1
|
Wang Y, Yu J, Pei Y. Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 2024; 15:1505191. [PMID: 39703703 PMCID: PMC11655498 DOI: 10.3389/fmicb.2024.1505191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population worldwide and establishes lifelong infection in hosts by switching between latent and lytic infection. EBV latency can be reactivated under appropriate conditions, leading to expression of the viral lytic genes and production of infectious progeny viruses. EBV reactivation involves crosstalk between various factors and signaling pathways, and the subsequent complicated virus-host interplays determine whether EBV continues to propagate. However, the detailed mechanisms underlying these processes remain unclear. In this review, we summarize the critical factors regulating EBV reactivation and the associated mechanisms. This encompasses the transcription and post-transcriptional regulation of immediate-early (IE) genes, the functions of viral factors on viral DNA replication and progeny virus production, the mechanisms through which viral proteins disrupt and inhibit the host's innate immune response, and the host factors that modulate EBV reactivation. Finally, we explore the potential applications of novel technologies in studying EBV reactivation, providing novel insights into the investigation of mechanisms governing EBV reactivation and the development of anti-EBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
3
|
Sun Y, Liu W, Luo B. Functional diversity: update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol Life Sci 2022; 79:590. [PMID: 36376593 PMCID: PMC11802978 DOI: 10.1007/s00018-022-04561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
5
|
A Noncanonical Basic Motif of Epstein-Barr Virus ZEBRA Protein Facilitates Recognition of Methylated DNA, High-Affinity DNA Binding, and Lytic Activation. J Virol 2019; 93:JVI.00724-19. [PMID: 31068430 DOI: 10.1128/jvi.00724-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023] Open
Abstract
The pathogenesis of Epstein-Barr virus (EBV) infection, including development of lymphomas and carcinomas, is dependent on the ability of the virus to transit from latency to the lytic phase. This conversion, and ultimately disease development, depends on the molecular switch protein, ZEBRA, a viral bZIP transcription factor that initiates transcription from promoters of viral lytic genes. By binding to the origin of viral replication, ZEBRA is also an essential replication protein. Here, we identified a novel DNA-binding motif of ZEBRA, N terminal to the canonical bZIP domain. This RRTRK motif is important for high-affinity binding to DNA and is essential for recognizing the methylation state of viral promoters. Mutations in this motif lead to deficiencies in DNA binding, recognition of DNA methylation, lytic cycle DNA replication, and viral late gene expression. This work advances our understanding of ZEBRA-dependent activation of the viral lytic cascade.IMPORTANCE The binding of ZEBRA to methylated and unmethylated viral DNA triggers activation of the EBV lytic cycle, leading to viral replication and, in some patients, cancer development. Our work thoroughly examines how ZEBRA uses a previously unrecognized basic motif to bind nonmethylated and methylated DNA targets, leading to viral lytic activation. Our findings show that two different positively charged motifs, including the canonical BZIP domain and a newly identified RRTRK motif, contribute to the mechanism of DNA recognition by a viral AP-1 protein. This work contributes to the assessment of ZEBRA as a potential therapeutic target for antiviral and oncolytic treatments.
Collapse
|
6
|
Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 2017; 45:2503-2515. [PMID: 28158710 PMCID: PMC5389525 DOI: 10.1093/nar/gkx057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcription factor that recognizes two versions of a 7-base pair response element, either 5΄-TGAGTCA-3΄ or 5΄-MGAGTCA-3΄ (where M = 5-methylcytosine). These two elements share the feature that 5-methylcytosine and thymine both have a methyl group in the same position, 5-carbon of the pyrimidine, so each of them has two methyl groups at nucleotide positions 1 and 5 from the 5΄ end, resulting in four methyl groups symmetrically positioned in duplex DNA. Epstein-Barr Virus Zta is a key transcriptional regulator of the viral lytic cycle that is homologous to AP-1. Zta recognizes several methylated Zta-response elements, including meZRE1 (5΄-TGAGMCA-3΄) and meZRE2 (5΄-TGAGMGA-3΄), where a methylated cytosine occupies one of the inner thymine residues corresponding to the AP-1 element, resulting in the four spatially equivalent methyl groups. Here, we study how AP-1 and Zta recognize these methyl groups within their cognate response elements. These methyl groups are in van der Waals contact with a conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun), or with the corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom). Furthermore, the two ZRE elements differ at base pair 6 (C:G versus G:C), forming a pseudo-symmetric sequence (meZRE1) or an asymmetric sequence (meZRE2). In vitro DNA binding assays suggest that Zta has high affinity for all four sequences examined, whereas AP-1 has considerably reduced affinity for the asymmetric sequence (meZRE2). We ascribe this difference to Zta Ser186 (a unique residue for Zta) whose side chain hydroxyl oxygen atom interacts with the two half sites differently, whereas the corresponding Ala266 of AP-1 Jun protein lacks such flexibility. Our analyses demonstrate a novel mechanism of 5mC/T recognition in a methylation-dependent, spatial and sequence-specific approach by basic leucine-zipper transcriptional factors.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Molecular and Systems Pharmacology graduate program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel H Speck
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Park R, El-Guindy A, Heston L, Lin SF, Yu KP, Nagy M, Borah S, Delecluse HJ, Steitz J, Miller G. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A)-binding protein are distinct processes mediated by two Epstein Barr virus proteins. PLoS One 2014; 9:e92593. [PMID: 24705134 PMCID: PMC3976295 DOI: 10.1371/journal.pone.0092593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/25/2014] [Indexed: 01/22/2023] Open
Abstract
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.
