in each group. All rats were anesthetized. The model of BD was established by inflating a balloon catheter that was placed into the extradural space after anesthesia. 4-PBA was administered via an intraperitoneal injection when the BD model was established. Anesthesia of the S group of rats was maintained for 6 h. Liver tissues were harvested after 6 h of BD. HE staining was used to evaluate the damage of liver. Terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling staining was used to observe the apoptosis of liver cells. Activation of ERS and PP2A was examined by western blotting and immunohistochemical staining. We reported that the apoptosis of liver cells after BD was significantly promoted than in the S group. Activation of ERS and PP2A was induced in the BD group when compared with S group. Phosphorylation of PP2A was suppressed in BD group. Application of 4-PBA decreased the activation of ERS and apoptosis rate compared with the BD group. In addition, activation of PP2A in the BD + 4-PBA group was decreased due to the reduction of PP2A phosphorylation compared with the BD group, but the levels were higher than in the S group. (P<0.05). In summary, our results indicated that BD induced ERS, then activated PP2A by suppressing the phosphorylation of PP2A, resulting in the apoptosis of liver cells.
Collapse
Affiliation(s)
- Jia'nan Lan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
4
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Haesen D, Abbasi Asbagh L, Derua R, Hubert A, Schrauwen S, Hoorne Y, Amant F, Waelkens E, Sablina A, Janssens V. Recurrent PPP2R1A Mutations in Uterine Cancer Act through a Dominant-Negative Mechanism to Promote Malignant Cell Growth. Cancer Res 2016; 76:5719-5731. [PMID: 27485451 DOI: 10.1158/0008-5472.can-15-3342] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Somatic missense mutations in the Ser/Thr protein phosphatase 2A (PP2A) Aα scaffold subunit gene PPP2R1A are among the few genomic alterations that occur frequently in serous endometrial carcinoma (EC) and carcinosarcoma, two clinically aggressive subtypes of uterine cancer with few therapeutic options. Previous studies reported that cancer-associated Aα mutants exhibit defects in binding to other PP2A subunits and contribute to cancer development by a mechanism of haploinsufficiency. Here we report on the functional significance of the most recurrent PPP2R1A mutations in human EC, which cluster in Aα HEAT repeats 5 and 7. Beyond predicted loss-of-function effects on the formation of a subset of PP2A holoenzymes, we discovered that Aα mutants behave in a dominant-negative manner due to gain-of-function interactions with the PP2A inhibitor TIPRL1. Dominant-negative Aα mutants retain binding to specific subunits of the B56/B' family and form substrate trapping complexes with impaired phosphatase activity via increased recruitment of TIPRL1. Accordingly, overexpression of the Aα mutants in EC cells harboring wild-type PPP2R1A increased anchorage-independent growth and tumor formation, and triggered hyperphosphorylation of oncogenic PP2A-B56/B' substrates in the GSK3β, Akt, and mTOR/p70S6K signaling pathways. TIPRL1 silencing restored GSK3β phosphorylation and rescued the EC cell growth advantage. Our results reveal how PPP2R1A mutations affect PP2A function and oncogenic signaling, illuminating the genetic basis for serous EC development and its potential control by rationally targeted therapies. Cancer Res; 76(19); 5719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Layka Abbasi Asbagh
- VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Antoine Hubert
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefanie Schrauwen
- Laboratory of Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Laboratory of Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Anna Sablina
- VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Jin Z, Chung JW, Mei W, Strack S, He C, Lau GW, Yang J. Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol Biol Cell 2015; 26:1160-73. [PMID: 25609086 PMCID: PMC4357514 DOI: 10.1091/mbc.e14-08-1276] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent genome-wide association studies reveal that the FAM13A gene is associated with human lung function and a variety of lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The biological functions of Fam13a, however, have not been studied. In an effort to identify novel substrates of B56-containing PP2As, we found that B56-containing PP2As and Akt act antagonistically to control reversible phosphorylation of Fam13a on Ser-322. We show that Ser-322 phosphorylation acts as a molecular switch to control the subcellular distribution of Fam13a. Fam13a shuttles between the nucleus and cytoplasm. When Ser-322 is phosphorylated by Akt, the binding between Fam13a and 14-3-3 is enhanced, leading to cytoplasmic sequestration of Fam13a. B56-containing PP2As dephosphorylate phospho-Ser-322 and promote nuclear localization of Fam13a. We generated Fam13a-knockout mice. Fam13a-mutant mice are viable and healthy, indicating that Fam13a is dispensable for embryonic development and physiological functions in adult animals. Intriguingly, Fam13a has the ability to activate the Wnt pathway. Although Wnt signaling remains largely normal in Fam13a-knockout lungs, depletion of Fam13a in human lung cancer cells causes an obvious reduction in Wnt signaling activity. Our work provides important clues to elucidating the mechanism by which Fam13a may contribute to human lung diseases.
Collapse
Affiliation(s)
- Zhigang Jin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - Jin Wei Chung
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - Stefan Strack
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Chunyan He
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| |
Collapse
|
7
|
Carmen Figueroa-Aldariz M, Castañeda-Patlán MC, Santoyo-Ramos P, Zentella A, Robles-Flores M. Protein phosphatase 2A is essential to maintain active Wnt signaling and its Aβ tumor suppressor subunit is not expressed in colon cancer cells. Mol Carcinog 2014; 54:1430-41. [DOI: 10.1002/mc.22217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- M. Carmen Figueroa-Aldariz
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México (UNAM); Mexico D.F. Mexico
| | - M. Cristina Castañeda-Patlán
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México (UNAM); Mexico D.F. Mexico
| | - Paula Santoyo-Ramos
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México (UNAM); Mexico D.F. Mexico
| | - Alejandro Zentella
- Departamento de Bioquímica; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico D.F. Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México (UNAM); Mexico D.F. Mexico
| |
Collapse
|
8
|
Park M, Choi YA, Lee HG, Kim KI, Lim JS, Lee MS, Oh KS, Yang Y. Dephosphorylation of CCAAT/enhancer-binding protein β by protein phosphatase 2A containing B56δ is required at the early time of adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1608-18. [PMID: 25152162 DOI: 10.1016/j.bbalip.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/26/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022]
Abstract
It is known that protein phosphatase 2A (PP2A) expression is increased in high-fat diet (HFD)-induced obese mice, but the role of PP2A in adipogenesis as well as obesity remains to be addressed. In this study, the role of PP2A in adipogenesis was explored. Preadipocytes were treated with okadaic acid (OA) during adipogenesis and the degree of adipogenesis was determined. The OA treatment blocked adipogenesis at the early time of adipogenesis, but not at the late time. In the early time of adipogenesis, CCAAT/enhancer-binding protein β (C/EBPβ) activation is preceded by the expression of key adipogenic transcription factors including PPARγ and C/EBPα, which function at the late time of adipogenesis, and then C/EBPβ is degraded. However, the inhibition of PP2A by OA treatment sustained phosphorylation of C/EBPβ and delayed its degradation. In turn, PPARγ and C/EBPα activation was altered. Among the various regulatory B56 subunits consisting of PP2A holoenzyme, B56δ was directly bound to C/EBPβ and was responsible for the dephosphorylation of C/EBPβ by PP2A. Taken together, these findings suggest that the phosphorylation of C/EBPβ after hormonal induction has to be inactivated by PP2A containing B56δ at the early time of adipogenesis to allow the completion of adipogenesis.