Collapse
Affiliation(s)
- Richard Park
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lee Heston
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Su-Fang Lin
- Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Taiwan
| | - Kuan-Ping Yu
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mate Nagy
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Sumit Borah
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado Biofrontiers Institute, Boulder, Colorado, United States of America
| | | | - Joan Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
9
|
Yang Y, Jia Y, Wang Y, Wang X, Sun Z, Luo B. Sequence analysis of EBV immediate-early gene BZLF1 and BRLF1 in lymphomas. J Med Virol 2014; 86:1788-95. [PMID: 24615673 DOI: 10.1002/jmv.23911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
The immediate-early (IE) genes, BZLF1 and BRLF1, play an important role in switching Epstein-Barr virus from the latent to the lytic state. The functions of the two IE genes and their respective proteins: ZEBRA and Rta have been well studied, but little is known about their DNA coding sequence variations and disease association. In order to investigate the sequence variation patterns and elucidate their association with lymphomas, BZLF1 and BRLF1 were analyzed in 26 and 33 lymphomas using PCR-direct sequencing method respectively. Three sequence variation types of BZLF1 gene were identified. The type BZLF1-A and BZLF1-B was detected in 34.6% (9/26) and 57.7% (15/26) of the tumor specimens, respectively. Among the three functional domains of ZEBRA, the transactivation domain had the most mutations. Three variation types were also identified in BRLF1 gene where type BR1-A and BR1-C were detected in 27.3% (9/33) and 69.7% (23/33) of specimens, respectively. Among the three functional domains of Rta, the dimerization domain was well conserved while multiple mutations were detected in both the DNA binding domain and the transactivation domain. The variation types BZLF1-B and BR1-C were more frequent in the lymphomas, compared with the throat washing samples from the healthy donors. These results suggest that the type BZLF1-B and BR1-C may be associated with the tumorigenesis of lymphoma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, 266021, China
| | | | | | | | | | | |
Collapse
|
10
|
Latency of Epstein-Barr virus is disrupted by gain-of-function mutant cellular AP-1 proteins that preferentially bind methylated DNA. Proc Natl Acad Sci U S A 2013; 110:8176-81. [PMID: 23625009 DOI: 10.1073/pnas.1301577110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ZEBReplication Activator (ZEBRA), a viral basic zipper protein that initiates the Epstein-Barr viral lytic cycle, binds to DNA and activates transcription through heptamer ZEBRA response elements (ZREs) related to AP-1 sites. A component of the biologic action of ZEBRA is attributable to binding methylated CpGs in ZREs present in the promoters of viral lytic cycle genes. Residue S186 of ZEBRA, Z(S186), which is absolutely required for disruption of latency, participates in the recognition of methylated DNA. We find that mutant cellular AP-1 proteins, Jun(A266S) and Fos(A151S), with alanine-to-serine substitutions homologous to Z(S186), exhibit altered DNA-binding affinity and preferentially bind methylated ZREs. These mutant AP-1 proteins acquire functions of ZEBRA; they activate expression of many viral early lytic cycle gene transcripts in cells harboring latent EBV but are selectively defective in activating expression of some viral proteins and are unable to promote viral DNA replication. Transcriptional activation by mutant c-Jun and c-Fos that have acquired the capacity to bind methylated CpG challenges the paradigm that DNA methylation represses gene expression.
Collapse
|
11
|
Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol 2012; 87:935-50. [PMID: 23135711 DOI: 10.1128/jvi.01790-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early proteins BZLF1 and BRLF1 can both induce lytic EBV reactivation when overexpressed in latently infected cells. Although EBV genome methylation is required for BZLF1-mediated activation of lytic gene expression, the effect of viral genome methylation on BRLF1-mediated viral reactivation has not been well studied. Here, we have compared the effect of viral DNA methylation on BZLF1- versus BRLF1-mediated activation of lytic EBV gene transcription and viral genome replication. We show that most early lytic viral promoters are preferentially activated by BZLF1 in the methylated form, while methylation decreases the ability of BRLF1 to activate most early lytic promoters, as well as the BLRF2 late viral promoter. Moreover, methylation of bacmid constructs containing the EBV genome enhances BZLF1-mediated, but decreases BRLF1-mediated, early lytic gene expression. Methylation of viral promoter DNA does not affect BRLF1 binding to a variety of different CpG-containing BRLF1 binding motifs (RREs) in vitro or in vivo. However, BRLF1 preferentially induces H3K9 histone acetylation of unmethylated promoters in vivo. The methylated and unmethylated forms of an oriLyt-containing plasmid replicate with similar efficiency when transfected into EBV-positive cells that express the essential viral replication proteins in trans. Most importantly, we demonstrate that lytic viral gene expression and replication can be induced by BRLF1, but not BZLF1, expression in an EBV-positive telomerase-immortalized epithelial cell line (NOKs-Akata) in which lytic viral gene promoters remain largely unmethylated. These results suggest that the unmethylated form of the EBV genome can undergo viral reactivation and replication in a BRLF1-dependent manner.
Collapse
|
12
|
Abstract
Two transcription factors, ZEBRA and Rta, switch Epstein-Barr virus (EBV) from the latent to the lytic state. While ZEBRA also plays an obligatory role as an activator of replication, it is not known whether Rta is directly required for replication. Rta is dispensable for amplification of an oriLyt-containing plasmid in a transient-replication assay. Here, we assessed the requirement for Rta in activation of viral DNA synthesis from the endogenous viral genome, a function that has not been established. Initially, we searched for a ZEBRA mutant that supports viral replication but not transcription. We found that Z(S186A), a mutant of ZEBRA unable to activate transcription of Rta or viral genes encoding replication proteins, is competent to bind to oriLyt and to function as an origin recognition protein. Ectopic expression of the six components of the EBV lytic replication machinery failed to rescue replication by Z(S186A). However, addition of Rta to Z(S186A) and the mixture of replication factors activated viral replication and late gene expression. Deletion mutagenesis of Rta indicated that the C-terminal 10 amino acids (aa) were essential for the function of Rta in replication. In vivo DNA binding studies revealed that Rta interacted with the enhancer region of oriLyt. In addition, expression of Rta and Z(S186A) together, but not individually, activated synthesis of the BHLF1 transcript, a lytic transcript required for the process of viral DNA replication. Our findings demonstrate that Rta plays an indispensable role in the process of lytic DNA replication.