Collapse
Affiliation(s)
- Miyoung Park
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yeon A Choi
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hee Gu Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejon 305-333, Republic of Korea
| | - Keun Il Kim
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Ki-Sook Oh
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
9
|
Kleinberger T. Induction of cancer-specific cell death by the adenovirus E4orf4 protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:61-97. [PMID: 25001532 DOI: 10.1007/978-1-4471-6458-6_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adenovirus E4orf4 protein is a multifunctional viral regulator that contributes to temporal regulation of the progression of viral infection. When expressed alone, outside the context of the virus, E4orf4 induces p53-independent cell-death in transformed cells. Oncogenic transformation of primary cells in tissue culture sensitizes them to cell killing by E4orf4, indicating that E4orf4 research may have implications for cancer therapy. It has also been reported that E4orf4 induces a caspase-independent, non-classical apoptotic pathway, which maintains crosstalk with classical caspase-dependent pathways. Furthermore, several E4orf4 activities in the nucleus and in the cytoplasm and various protein partners contribute to cell killing by this viral protein. In the following chapter I summarize the current knowledge of the unique mode of E4orf4-induced cell death and its underlying mechanisms. Although several explanations for the cancer-specificity of E4orf4-induced toxicity have been proposed, a better grasp of the mechanisms responsible for E4orf4-induced cell death is required to elucidate the differential sensitivity of normal and cancer cells to E4orf4.
Collapse
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel,
| |
Collapse
|
10
|
Oberg EA, Nifoussi SK, Gingras AC, Strack S. Selective proteasomal degradation of the B'β subunit of protein phosphatase 2A by the E3 ubiquitin ligase adaptor Kelch-like 15. J Biol Chem 2012; 287:43378-89. [PMID: 23135275 DOI: 10.1074/jbc.m112.420281] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B'β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca(2+)/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B'β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B'β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B'β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B'β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B'β. Explaining PP2A subunit selectivity, the divergent N terminus of B'β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B'β heterotrimer, it only degrades B'β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events.
Collapse
Affiliation(s)
- Elizabeth A Oberg
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
11
|
Walter G, Ruediger R. Mouse model for probing tumor suppressor activity of protein phosphatase 2A in diverse signaling pathways. Cell Cycle 2012; 11:451-9. [PMID: 22262169 DOI: 10.4161/cc.11.3.19057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evidence that protein phosphatase 2A (PP2A) is a tumor suppressor in humans came from the discovery of mutations in the genes encoding the Aα and Aβ subunits of the PP2A trimeric holoenzymes, Aα-B-C and Aβ-B-C. One point mutation, Aα-E64D, was found in a human lung carcinoma. It renders Aα specifically defective in binding regulatory B' subunits. Recently, we reported a knock-in mouse expressing Aα-E64D and an Aα knockout mouse. The mutant mice showed a 50-60% increase in the incidence of lung cancer induced by benzopyrene. Importantly, PP2A's tumor suppressor activity depended on p53. These data provide the first direct evidence that PP2A is a tumor suppressor in mice. In addition, they suggest that PP2A is a tumor suppressor in humans. Here, we report that PP2A functions as a tumor suppressor in mice that develop lung cancer triggered by oncogenic K-ras. We discuss whether PP2A may function as a tumor suppressor in diverse tissues, with emphasis on endometrial and ovarian carcinomas, in which Aα mutations were detected at a high frequency. We propose suitable mouse models for examining whether PP2A functions as tumor suppressor in major growth-stimulatory signaling pathways, and we discuss the prospect of using the PP2A activator FTY720 as a drug against malignancies that are driven by these pathways.
Collapse
Affiliation(s)
- Gernot Walter
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
12
|
Human cancer-associated mutations in the Aα subunit of protein phosphatase 2A increase lung cancer incidence in Aα knock-in and knockout mice. Mol Cell Biol 2011; 31:3832-44. [PMID: 21791616 DOI: 10.1128/mcb.05744-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Strong evidence has indicated that protein phosphatase 2A (PP2A) is a tumor suppressor, but a mouse model for testing the tumor suppressor activity was missing. The most abundant forms of trimeric PP2A holoenzyme consist of the scaffolding Aα subunit, one of several regulatory B subunits, and the catalytic Cα subunit. Aα mutations were discovered in a variety of human carcinomas. All carcinoma-associated mutant Aα subunits are defective in binding the B or B and C subunits. Here we describe two knock-in mice expressing cancer-associated Aα point mutants defective in binding B' subunits, one knockout mouse expressing truncated Aα defective in B and C subunit binding, and a floxed mouse for generating conditional Aα knockouts. We found that the cancer-associated Aα mutations increased the incidence of cancer by 50 to 60% in lungs of FVB mice treated with benzopyrene, demonstrating that PP2A acts as a tumor suppressor. We show that the effect of Aα mutation on cancer incidence is dependent on the tumor suppressor p53. The finding that the Aα mutation E64D, which was detected in a human lung carcinoma, increases the lung cancer incidence in mice suggests that this mutation also played a role in the development of the carcinoma in which it was discovered.
Collapse
|
13
|
McConechy MK, Anglesio MS, Kalloger SE, Yang W, Senz J, Chow C, Heravi-Moussavi A, Morin GB, Mes-Masson AM, Carey MS, McAlpine JN, Kwon JS, Prentice LM, Boyd N, Shah SP, Gilks CB, Huntsman DG. Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol 2011; 223:567-73. [PMID: 21381030 DOI: 10.1002/path.2848] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 11/09/2022]
Abstract
PPP2R1A mutations have recently been described in 3/42 (7%) of clear cell carcinomas of the ovary. PPP2R1A encodes the α-isoform of the scaffolding subunit of the serine/threonine protein phosphatase 2A (PP2A) holoenzyme. This putative tumour suppressor complex is involved in growth and survival pathways. Through targeted sequencing of PPP2R1A, we identified somatic missense mutations in 40.8% (20/49) of high-grade serous endometrial tumours, and 5.0% (3/60) of endometrial endometrioid carcinomas. Mutations were also identified in ovarian tumours at lower frequencies: 12.2% (5/41) of endometrioid and 4.1% (2/49) of clear cell carcinomas. No mutations were found in 50 high-grade and 12 low-grade serous carcinomas. Amino acid residues affected by these mutations are highly conserved across species and are involved in direct interactions with regulatory B-subunits of the PP2A holoenzyme. PPP2R1A mutations in endometrial high-grade serous carcinomas are a frequent and potentially targetable feature of this disease. The finding of frequent PPP2R1A mutations in high-grade serous carcinoma of the endometrium but not in high-grade serous carcinoma of the ovary provides clear genetic evidence that these are distinct diseases.
Collapse
Affiliation(s)
- Melissa K McConechy
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, 3427-600 West 10th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shih IM, Panuganti PK, Kuo KT, Mao TL, Kuhn E, Jones S, Velculescu VE, Kurman RJ, Wang TL. Somatic mutations of PPP2R1A in ovarian and uterine carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1442-7. [PMID: 21435433 DOI: 10.1016/j.ajpath.2011.01.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/01/2022]
Abstract
Exome sequencing of ovarian clear-cell carcinoma has identified somatic mutations in PPP2R1A, a subunit of protein phosphatase 2A. The present study was performed to determine the frequency of PPP2R1A mutations in exon 5, which harbors previously reported mutation hot spots, and adjacent exon 6, in 209 ovarian and 56 uterine tumors of various histologic subtypes. PPP2R1A mutations were demonstrated in 10 of 110 type I ovarian tumors (9.1%) including low-grade serous, low-grade endometrioid, clear-cell, and mucinous carcinomas. In contrast, none of 71 type II ovarian (high-grade serous) carcinomas exhibited PPP2R1A mutations. Moreover, PPP2R1A mutations were observed in 2 of 30 type I uterine (endometrioid) carcinomas (6.7%) and 5 of 26 type II uterine (serous) carcinomas (19.2%). Of the 18 mutations, 13 affected the R182 or 183, and there were 5 novel mutations including 3 involving S256, 1 involving W257, and 1 involving P179. All mutations were located in the α-helix repeats near the interface between the A subunit and the regulatory B subunit of the enzyme complex. These data provide new evidence that PPP2R1A somatic mutations occur in certain types of uterine and ovarian neoplastic lesions, especially uterine serous carcinomas, and suggest that mutation of PPP2R1A may participate in the pathogenesis of ovarian type I and uterine type II carcinomas.
Collapse
Affiliation(s)
- Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang J, Phiel C. Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci 2010; 87:659-66. [PMID: 20934435 PMCID: PMC2993835 DOI: 10.1016/j.lfs.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/08/2010] [Accepted: 09/23/2010] [Indexed: 12/20/2022]
Abstract
Members of the B'/B56/PR61 family regulatory subunits of PP2A determine the subcellular localization, substrate specificity, and catalytic activity of PP2A in a wide range of biological processes. Here, we summarize the structure and intracellular localization of B56-containing PP2As and review functions of B56-containing PP2As in several major developmental/cancer signaling pathways.
Collapse
Affiliation(s)
- Jing Yang
- The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, the Ohio State University, 700 Children's Dr., Columbus, OH, 43205, United States.
| | | |
Collapse
|
16
|
Gharbi-Ayachi A, Labbé JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 2010; 330:1673-1677. [PMID: 21164014 DOI: 10.1016/b978-0-12-374145-5.00168-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.
Collapse
Affiliation(s)
- Aicha Gharbi-Ayachi
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McConnell JL, Wadzinski BE. Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 2009; 75:1249-61. [PMID: 19299564 PMCID: PMC2684880 DOI: 10.1124/mol.108.053140] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/19/2009] [Indexed: 12/21/2022] Open
Abstract
With the recent clinical success of drugs targeting protein kinase activity, drug discovery efforts are focusing on the role of reversible protein phosphorylation in disease states. The activity of protein phosphatases, enzymes that oppose protein kinases, can also be manipulated to alter cellular signaling for therapeutic benefits. In this review, we present protein serine/threonine phosphatases as viable therapeutic targets, discussing past successes, current challenges, and future strategies for modulating phosphatase activity.
Collapse
Affiliation(s)
- Jamie L McConnell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
18
|
Janssens V, Longin S, Goris J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 2008; 33:113-21. [PMID: 18291659 DOI: 10.1016/j.tibs.2007.12.004] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 01/22/2023]
Abstract
Protein phosphatase 2A (PP2A), a major phospho-serine/threonine phosphatase, is conserved throughout eukaryotes. It dephosphorylates a plethora of cellular proteins, including kinases and other signaling molecules involved in cell division, gene regulation, protein synthesis and cytoskeleton organization. PP2A enzymes typically exist as heterotrimers comprising catalytic C-, structural A- and regulatory B-type subunits. The B-type subunits function as targeting and substrate-specificity factors; hence, holoenzyme assembly with the appropriate B-type subunit is crucial for PP2A specificity and regulation. Recently, several biochemical and structural determinants have been described that affect PP2A holoenzyme assembly. Moreover, the effects of specific post-translational modifications of the C-terminal tail of the catalytic subunit indicate that a 'code' might regulate dynamic exchange of regulatory B-type subunits, thus affecting the specificity of PP2A.