Collapse
|
13
|
Luo B, Tang X, Jia Y, Wang Y, Chao Y, Zhao C. Sequence variation of Epstein-Barr virus (EBV) BZLF1 gene in EBV-associated gastric carcinomas and nasopharyngeal carcinomas in Northern China. Microbes Infect 2011; 13:776-82. [DOI: 10.1016/j.micinf.2011.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/19/2011] [Accepted: 04/06/2011] [Indexed: 12/23/2022]
|
14
|
Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol 2010; 84:12405-18. [PMID: 20861250 DOI: 10.1128/jvi.01415-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Epstein-Barr virus (EBV) lytic activator genes bzlf1 and brlf1 are conventionally referred to as immediate-early (IE) genes. However, previous studies showed that the earliest expression of these genes was blocked by cycloheximide when the EBV lytic cycle was induced by histone deacetylase (HDAC) inhibitors and protein kinase C agonists. Anti-IgG activates a complex signal transduction pathway that leads to EBV lytic activation in the Akata cell line. Here we demonstrate that in Akata cells, where lytic cycle activation occurs very rapidly after anti-IgG treatment, de novo protein synthesis is also required for induction of bzlf1 and brlf1 expression. New protein synthesis is required up to 1.25 h after application of anti-IgG; bzlf1 and brlf1 mRNAs can be detected 1.5 h after anti-IgG. Five cellular IE genes were shown to be expressed by 1 h after addition of anti-IgG, and their expression preceded that of bzlf1 and brlf1. These include early growth response genes (egr1, egr2, and egr3) and nuclear orphan receptors (nr4a1 and nr4a3). These genes were activated by anti-IgG treatment of Akata cells with and without the EBV genome; therefore, their expression was not dependent on expression of any EBV gene product. EGR1, EGR2, and EGR3 proteins were kinetically upstream of ZEBRA and Rta proteins. Expression of EGR1, ZEBRA, and Rta proteins were inhibited by bisindolylmaleimide X, a selective inhibitor of PKC. The findings suggest a revised model in which the signal transduction cascade activated by cross-linking of the B cell receptor induces expression of cellular IE genes, such as early growth response and nuclear orphan receptor genes, whose products, in turn, regulate bzlf1 and brlf1 expression.
Collapse
|
15
|
Evidence for DNA hairpin recognition by Zta at the Epstein-Barr virus origin of lytic replication. J Virol 2010; 84:7073-82. [PMID: 20444899 DOI: 10.1128/jvi.02666-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.
Collapse
|
16
|
Chang LK, Chuang JY, Nakao M, Liu ST. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 2010; 38:4687-700. [PMID: 20385599 PMCID: PMC2919728 DOI: 10.1093/nar/gkq243] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle. The two proteins often collaborate to activate the transcription of EBV lytic genes synergistically. This study demonstrates that Rta and Zta form a complex via an intermediary protein, MCAF1, on Zta response element (ZRE) in vitro. The interaction among these three proteins in P3HR1 cells is also verified via coimmunoprecipitation, CHIP analysis and confocal microscopy. The interaction between Rta and Zta in vitro depends on the region between amino acid 562 and 816 in MCAF1. In addition, overexpressing MCAF1 enhances and introducing MCAF1 siRNA into the cells markedly reduces the level of the synergistic activation in 293T cells. Moreover, the fact that the synergistic activation depends on ZRE but not on Rta response element (RRE) originates from the fact that Rta and Zta are capable of activating the BMRF1 promoter synergistically after an RRE but not ZREs in the promoter are mutated. The binding of Rta–MCAF1–Zta complex to ZRE but not RRE also explains why Rta and Zta do not use RRE to activate transcription synergistically. Importantly, this study elucidates the mechanism underlying synergistic activation, which is important to the lytic development of EBV.
Collapse
Affiliation(s)
- Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
17
|
Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC. Methylation-dependent binding of the epstein-barr virus BZLF1 protein to viral promoters. PLoS Pathog 2009; 5:e1000356. [PMID: 19325883 PMCID: PMC2654727 DOI: 10.1371/journal.ppat.1000356] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/27/2009] [Indexed: 11/19/2022] Open
Abstract
The switch between latent and lytic Epstein-Barr virus (EBV) infection is mediated by the viral immediate-early (IE) protein, BZLF1 (Z). Z, a homologue of c-jun that binds to AP1-like motifs (ZREs), induces expression of the BRLF1 (R) and BRRF1 (Na) viral proteins, which cooperatively activate transcription of the Z promoter and thereby establish a positive autoregulatory loop. A unique feature of Z is its ability to preferentially bind to, and activate, the methylated form of the BRLF1 promoter (Rp). To date, however, Rp is the only EBV promoter known to be regulated in this unusual manner. We now demonstrate that the promoter driving transcription of the early BRRF1 gene (Nap) has two CpG-containing ZREs (ACGCTCA and TCGCCCG) that are only bound by Z in the methylated state. Both Nap ZREs are highly methylated in cells with latent EBV infection. Z efficiently activates the methylated, but not unmethylated, form of Nap in reporter gene assays, and both ZREs are required. Z serine residue 186, which was previously shown to be required for Z binding to methylated ZREs in Rp, but not for Z binding to the AP1 site, is required for Z binding to methylated Nap ZREs. The Z(S186A) mutant cannot activate methylated Nap in reporter gene assays and does not induce Na expression in cells with latent EBV infection. Molecular modeling studies of Z bound to the methylated Nap ZREs help to explain why methylation is required for Z binding, and the role of the Z Ser186 residue. Methylation-dependent Z binding to critical viral promoters may enhance lytic reactivation in latently infected cells, where the viral genome is heavily methylated. Conversely, since the incoming viral genome is initially unmethylated, methylation-dependent Z activation may also help the virus to establish latency following infection. In cells with long-term latent Epstein-Barr virus (EBV) infection, the majority of the EBV genome becomes highly methylated. Methylation of cytosines plays a critical role in inhibiting the expression of cellular genes. In contrast, our laboratory previously showed that the EBV protein, BZLF1 (Z), which mediates viral reactivation and replication, preferentially binds to, and activates, the methylated form of the viral BRLF1 promoter. To date, however, BRLF1 is the only EBV promoter known to be activated by Z in this unusual manner. Here, we show that another EBV promoter (Nap, driving transcription of the BRRF1 gene) likewise has two methylation-dependent Z binding sites, and that Z only activates the Nap efficiently in the methylated form. Molecular modeling studies suggest why methylation of the Nap enhances Z binding. Since the BRLF1 and BRRF1 genes encode essential viral transcription factors that work cooperatively with Z to induce the lytic form of viral infection, our results indicate that methylation of the EBV genome enhances Z-mediated disruption of viral latency.