Collapse
Affiliation(s)
- Veerle Janssens
- Protein Phosphorylation and Proteomics Laboratory, Department of Molecular Cell Biology, Faculty of Medicine, K.U. Leuven, Leuven, Belgium
| | | | | |
Collapse
|
19
|
Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, Xu W. Structural basis of PP2A inhibition by small t antigen. PLoS Biol 2008; 5:e202. [PMID: 17608567 PMCID: PMC1945078 DOI: 10.1371/journal.pbio.0050202] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/21/2007] [Indexed: 12/16/2022] Open
Abstract
The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST. The study of how DNA tumor viruses induce malignant transformation has led to the identification of key pathways that also play a role in spontaneously arising cancers. One such virus, simian virus 40 (SV40), produces two proteins, the large T and small t antigens, that bind and inactivate tumor suppressor genes important for cell transformation. Specifically, SV40 small t antigen (ST) binds to and perturbs the function of the abundant protein phosphatase 2A (PP2A). PP2A is a family of heterotrimeric enzymes, composed of a structural A subunit, a catalytic C subunit, and one of several regulatory B subunits. Here we have determined the structure of SV40 ST in complex with the PP2A structural subunit Aα. SV40 ST consists of an N-terminal J domain and a C-terminal unique domain that contains two separate zinc-binding motifs. SV40 ST binds to the same region of PP2A as the regulatory subunit B56, which provides a structural explanation for the displacement of regulatory B subunits by SV40 ST. Taken together, these observations provide a structural basis for understanding the oncogenic functions of ST. The crystal structure of full-length SV40 small t antigen (ST) in complex with the A subunit of its target, protein phosphatase 2A, contributes to our understanding of the oncogenic functions of ST.
Collapse
Affiliation(s)
- Uhn Soo Cho
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Seamus Morrone
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Anna A Sablina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jason D Arroyo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 2008; 14:152-60. [PMID: 18329957 DOI: 10.1016/j.molmed.2008.02.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 12/21/2022]
Abstract
Reversible protein phosphorylation plays a central role in regulating intracellular signaling. Dysregulation of the mechanisms that regulate phosphorylation plays a direct role in cancer initiation and maintenance. Although abundant evidence supports the role of kinase oncogenes in cancer development, recent work has illuminated the role of specific protein phosphatases in malignant transformation. Protein phosphatase 2A (PP2A) is the major serine-threonine phosphatase in mammalian cells. Inactivation of PP2A by viral oncoproteins, mutation of specific subunits or overexpression of endogenous inhibitors contributes to cell transformation by regulating specific phosphorylation events. Here, we review recent progress in our understanding of how PP2A regulates mitogenic signaling pathways in cancer pathogenesis and how PP2A activity is modulated in human cancers.
Collapse
|
21
|
Chen Y, Xu Y, Bao Q, Xing Y, Li Z, Lin Z, Stock JB, Jeffrey PD, Shi Y. Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol 2007; 14:527-34. [PMID: 17529992 DOI: 10.1038/nsmb1254] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 04/25/2007] [Indexed: 11/10/2022]
Abstract
The small t antigen (ST) of DNA tumor virus SV40 facilitates cellular transformation by disrupting the functions of protein phosphatase 2A (PP2A) through a poorly defined mechanism. The crystal structure of the core domain of SV40 ST bound to the scaffolding subunit of human PP2A reveals that the ST core domain has a novel zinc-binding fold and interacts with the conserved ridge of HEAT repeats 3-6, which overlaps with the binding site for the B' (also called PR61 or B56) regulatory subunit. ST has a lower binding affinity than B' for the PP2A core enzyme. Consequently, ST does not efficiently displace B' from PP2A holoenzymes in vitro. Notably, ST inhibits PP2A phosphatase activity through its N-terminal J domain. These findings suggest that ST may function mainly by inhibiting the phosphatase activity of the PP2A core enzyme, and to a lesser extent by modulating assembly of the PP2A holoenzymes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu D, Tate RI, Ruediger R, Meigs TE, Denker BM. Domains necessary for Galpha12 binding and stimulation of protein phosphatase-2A (PP2A): Is Galpha12 a novel regulatory subunit of PP2A? Mol Pharmacol 2007; 71:1268-76. [PMID: 17303700 DOI: 10.1124/mol.106.033555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many cellular signaling pathways share regulation by protein phosphatase-2A (PP2A), a widely expressed serine/threonine phosphatase, and the heterotrimeric G protein Galpha(12). PP2A activity is altered in carcinogenesis and in some neurodegenerative diseases. We have identified binding of Galpha(12) with the Aalpha subunit of PP2A, a trimeric enzyme composed of A (scaffolding), B (regulatory), and C (catalytic) subunits and demonstrated that Galpha(12) stimulated phosphatase activity (J Biol Chem 279: 54983-54986, 2004). We now show in substrate-velocity analysis using purified PP2A that V(max) was stimulated 3- to 4-fold by glutathione transferase (GST)-Galpha(12) with little effect on K(m) values. To identify the binding domains mediating the Aalpha-Galpha(12) interaction, an extensive mutational analysis was performed. Well-characterized mutations of Aalpha were expressed in vitro and tested for binding to GST-Galpha(12) in pull-down assays. Galpha(12) binds to Aalpha along repeats 7 to 10, and PP2A B subunits are not necessary for binding. To identify where Aalpha binds to Galpha(12), a series of 61 Galpha(12) mutants were engineered to contain the sequence Asn-Ala-Ala-Ile-Arg-Ser (NAAIRS) in place of 6 consecutive amino acids. Mutant Galpha(12) proteins were individually expressed in human embryonic kidney cells and analyzed for interaction with GST or GST-Aalpha in pull-down assays. The Aalpha binding sites were localized to regions near the N and C termini of Galpha(12). The expression of constitutively activated Galpha(12) (QLalpha(12)) in Madin Darby canine kidney cells stimulated PP2A activity as determined by decreased phosphorylation of tyrosine 307 on the catalytic subunit. Based on crystal structures of Galpha(12) and PP2A Aalpha, a model describing the binding surfaces and potential mechanisms of Galpha(12)-mediated PP2A activation is presented.
Collapse
Affiliation(s)
- Deguang Zhu
- Renal Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Mumby M. The 3D structure of protein phosphatase 2A: new insights into a ubiquitous regulator of cell signaling. ACS Chem Biol 2007; 2:99-103. [PMID: 17313179 DOI: 10.1021/cb700021z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase implicated in cancer. Three new crystal structures of PP2A show how it interacts with inhibitory toxins and with one of its regulatory subunits. The structures also explain how specific site mutations may lead to cancer and suggest a novel role for PP2A methylation in the formation of PP2A holoenzymes.
Collapse
Affiliation(s)
- Marc Mumby
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
24
|
Cho US, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 2006; 445:53-7. [PMID: 17086192 DOI: 10.1038/nature05351] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/16/2006] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.
Collapse
Affiliation(s)
- Uhn Soo Cho
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
25
|
Esplin ED, Ramos P, Martinez B, Tomlinson GE, Mumby MC, Evans GA. The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes Chromosomes Cancer 2006; 45:182-90. [PMID: 16276521 DOI: 10.1002/gcc.20284] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutations of the PPP2R1B gene, which encodes the Abeta scaffolding subunit of serine/threonine protein phosphatase 2A (PP2A), have been identified in several types of cancer including lung and breast carcinoma. One of these mutations results in an alteration of glycine 90 to aspartic acid (G90D), which has been found in both tumor and genomic DNA, raising the possibility that it is associated with an increased risk for cancer. A novel microarray-based technology was used to screen for this single-nucleotide polymorphism in 387 cancer patients and 329 control individuals. These data were used for case-control and family-based comparisons in order to study the association of this polymorphism with susceptibility to lung carcinoma, breast carcinoma, and acute lymphoblastic leukemia. The frequency of the G90D polymorphism in breast cancer patients was significantly higher in cases (3%) than in controls (0.3%). The wild-type Abeta subunit interacted with the B56gamma (PPP2R5C), PR72 (PPP2R3A), and PR48 subunits of PP2A but did not interact with the B55alpha (PPP2R2A), B56alpha (PPP2R5A), or B56beta (PPP2R5B) regulatory subunits in an in vitro binding assay. The G90D alteration inhibited the interaction of Abeta with the B56gamma subunit but had no effect on binding to the PR72 subunit. These results provide evidence that the G90D alteration of the Abeta subunit of PP2A is associated with a low frequency of breast carcinoma and that the role of this alteration in transformation is likely to involve decreased interaction with the B56gamma regulatory subunit.
Collapse
Affiliation(s)
- Edward D Esplin
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, 75390-9041, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Letourneux C, Rocher G, Porteu F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 2006; 25:727-38. [PMID: 16456541 PMCID: PMC1383561 DOI: 10.1038/sj.emboj.7600980] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 01/10/2006] [Indexed: 11/09/2022] Open
Abstract
The protein phosphatase 2A (PP2A) acts on several kinases in the extracellular signal-regulated kinase (ERK) signaling pathway but whether a specific holoenzyme dephosphorylates ERK and whether this activity is controlled during mitogenic stimulation is unknown. By using both RNA interference and overexpression of PP2A B regulatory subunits, we show that B56, but not B, family members of PP2A increase ERK dephosphorylation, without affecting its activation by MEK. Induction of the early gene product and ERK substrate IEX-1 (ier3) by growth factors leads to opposite effects and reverses B56-PP2A-mediated ERK dephosphorylation. IEX-1 binds to B56 subunits and pERK independently, enhances B56 phosphorylation by ERK at a conserved Ser/Pro site in this complex and triggers dissociation from the catalytic subunit. This is the first demonstration of the involvement of B56-containing PP2A in ERK dephosphorylation and of a B56-specific cellular protein inhibitor regulating its activity in an ERK-dependent fashion. In addition, our results raise a new paradigm in ERK signaling in which ERK associated to a substrate can transphosphorylate nearby proteins.
Collapse
Affiliation(s)
- Claire Letourneux
- Department of Hematology, Institut Cochin, INSERM U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France
| | - Géraldine Rocher
- Department of Hematology, Institut Cochin, INSERM U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France
| | - Françoise Porteu
- Department of Hematology, Institut Cochin, INSERM U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France
| |
Collapse
|
27
|
Van Kanegan MJ, Adams DG, Wadzinski BE, Strack S. Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt. J Biol Chem 2005; 280:36029-36. [PMID: 16129692 DOI: 10.1074/jbc.m506986200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key regulator of many kinase cascades, heterotrimeric protein serine/threonine phosphatase 2A (PP2A), is composed of catalytic (C), scaffold (A), and variable regulatory subunits (B, B', B'' gene families). In neuronal PC12 cells, PP2A acts predominantly as a gatekeeper of extracellular signal-regulated kinase (ERK) activity, as shown by inducible RNA interference of the Aalpha scaffolding subunit and PP2A inhibition by okadaic acid. Although okadaic acid potentiates Akt/protein kinase B and ERK phosphorylation in response to epidermal, basic fibroblast, or nerve growth factor, silencing of Aalpha paradoxically has the opposite effect. Epidermal growth factor receptor Tyr phosphorylation was unchanged following Aalpha knockdown, suggesting that chronic Akt and ERK hyperphosphorylation leads to compensatory down-regulation of signaling molecules upstream of Ras and blunted growth factor responses. Inducible exchange of wild-type Aalpha with a mutant with selective B' subunit binding deficiency implicated PP2A/B' heterotrimers as Akt modulators. Conversely, silencing of the B-family regulatory subunits Balpha and Bdelta led to hyperactivation of ERK stimulated by constitutively active MEK1. In vitro dephosphorylation assays further support a role for Balpha and Bdelta in targeting the PP2A heterotrimer to dephosphorylate and inactivate ERKs. Thus, receptor tyrosine kinase signaling cascades leading to Akt and ERK activation are modulated by PP2A holoenzymes with distinct regulatory properties.