Collapse
Affiliation(s)
- Sarah J. Dickerson
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yongna Xing
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda R. Robinson
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - William T. Seaman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Henri Gruffat
- Laboratoire de Virologie U758, ENS-Lyon, INSERM, Lyon, France
| | - Shannon C. Kenney
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Li D, Qian L, Chen C, Shi M, Yu M, Hu M, Song L, Shen B, Guo N. Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. THE JOURNAL OF IMMUNOLOGY 2009; 182:1799-809. [PMID: 19201831 DOI: 10.4049/jimmunol.0802686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition to a pathogen by the immune system. The level of MHC class II directly influences T lymphocyte activation. The aim of this study was to identify the possible mechanisms of the down-regulation of MHC class II expression by Zta during EBV lytic cycle. The data in the present study demonstrated that ectopic expression of Zta can strongly inhibit the constitutive expression of MHC class II and CIITA in Raji cells. The negative effect of Zta on the CIITA promoter activity was also observed. Scrutiny of the DNA sequence of CIITA promoter III revealed the presence of two Zta-response element (ZRE) motifs that have complete homology to ZREs in the DR and left-hand side duplicated sequence promoters of EBV. By chromatin immunoprecipitation assays, the binding of Zta to the ZRE(221) in the CIITA promoter was verified. Site-directed mutagenesis of three conserved nucleotides of the ZRE(221) substantially disrupted Zta-mediated inhibition of the CIITA promoter activity. Oligonucleotide pull-down assay showed that mutation of the ZRE(221) dramatically abolished Zta binding. Analysis of the Zta mutant lacking DNA binding domain revealed that the DNA-binding activity of Zta is required for the trans repression of CIITA. The expression of HLA-DRalpha and CIITA was restored by Zta gene silencing. The data indicate that Zta may act as an inhibitor of the MHC class II pathway, suppressing CIITA transcription and thus interfering with the expression of MHC class II molecules.
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen LW, Raghavan V, Chang PJ, Shedd D, Heston L, Delecluse HJ, Miller G. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 2009; 386:448-61. [PMID: 19232420 DOI: 10.1016/j.virol.2009.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 12/12/2022]
Abstract
The Rta (R transactivator) protein plays an essential role in the Epstein-Barr viral (EBV) lytic cascade. Rta activates viral gene expression by several mechanisms including direct and indirect binding to target viral promoters, synergy with EBV ZEBRA protein, and stimulation of cellular signaling pathways. We previously found that Rta proteins with C-terminal truncations of 30 aa were markedly enhanced in their capacity to bind DNA (Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G., (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15), 9635-9650.). Here we show that two phenylalanines (F600 and F605) in the C-terminus of Rta play a crucial role in mediating this DNA binding inhibitory function. Amino acids 555 to 605 of Rta constitute a functional DNA binding inhibitory sequence (DBIS) that markedly decreased DNA binding when transferred to a minimal DNA binding domain of Rta (aa 1-350). Alanine substitution mutants, F600A/F605A, abolished activity of the DBIS. F600 and F605 are located in the transcriptional activation domain of Rta. Alanine substitutions, F600A/F605A, decreased transcriptional activation by Rta protein, whereas aromatic substitutions, such as F600Y/F605Y or F600W/F605W, partially restored transcriptional activation. Full-length Rta protein with F600A/F605A mutations were enhanced in DNA binding compared to wild-type, whereas Rta proteins with F600Y/F605Y or F600W/F605W substitutions were, like wild-type Rta, relatively poor DNA binders. GAL4 (1-147)/Rta (416-605) fusion proteins with F600A/F605A mutations were diminished in transcriptional activation, relative to GAL4/Rta chimeras without such mutations. The results suggest that, in the context of a larger DBIS, F600 and F605 play a role in the reciprocal regulation of DNA binding and transcriptional activation by Rta. Regulation of DNA binding by Rta is likely to be important in controlling its different modes of action.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang Gung Institute of Technology, Chaiyi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Park R, Heston L, Shedd D, Delecluse HJ, Miller G. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments. Virology 2008; 382:145-62. [PMID: 18937960 DOI: 10.1016/j.virol.2008.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/31/2008] [Accepted: 09/08/2008] [Indexed: 11/18/2022]
Abstract
ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Here we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate foci. The speckled appearance of R179A and Y180E was more regular and clearly defined in EBV-positive than in EBV-negative 293 cells. The Y180E late-mutant induced EA-D, but prevented EA-D from localizing to globular replication compartments. These results show that individual amino acids within the basic domain influence localization of the ZEBRA protein and its capacity to induce EA-D to become located in mature viral replication compartments. Furthermore, these mutant ZEBRA proteins delineate several stages in the processes of nuclear re-organization which accompany lytic EBV replication.
Collapse
Affiliation(s)
- Richard Park
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
21
|
El-Guindy A, Heston L, Delecluse HJ, Miller G. Phosphoacceptor site S173 in the regulatory domain of Epstein-Barr Virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes. J Virol 2007; 81:3303-16. [PMID: 17215287 PMCID: PMC1866087 DOI: 10.1128/jvi.02445-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Epstein-Barr virus ZEBRA protein controls the viral lytic cycle. ZEBRA activates the transcription of viral genes required for replication. ZEBRA also binds to oriLyt and interacts with components of the viral replication machinery. The mechanism that differentiates the roles of ZEBRA in regulation of transcription and initiation of lytic replication is unknown. Here we show that S173, a residue in the regulatory domain, is obligatory for ZEBRA to function as an origin binding protein but is dispensable for its role as a transcriptional activator of early genes. Serine-to-alanine substitution of this residue, which prevents phosphorylation of S173, resulted in a threefold reduction in the DNA binding affinity of ZEBRA for oriLyt, as assessed by chromatin immunoprecipitation. An independent assay based on ZEBRA solubility demonstrated a marked defect in DNA binding by the Z(S173A) mutant. The phenotype of a phosphomimetic mutant, the Z(S173D) mutant, was similar to that of wild-type ZEBRA. Our findings suggest that phosphorylation of S173 promotes viral replication by enhancing ZEBRA's affinity for DNA. The results imply that stronger DNA binding is required for ZEBRA to activate replication than that required to activate transcription.
Collapse
Affiliation(s)
- Ayman El-Guindy
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
22
|
Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic Cycle Switches of Oncogenic Human Gammaherpesviruses1. Adv Cancer Res 2007; 97:81-109. [PMID: 17419942 DOI: 10.1016/s0065-230x(06)97004-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The seminal experiments of George and Eva Klein helped to define the two life cycles of Epstein-Barr Virus (EBV), namely latency and lytic or productive infection. Their laboratories described latent nuclear antigens expressed during latency and discovered several chemicals that activated the viral lytic cycle. The mechanism of the switch between latency and the lytic cycle of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) can be studied in cultured B cell lines. Lytic cycle activation of EBV is controlled by two viral transcription factors, ZEBRA and Rta. The homologue of Rta encoded in ORF50 is the lytic cycle activator of KSHV. Control of the lytic cycle can be divided into two distinct phases. Upstream events control expression of the virally encoded lytic cycle activator genes. Downstream events represent tasks carried out by the viral proteins in driving expression of lytic cycle genes and lytic viral DNA replication. In this chapter, we report three recent groups of experiments relating to upstream and downstream events. Azacytidine (AzaC) is a DNA methyltransferase inhibitor whose lytic cycle activation capacity was discovered by G. Klein and coworkers. We find that AzaC rapidly activates the EBV lytic cycle but does not detectably alter DNA methylation or histone acetylation on the promoters of the EBV lytic cycle activator genes. AzaC probably acts via a novel, yet to be elucidated, mechanism. The lytic cycle of both EBV and KSHV can be activated by sodium butyrate (NaB), a histone deacetylase inhibitor whose activity in disrupting latency was also discovered by G. Klein and coworkers. Activation of EBV by NaB requires protein synthesis; activation of KSHV is independent of protein synthesis. Thus, NaB works by a different pathway on the two closely related viruses. ZEBRA, the major downstream mediator of EBV lytic cycle activation is both a transcription activator and an essential replication protein. We show that phosphorylation of ZEBRA at its casein kinase 2 (CK2) site separates these two functions. Phosphorylation by CK2 is required for ZEBRA to activate lytic replication but not to induce expression of early lytic cycle genes. We discuss a number of unsolved mysteries about lytic cycle activation which should provide fertile territory for future research.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Cycloheximide/pharmacology
- Cytopathogenic Effect, Viral/drug effects
- Cytopathogenic Effect, Viral/genetics
- Cytopathogenic Effect, Viral/physiology
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- Herpesviridae Infections/virology
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/physiology
- Mutation
- Oncogenic Viruses/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/physiology
- Tumor Virus Infections/virology
- Virus Latency/drug effects
- Virus Latency/genetics
Collapse
Affiliation(s)
- George Miller
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
23
|
Heston L, El-Guindy A, Countryman J, Dela Cruz C, Delecluse HJ, Miller G. Amino acids in the basic domain of Epstein-Barr virus ZEBRA protein play distinct roles in DNA binding, activation of early lytic gene expression, and promotion of viral DNA replication. J Virol 2006; 80:9115-33. [PMID: 16940523 PMCID: PMC1563939 DOI: 10.1128/jvi.00909-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ZEBRA protein of Epstein-Barr virus (EBV) drives the viral lytic cycle cascade. The capacity of ZEBRA to recognize specific DNA sequences resides in amino acids 178 to 194, a region in which 9 of 17 residues are either lysine or arginine. To define the basic domain residues essential for activity, a series of 46 single-amino-acid-substitution mutants were examined for their ability to bind ZIIIB DNA, a high-affinity ZEBRA binding site, and for their capacity to activate early and late EBV lytic cycle gene expression. DNA binding was obligatory for the protein to activate the lytic cascade. Nineteen mutants that failed to bind DNA were unable to disrupt latency. A single acidic replacement of a basic amino acid destroyed DNA binding and the biologic activity of the protein. Four mutants that bound weakly to DNA were defective at stimulating the expression of Rta, the essential first target of ZEBRA in lytic cycle activation. Four amino acids, R183, A185, C189, and R190, are likely to contact ZIIIB DNA specifically, since alanine or valine substitutions at these positions drastically weakened or eliminated DNA binding. Twenty-three mutants were proficient in binding to ZIIIB DNA. Some DNA binding-proficient mutants were refractory to supershift by BZ-1 monoclonal antibody (epitope amino acids 214 to 230), likely as the result of the increased solubility of the mutants. Mutants competent to bind DNA could be separated into four functional groups: the wild-type group (eight mutants), a group defective at activating Rta (five mutants, all with mutations at the S186 site), a group defective at activating EA-D (three mutants with the R179A, S186T, and K192A mutations), and a group specifically defective at activating late gene expression (seven mutants). Three late mutants, with a Y180A, Y180E, or K188A mutation, were defective at stimulating EBV DNA replication. This catalogue of point mutants reveals that basic domain amino acids play distinct functions in binding to DNA, in activating Rta, in stimulating early lytic gene expression, and in promoting viral DNA replication and viral late gene expression. These results are discussed in relationship to the recently solved crystal structure of ZEBRA bound to an AP-1 site.