Collapse
Affiliation(s)
- Michael J Van Kanegan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
28
|
Strack S, Cribbs JT, Gomez L. Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem 2004; 279:47732-9. [PMID: 15364932 DOI: 10.1074/jbc.m408015200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The predominant forms of protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, are dimers of catalytic (C) and scaffolding (A) subunits and trimers with an additional variable regulatory subunit. In mammals, catalytic and scaffolding subunits are encoded by two genes each (alpha/beta), whereas three gene families (B, B', and B'') with a total of 12 genes contribute PP2A regulatory subunits. We generated stable PC12 cell lines in which the major scaffolding Aalpha subunit can be knocked down by inducible RNA interference (RNAi) to study its role in cell viability. Aalpha RNAi decreased total PP2A activity as well as protein levels of C, B, and B' but not B'' subunits. Inhibitor experiments indicate that monomeric C and B subunits are degraded by the proteosome. Knock-down of Aalpha triggered cell death by redundant apoptotic and non-apoptotic mechanisms because the inhibition of RNAi-associated caspase activation failed to stall cell death. PP2A holoenzymes positively regulate survival kinase signaling, because RNAi reduced basal and epidermal growth factor-stimulated Akt phosphorylation. RNAi-resistant Aalpha cDNAs rescued RNAi-induced loss of the C subunit, and Aalpha point mutants prevented regulatory subunit degradation as predicted from each mutant's binding specificity. In transient, stable, and stable-inducible rescue experiments, both wild-type Abeta and Aalpha mutants capable of binding to at least one family of regulatory subunits were able to delay Aalpha RNAi-induced death of PC12 cells. However, only the expression of wild-type Aalpha restored viability completely. Thus, heterotrimeric PP2A holoenzymes containing the Aalpha subunit and members of all three regulatory subunit families are necessary for mammalian cell viability.
Collapse
Affiliation(s)
- Stefan Strack
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
29
|
Fellner T, Piribauer P, Ogris E. Altering the Holoenzyme Composition and Substrate Specificity of Protein Phosphatase 2A. Methods Enzymol 2003; 366:187-203. [PMID: 14674250 DOI: 10.1016/s0076-6879(03)66016-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thomas Fellner
- Institute of Medical Biochemistry, Division of Molecular Biology, Vienna Biocenter, University of Vienna, Dr. Bohr-Gasse 9, Vienna A-1030, Austria
| | | | | |
Collapse
|
30
|
Strack S, Ruediger R, Walter G, Dagda RK, Barwacz CA, Cribbs JT. Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding A subunits. J Biol Chem 2002; 277:20750-5. [PMID: 11929880 DOI: 10.1074/jbc.m202992200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein serine/threonine phosphatase (PP) 2A is a ubiquitous enzyme with pleiotropic functions. Trimeric PP2A consists of a structural A subunit, a catalytic C subunit, and a variable regulatory subunit. Variable subunits (B, B', and B" families) dictate PP2A substrate specificity and subcellular localization. B-family subunits contain seven WD repeats predicted to fold into a beta-propeller structure. We carried out mutagenesis of Bgamma to identify domains important for association with A and C subunits in vivo. Several internal deletions in Bgamma abolished coimmunoprecipitation of A and C subunits expressed in COS-M6 cells. In contrast, small N- and C-terminal Bgamma deletions had no effect on incorporation into the PP2A heterotrimer. Thus, holoenzyme association of B-family subunits requires multiple, precisely aligned contacts within a core beta-propeller domain. Charge-reversal mutagenesis of Bgamma identified a cluster of conserved critical residues in Bgamma WD repeats 3 and 4. Acidic substitution of paired basic residues in Bgamma (RR165EE) abolished association with wild-type A and C subunits, while fostering incorporation of Bgamma into a PP2A heterotrimer containing an A subunit with an opposite charge-reversal mutation (EE100RR). Thus, binding of A and B subunits requires electrostatic interactions between conserved pairs of glutamates and arginines. By expressing complementary charge-reversal mutants in neuronal PC6-3 cells, we further show that holoenzyme incorporation protects Bgamma from rapid degradation by the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Li X, Virshup DM. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:546-52. [PMID: 11856313 DOI: 10.1046/j.0014-2956.2001.02680.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric serine/threonine phosphatase containing highly conserved structural (A) and catalytic (C) subunits. Its diverse functions in the cell are determined by its association with a highly variable regulatory and targeting B subunit. At least three distinct gene families encoding B subunits are known: B/B55/CDC55, B'/B56/RTS1 and B"/PR72/130. No homology has been identified among the B families, and little is known about how these B subunits interact with the PP2A A and C subunits. In vitro expression of a series of B56alpha fragments identified two distinct domains that bound independently to the A subunit. Sequence alignment of these A subunit binding domains (ASBD) identified conserved residues in B/B55 and PR72 family members. The alignment successfully predicted domains in B55 and PR72 subunits that similarly bound to the PP2A A subunit. These results suggest that these B subunits share a common core structure and mode of interaction with the PP2A holoenzyme.
Collapse
Affiliation(s)
- Xinghai Li
- Department of Oncological Sciences, Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
32
|
Ruediger R, Pham HT, Walter G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 2001; 20:1892-9. [PMID: 11313937 DOI: 10.1038/sj.onc.1204279] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2000] [Revised: 01/15/2001] [Accepted: 01/17/2001] [Indexed: 01/23/2023]
Abstract
Protein phosphatase 2A (PP2A) consists of three subunits, A, B and C. The A and B subunits have regulatory functions while C is the catalytic subunit. PP2A core enzyme is composed of subunits A and C, and the holoenzyme of subunits A, B and C. All subunits exist as multiple isoforms or splice variants. The A subunit exists as two isoforms, A alpha and A beta. Here we report about the properties of eight A beta mutants, which were found in human lung and colon cancer. These mutants were reconstructed by site-directed mutagenesis and assayed for their ability to bind B and C subunits. Two mutants showed decreased binding of PR72, a member of the B" family of B subunits, but normal C subunit binding; two mutants exhibited decreased binding of the C subunit and of B"/PR72; and one mutant showed increased binding of both the C subunit and B"/PR72. Of three mutants that behaved like the wild-type A beta subunit, one is a polymorphic variant and another one is altered outside the binding region for B and C subunits. Importantly, we also found that the wild-type A alpha and A beta isoforms, although 85% identical, are remarkably different in their ability to bind B and C subunits. Our findings may have important implications in regard to the role of PP2A as a tumor suppressor.