Collapse
Affiliation(s)
- Lee Heston
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sinclair AJ. Unexpected structure of Epstein-Barr virus lytic cycle activator Zta. Trends Microbiol 2006; 14:289-91. [PMID: 16730442 PMCID: PMC4221735 DOI: 10.1016/j.tim.2006.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/19/2006] [Accepted: 05/12/2006] [Indexed: 11/30/2022]
Abstract
The key viral gene responsible for initiating the replicative cycle of Epstein-Barr virus (EBV), termed BZLF1, encodes the multifunctional protein Zta (ZEBRA or Z). It interacts with DNA as both a transcription and a replication factor, modulates both intracellular signal transduction and the DNA-damage response and manipulates cell cycle progression. Muller and colleagues have resolved the structure of Zta bound to DNA, which confirms some structural predictions but reveals an unexpected twist and a complex dimerization interface. Because EBV is associated with human disease, Zta presents a prime target for drug design.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
25
|
Petosa C, Morand P, Baudin F, Moulin M, Artero JB, Müller CW. Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 2006; 21:565-72. [PMID: 16483937 DOI: 10.1016/j.molcel.2006.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/14/2005] [Accepted: 01/03/2006] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is linked to several human malignancies. EBV has a biphasic infection cycle consisting of a latent and a lytic, replicative phase. The switch from latent to lytic infection is triggered by the EBV immediate-early transcription factor ZEBRA (BZLF1, Zta, Z, EB1). We present the crystal structure of ZEBRA's DNA binding domain bound to an EBV lytic gene promoter element. ZEBRA exhibits a variant of the basic-region leucine zipper (bZIP) fold in which a C-terminal moiety stabilizes the coiled coil involved in dimer formation. The structure provides insights into ZEBRA's broad target site specificity, preferential activation of specific EBV promoters in their methylated state, ability to dimerize despite lacking a leucine zipper motif, and failure to heterodimerize with cellular bZIP proteins. The structure will allow for the design of new therapeutic agents that block activation of the EBV lytic cycle.
Collapse
Affiliation(s)
- Carlo Petosa
- European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
26
|
Granato M, Farina A, Gonnella R, Santarelli R, Frati L, Faggioni A, Angeloni A. Regulation of the expression of the Epstein-Barr virus early gene BFRF1. Virology 2006; 347:109-16. [PMID: 16406456 DOI: 10.1016/j.virol.2005.11.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/28/2005] [Accepted: 11/30/2005] [Indexed: 01/27/2023]
Abstract
The switch from latency to lytic phase of Epstein-Barr virus (EBV) is coordinated by the expression of two viral transactivators known as ZEBRA and RTA. The BFRF1 gene has been shown to be transcribed during the early phases of EBV lytic cycle. Here, we characterized the BFRF1 promoter showing that ZEBRA transfection stimulated BFRF1 expression, whereas RTA induced BFRF1 only after the transfection of an amount of plasmid largely in excess than that sufficient to stimulate the expression of other RTA-responsive genes. However, a co-operative effect between ZEBRA and RTA in the expression of BFRF1 is evident since the transfection of RTA can rescue the transactivating capacity of a mutant of the ZEBRA protein, known as Z(S186A), that has a substitution affecting the DNA binding region. Moreover, we identified one ZEBRA-responsive element (ZRE) and one RTA-responsive element (RRE) within the BFRF1 promoter region.
Collapse
Affiliation(s)
- Marisa Granato
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Medicina Sperimentale e Patologia, Università di Roma La Sapienza; Policlinico Umberto I, Viale Regina Elena, 324. 00161-Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
El-Guindy AS, Paek SY, Countryman J, Miller G. Identification of constitutive phosphorylation sites on the Epstein-Barr virus ZEBRA protein. J Biol Chem 2005; 281:3085-95. [PMID: 16321978 DOI: 10.1074/jbc.m506076200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZEBRA, the product of the Epstein-Barr virus gene bzlf1, and a member of the AP-1 subfamily of basic zipper (bZIP) transcription factors, is necessary and sufficient to disrupt viral latency and to initiate the viral lytic cycle. Two serine residues of ZEBRA, Ser167 and Ser173, are substrates for casein kinase 2 (CK2) and are constitutively phosphorylated in vivo. Phosphorylation of ZEBRA at its CK2 sites is required for proper temporal regulation of viral gene expression. Phosphopeptide analysis indicated that ZEBRA contains additional constitutive phosphorylation sites. Here we employed a co-migration strategy to map these sites in vivo. The cornerstone of this strategy was to correlate the migration of 32P- and 35S-labeled tryptic peptides of ZEBRA. The identity of the peptides was revealed by mutagenesis of methionine and cysteine residues present in each peptide. Phosphorylation sites within the peptide were identified by mutagenesis of serines and threonines. ZEBRA was shown to be phosphorylated at serine and threonine residues, but not tyrosine. Two previously unrecognized phosphorylation sites of ZEBRA were identified in the NH2-terminal region of the transactivation domain: a cluster of weak phosphorylation sites at Ser6, Thr7, and Ser8 and a strong phosphorylation site at Thr14. Thr14 was embedded in a MAP kinase consensus sequence and could be phosphorylated in vitro by JNK, despite the absence of a canonical JNK docking site. Thus ZEBRA is now known to be constitutively phosphorylated at three distinct sites.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
28
|
Wang P, Day L, Dheekollu J, Lieberman PM. A redox-sensitive cysteine in Zta is required for Epstein-Barr virus lytic cycle DNA replication. J Virol 2005; 79:13298-309. [PMID: 16227252 PMCID: PMC1262569 DOI: 10.1128/jvi.79.21.13298-13309.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation from latency is known to be sensitive to redox regulation. The immediate-early protein Zta is a member of the basic-leucine zipper (bZIP) family of DNA binding proteins that stimulates viral and cellular transcription and nucleates a replication complex at the viral lytic origin. Zta shares with several members of the bZIP family a conserved cysteine residue (C189) that confers redox regulation of DNA binding. In this work, we show that replacement of C189 with serine (C189S) eliminated lytic cycle DNA replication function of Zta. The mechanistic basis for this replication defect was investigated. We show that C189S was not significantly altered for DNA binding activity in vitro or in vivo. We also show that C189S was not defective for transcription activation of EBV early gene promoters. C189S was deficient for transcription activation of several viral late genes that depend on lytic replication and therefore was consistent with a primary defect of C189S in activating lytic replication. C189S was not defective in binding methylated DNA binding sites and was capable of activating Rta from endogenous latent viral genomes, in contrast to the previously characterized S186A mutation. C189S was slightly impaired for its ability to form a stable complex with Rta, although this did not prevent Rta recruitment to OriLyt. C189S did provide some resistance to oxidation and nitrosylation, which potently inhibit Zta DNA binding activity in vitro. Interestingly, this redox sensitivity was not strictly dependent on C189S but involved additional cysteine residues in Zta. These results provide evidence that the conserved cysteine in the bZIP domain of Zta plays a primary role in EBV lytic cycle DNA replication.
Collapse
Affiliation(s)
- Pu Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Chang M, Brown HJ, Collado-Hidalgo A, Arevalo JM, Galic Z, Symensma TL, Tanaka L, Deng H, Zack JA, Sun R, Cole SW. beta-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 2005; 79:13538-47. [PMID: 16227274 PMCID: PMC1262578 DOI: 10.1128/jvi.79.21.13538-13547.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication is mediated by the viral RTA transcription factor, but little is known about the physiological processes controlling its expression or activity. Links between autonomic nervous system activity and AIDS-associated Kaposi's sarcoma led us to examine the potential influence of catecholamine neurotransmitters. Physiological concentrations of epinephrine and norepinephrine efficiently reactivated lytic replication of KSHV in latently infected primary effusion lymphoma cells via beta-adrenergic activation of the cellular cyclic AMP/protein kinase A (PKA) signaling pathway. Effects were blocked by PKA antagonists and mimicked by pharmacological and physiological PKA activators (prostaglandin E2 and histamine) or overexpression of the PKA catalytic subunit. PKA up-regulated RTA gene expression, enhanced activity of the RTA promoter, and posttranslationally enhanced RTA's trans-activating capacity for its own promoter and heterologous lytic promoters (e.g., the viral PAN gene). Mutation of predicted phosphorylation targets at RTA serines 525 and 526 inhibited PKA-mediated enhancement of RTA trans-activating capacity. Given the high catecholamine levels at sites of KSHV latency such as the vasculature and lymphoid organs, these data suggest that beta-adrenergic control of RTA might constitute a significant physiological regulator of KSHV lytic replication. These findings also suggest novel therapeutic strategies for controlling the activity of this oncogenic gammaherpesvirus in vivo.
Collapse
Affiliation(s)
- Margaret Chang
- Department of Microbiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1678,USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Izumiya Y, Ellison TJ, Yeh ETH, Jung JU, Luciw PA, Kung HJ. Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 2005; 79:9912-25. [PMID: 16014952 PMCID: PMC1181544 DOI: 10.1128/jvi.79.15.9912-9925.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus implicated in AIDS-related neoplasms. Previously, we demonstrated that the early lytic gene product K-bZIP is a transcriptional repressor that affects a subset of viral gene transcriptions mediated by the viral transactivator K-Rta (Y. Izumiya et al. J. Virol. 77:1441-1451, 2003). Sumoylation has emerged as an important posttranslational modification that affects the location and function of cellular and viral proteins and also plays a significant role in transcriptional repression along with Ubc9, the E2 SUMO conjugation enzyme. Here, we provide evidence that K-bZIP is sumoylated at the lysine 158 residue and associates with Ubc9 both in a cell-free system and in virus-infected BCBL-1 cells. Reporter assays showed that the expression of SUMO-specific protease 1 attenuated the transcriptional repression activity of K-bZIP. The expression of a K-bZIPK158R mutant, which was no longer sumoylated, exhibited the reduced transcriptional repression activity. This indicates that sumoylation plays an important part in the transcriptional repression activity of K-bZIP. Finally, chromatin immunoprecipitation experiments demonstrated that K-bZIP interacts with and recruits Ubc9 to specific KSHV promoters. Thus, our data indicate that K-bZIP is a SUMO adaptor, which recruits Ubc9 to specific viral target promoters, thereby exerting its transcriptional repression activity.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Biological Chemistry, University of California--Davis (UC Davis), School of Medicine, Sacramento, 95817, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bhende PM, Seaman WT, Delecluse HJ, Kenney SC. BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol 2005; 79:7338-48. [PMID: 15919888 PMCID: PMC1143640 DOI: 10.1128/jvi.79.12.7338-7348.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome is highly methylated in latently infected cells. We recently reported that the EBV immediate-early (IE) protein BZLF1 (Z) preferentially binds to and activates transcription from the methylated form of the BRLF1 IE gene promoter (Rp). We now report that serine residue 186 in the Z DNA-binding domain plays an important role in the ability of Z to bind to and activate methylated Rp. A Z mutant containing an alanine residue at position 186 [Z(S186A)] was significantly defective in binding to methylated, as well as unmethylated, ZREs (Z-responsive elements) in Rp and was unable to activate lytic EBV gene transcription from the methylated or demethylated form of the viral genome. A Z mutant containing threonine at residue 186 [Z(S186T)] bound only to the methylated form of the ZRE-2 site in Rp and induced lytic EBV gene transcription from the methylated, but not demethylated, form of the viral genome. The defect in both of these mutants was primarily due to an inability to activate the Rp in the context of the viral genome. Finally, a Z mutant containing an aspartic acid at position 186 [Z(S186D)] did not bind to either the consensus AP-1 site or to the methylated or unmethylated Rp ZRE-2 site and did not induce lytic gene transcription. These results indicate that replacement of serine with threonine at residue 186 in the Z DNA-binding domain differentially affects its ability to reactivate the unmethylated, versus methylated, viral genome.