Collapse
Affiliation(s)
- R Ruediger
- Department of Pathology, University of California at San Diego, La Jolla, California, CA 92093, USA
| | | | | |
Collapse
|
33
|
Ruediger R, Pham HT, Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 2001; 20:10-5. [PMID: 11244497 DOI: 10.1038/sj.onc.1204059] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The A subunit of protein phosphatase 2A (PP2A) consists of 15 nonidentical repeats. The catalytic C subunit binds to C-terminal repeats 11 - 15 and regulatory B subunits bind to N-terminal repeats 1 - 10. Recently, four cancer-associated mutants of the A-alpha subunit have been described: Glu64-->Asp in lung carcinoma, Glu64-->Gly in breast carcinoma, Arg418-->Trp in melanoma, and Delta171 - 589 in breast carcinoma. Based on our model of PP2A, we predicted that Glu64-->Asp and Glu64-->Gly might be defective in B subunit binding, whereas Arg418-->Trp and Delta171 - 589 might bind neither B nor C subunits. We generated these mutants by site-directed mutagenesis and assayed their ability to associate with different forms of B subunits (B, B', B") or with the catalytic C subunit. The results demonstrate that all mutants are defective in binding either B or B and C subunits. Specifically, the N-terminal mutants, Glu64-->Asp and Glu64-->Gly, are defective in B' but normal in B, B", and C subunit binding, whereas the C-terminal mutants Arg418-->Trp and Delta171 - 589 bind none of the B subunits nor the C subunit. The implications of these findings with regard to the potential role of PP2A as a tumor suppressor are discussed. Oncogene (2001) 20, 10 - 15.
Collapse
Affiliation(s)
- R Ruediger
- Department of Pathology, University of California at San Diego, La Jolla, California, CA 92093, USA
| | | | | |
Collapse
|
34
|
Brewis N, Ohst K, Fields K, Rapacciuolo A, Chou D, Bloor C, Dillmann W, Rockman H, Walter G. Dilated cardiomyopathy in transgenic mice expressing a mutant A subunit of protein phosphatase 2A. Am J Physiol Heart Circ Physiol 2000; 279:H1307-18. [PMID: 10993798 DOI: 10.1152/ajpheart.2000.279.3.h1307] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein phosphatase 2A (PP2A) holoenzyme consists of a catalytic subunit, C, and two regulatory subunits, A and B. The PP2A core enzyme is composed of subunits A and C. Both the holoenzyme and the core enzyme are similarly abundant in heart tissue. Transgenic mice were generated expressing high levels of a dominant negative mutant of the A subunit (A delta 5) in the heart, skeletal muscle, and smooth muscle that competes with the endogenous A subunit for binding the C subunit but does not bind B subunits. We found that the ratio of core enzyme to holoenzyme was increased in A delta 5-expressing hearts. Importantly, already at day 1 after birth, A delta 5-transgenic mice had an increased heart weight-to-body weight ratio that persisted throughout life. Echocardiographic analysis of A delta 5-transgenic hearts revealed increased end-diastolic and end-systolic dimensions and decreased fractional shortening. In addition, the thickness of the septum and of the left ventricular posterior wall was significantly reduced. On the basis of these findings, we consider the heart phenotype of A delta 5-transgenic mice to be a form of dilated cardiomyopathy that frequently leads to premature death.
Collapse
MESH Headings
- Animals
- Body Weight
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Echocardiography
- Exons/genetics
- Gene Expression/genetics
- Genes, Dominant/genetics
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Mice
- Mice, Transgenic/genetics
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Smooth/enzymology
- Muscle, Smooth/pathology
- Mutagenesis, Site-Directed
- Myocardium/enzymology
- Myocardium/pathology
- Organ Size
- Organ Specificity/genetics
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Protein Binding/genetics
- Protein Phosphatase 2
- Sequence Deletion/genetics
- Transgenes/genetics
Collapse
Affiliation(s)
- N Brewis
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shtrichman R, Sharf R, Kleinberger T. Adenovirus E4orf4 protein interacts with both Balpha and B' subunits of protein phosphatase 2A, but E4orf4-induced apoptosis is mediated only by the interaction with Balpha. Oncogene 2000; 19:3757-65. [PMID: 10949930 DOI: 10.1038/sj.onc.1203705] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenovirus E4orf4 protein is a multifunctional viral regulator, which is involved in down regulation of virally-modulated signal transduction, in control of alternative splicing of viral mRNAs, and in induction of apoptosis in transformed cells. It has been previously shown that E4orf4 interacts with protein phosphatase 2A through the phosphatase Balpha subunit. It was further shown that PP2A is required for performing the various E4orf4 functions. We report here that E4orf4 interacts with multiple isoforms of the PP2A-B' subunit, as well as with Balpha. We map the interaction sites of the B subunits on E4orf4 and show that they overlap but are not identical. We identify a dominant negative E4orf4 mutant, which disrupts the PP2A holoenzyme. We show that induction of apoptosis by E4orf4, which we previously reported to require the interaction with Balpha, is not affected by the interaction with B'. Our results suggest that the interaction of E4orf4 with various PP2A subpopulations may mediate the different E4orf4 functions.
Collapse
Affiliation(s)
- R Shtrichman
- The Gonda Center of Molecular Microbiology, The B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
36
|
Swiatek W, Sugajska E, Lankiewicz L, Hemmings BA, Zolnierowicz S. Biochemical characterization of recombinant subunits of type 2A protein phosphatase overexpressed in Pichia pastoris. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5209-16. [PMID: 10931206 DOI: 10.1046/j.1432-1327.2000.01591.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylotrophic yeast Pichia pastoris was used for a medium-scale expression of structural (PR65/A) and catalytic (PP2Ac) subunits of human type 2A protein phosphatase (PP2A). Constructs encoding these subunits, which were designed to introduce eight histidines at their N-termini, were introduced into the KM71 Pichia strain by homologous recombination. Recombinant proteins overproduced after methanol induction were purified from cell-free extracts by anion-exchange chromatography on DEAE-Sepharose, and Ni2+/nitrilotriacetate/agarose. In addition, chromatography on omega-aminohexyl-Sepharose was applied to purify recombinant (r)PR65/A. This purification scheme yielded approximately 5 mg and 100 microg of rPR65/A and rPP2Ac, respectively, from 1 L of the yeast culture. The specific activity of rPP2Ac measured with [32P]phosphorylase a [1.7 micromol.min-1.(mg protein)-1] and its inhibition by okadaic acid (IC50 = 0.66 nM) were similar to PP2A isolated from rabbit skeletal muscle. As demonstrated by immunodetection with methylation state-specific antibodies, recombinant PP2Ac was carboxymethylated at the last C-terminal leucine residue. Recombinant PP2A subunits were able to form a complex as demonstrated both by activity assays in the presence of protamine and by chromatography on protamine-agarose. In summary, P. pastoris provides a convenient heterologous system for the production of recombinant subunits of PP2A.
Collapse
Affiliation(s)
- W Swiatek
- Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland; Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Hong Y, Lubert EJ, Rodgers DW, Sarge KD. Molecular basis of competition between HSF2 and catalytic subunit for binding to the PR65/A subunit of PP2A. Biochem Biophys Res Commun 2000; 272:84-9. [PMID: 10872807 DOI: 10.1006/bbrc.2000.2733] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently identified the existence of a novel interaction between heat shock transcription factor 2 (HSF2) and the PR65/A subunit of protein phosphatase 2A (PP2A) and showed that HSF2 is able to compete with the PP2A catalytic subunit for binding to PR65. To elucidate the mechanistic basis of this competition between HSF2 and catalytic subunit at the molecular level we have sought to characterize sequences within PR65 that are important for interaction with HSF2. The results identify the intra-repeat loop within HEAT repeat 11 of PR65 as critical for interaction with HSF2. Analysis of point mutants within this loop region of PR65 identify lysine 416 as a residue critical for interaction with HSF2. Interestingly, this same lysine residue of PR65 is important for its binding to catalytic subunit. These results suggest that HSF2's ability to interfere with catalytic subunit binding to PR65 is due to competition between HSF2 and catalytic subunit for at least one amino acid residue of PR65, lysine 416. These data support the hypothesis that HSF2 represents a new type of PP2A regulatory protein.
Collapse
Affiliation(s)
- Y Hong
- Department of Biochemistry, Chandler Medical Center, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Protein phosphatase 2A describes an extended family of intracellular protein serine/threonine phosphatases sharing a common catalytic subunit that regulates a variety of processes by means of diverse regulatory subunits. During the past year, studies have shown that protein phosphatase 2A influences events ranging from the initiation of DNA replication to vertebrate axis formation to apoptosis.
Collapse
Affiliation(s)
- D M Virshup
- Departments of Pediatrics and Oncological Sciences, 5C334 School of Medicine, University of Utah, Salt Lake City, 84132, USA. david.
| |
Collapse
|
39
|
Jiang W, Hallberg RL. Isolation and characterization of par1(+) and par2(+): two Schizosaccharomyces pombe genes encoding B' subunits of protein phosphatase 2A. Genetics 2000; 154:1025-38. [PMID: 10757751 PMCID: PMC1460981 DOI: 10.1093/genetics/154.3.1025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases found in eukaryotic cells. We cloned two genes, par1(+) and par2(+), encoding distinct B' subunits of PP2A in fission yeast. They share 52% identity at the amino acid sequence level. Neither gene is essential but together they are required for normal septum positioning and cytokinesis, for growth at both high and low temperature, and for growth under a number of stressful conditions. Immunofluorescence microscopy revealed that Par2p has a cell-cycle-related localization pattern, being localized at cell ends during interphase and forming a medial ring in cells that are undergoing septation and cytokinesis. Our analyses also indicate that Par1p is more abundant than Par2p in the cell. Cross-organism studies showed that both par1(+) and par2(+) could complement the rts1Delta allele in Saccharomyces cerevisiae, albeit to different extents, in spite of the fact that neither contains a serine/threonine-rich N-terminal domain like that found in the S. cerevisiae homolog Rts1p. Thus, while Schizosaccharomyces pombe is more similar to higher eukaryotes with respect to its complement of B'-encoding genes, the function of those proteins is conserved relative to that of Rts1p.
Collapse
Affiliation(s)
- W Jiang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | |
Collapse
|
40
|
Ogris E, Mudrak I, Mak E, Gibson D, Pallas DC. Catalytically inactive protein phosphatase 2A can bind to polyomavirus middle tumor antigen and support complex formation with pp60(c-src). J Virol 1999; 73:7390-8. [PMID: 10438829 PMCID: PMC104266 DOI: 10.1128/jvi.73.9.7390-7398.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction between the heterodimeric form of protein phosphatase 2A (PP2A) and polyomavirus middle T antigen (MT) is required for the subsequent assembly of a transformation-competent MT complex. To investigate the role of PP2A catalytic activity in MT complex formation, we undertook a mutational analysis of the PP2A 36-kDa catalytic C subunit. Several residues likely to be involved in the dephosphorylation mechanism were identified and mutated. The resultant catalytically inactive C subunit mutants were then analyzed for their ability to associate with a cellular (B subunit) or a viral (MT) B-type subunit. Strikingly, while all of the inactive mutants were severely impaired in their interaction with B subunit, most of these mutants formed complexes with polyomavirus MT. These findings indicate a potential role for these catalytically important residues in complex formation with cellular B subunit, but not in complex formation with MT. Transformation-competent MT is known to associate with, and modulate the activity of, several cellular proteins, including pp60(c-src) family kinases. To determine whether association of MT with an active PP2A A-C heterodimer is necessary for subsequent association with pp60(c-src), catalytically inactive C subunits were examined for their ability to form complexes containing pp60(c-src) in MT-expressing cells. Two catalytically inactive C subunit mutants that efficiently formed complexes with MT also formed complexes that included an active pp60(c-src) kinase, demonstrating that PP2A activity is not essential in cis in MT complexes for subsequent pp60(c-src) association.
Collapse
Affiliation(s)
- E Ogris
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|