Collapse
Affiliation(s)
- Prasanna M Bhende
- Lineberger Comprehensive Cancer Center, CB# 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
32
|
Chen L, Yin J, Chen Y, Zhong J. Induction of Epstein-Barr virus lytic replication by recombinant adenoviruses expressing the zebra gene with EBV specific promoters. Acta Biochim Biophys Sin (Shanghai) 2005; 37:215-20. [PMID: 15806286 DOI: 10.1111/j.1745-7270.2005.00032.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The latent Epstein-Barr virus (EBV) is found in the cells of many tumors. For example, EBV is detectable in almost all cases, and in almost all tumor cells, of non-keratinizing nasopharyngeal carcinoma. Activating the latent virus, which will result in its lytic replication and the death of tumor cells, is a potential approach for the treatment of EBV-associated cancers. In this study, three recombinant adenoviruses were constructed to express the Zebra gene, an EBV gene responsible for switching from the latent state to lytic replication. EBV-specific promoters were used in order to limit Zebra expression in EBV-positive cells, and reduce the potential side effects. The EBV promoters used were Cp, Zp and a dual promoter combining both promoters, CpZp. The Zebra protein was detected in HEK293 cells as well as the EBV-positive D98-HR1 cells infected with recombinant viruses. An EBV lytic replication early antigen, EA-D, was also detected in infected D98-HR1, implying the initiation of lytic replication. In the cell viability assay, Zebra-expressing adenoviruses had little effect on EBV-negative HeLa cells, while significantly reducing the cell viability and proliferation of D98-HR1 cells. The results indicate that EBV virus promoters can be used in adenovirus vectors to express the Zebra gene and induce EBV lytic replication in D98-HR1 cells.
Collapse
Affiliation(s)
- Lu Chen
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
33
|
El-Guindy AS, Miller G. Phosphorylation of Epstein-Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta. J Virol 2004; 78:7634-44. [PMID: 15220438 PMCID: PMC434091 DOI: 10.1128/jvi.78.14.7634-7644.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ZEBRA, a member of the bZIP family, serves as a master switch between latent and lytic cycle Epstein-Barr virus (EBV) gene expression. ZEBRA influences the activity of another viral transactivator, Rta, in a gene-specific manner. Some early lytic cycle genes, such as BMRF1, are activated in synergy by ZEBRA and Rta. However, ZEBRA suppresses Rta's ability to activate a late gene, BLRF2. Here we show that this repressive activity is dependent on the phosphorylation state of ZEBRA. We find that two residues of ZEBRA, S167 and S173, that are phosphorylated by casein kinase 2 (CK2) in vitro are also phosphorylated in vivo. Inhibition of ZEBRA phosphorylation at the CK2 substrate motif, either by serine-to-alanine substitutions or by use of a specific inhibitor of CK2, abolished ZEBRA's capacity to repress Rta activation of the BLRF2 gene, but did not alter its ability to initiate the lytic cycle or to synergize with Rta in activation of the BMRF1 early-lytic-cycle gene. These studies illustrate how the phosphorylation state of a transcriptional activator can modulate its behavior as an activator or repressor of gene expression. Phosphorylation of ZEBRA at its CK2 sites is likely to play an essential role in proper temporal control of the EBV lytic life cycle.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8064, USA
| | | |
Collapse
|
34
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8alpha). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK
| |
Collapse
|
35
|
Pavlova IV, Virgin HW, Speck SH. Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication. J Virol 2003; 77:5731-9. [PMID: 12719566 PMCID: PMC154050 DOI: 10.1128/jvi.77.10.5731-5739.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesvirus pathogenesis is dependent on the ability of these viruses to establish a lifelong latent infection and the ability to reactivate from latency. Immediate-early genes of theses viruses are thought to be critical regulators of lytic replication and reactivation from latency. The gene 50-encoded Rta is the only immediate-early gene product that appears to be conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that, in Epstein-Barr virus (EBV), Kaposi's sarcoma-associated virus, and gammaherpesvirus 68 (gamma HV68, also referred to as murine gammaherpesvirus 68), ectopic expression of Rta in latently infected cell lines can lead to induction of the viral cycle. Recently, studies employing null mutants of EBV have provided a formal demonstration that both Rta and the BZLF1 gene product, Zta, the two EBV immediate-early gene products, are essential for EBV replication. Here we generate and characterize a gene 50-null mutant gamma HV68 and demonstrate that the gene 50 product Rta is essential for virus replication. Providing gamma HV68 Rta in trans was sufficient to restore replication of the gene 50-null virus. Notably, Rta expressed from the spliced form of the gene 50 transcript was sufficient to complement growth of the gene 50-null virus. In addition, we provide evidence that loss of Rta expression leads to a complete defect in viral DNA replication and a significant defect in late antigen expression. This work lays the foundation for characterizing the role of Rta in gamma HV68 chronic infection of mice.
Collapse
Affiliation(s)
- Iglika V Pavlova
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | |
Collapse
|
36
|
Deng Z, Chen CJ, Chamberlin M, Lu F, Blobel GA, Speicher D, Cirillo LA, Zaret KS, Lieberman PM. The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol 2003; 23:2633-44. [PMID: 12665567 PMCID: PMC152567 DOI: 10.1128/mcb.23.8.2633-2644.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 01/13/2003] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded lytic activator Zta is a bZIP protein that can stimulate nucleosomal histone acetyltransferase (HAT) activity of the CREB binding protein (CBP) in vitro. We now show that deletion of the CBP bromo- and C/H3 domains eliminates stimulation of nucleosomal HAT activity in vitro and transcriptional coactivation by Zta in transfected cells. In contrast, acetylation of free histones was not affected by the addition of Zta or by deletions in the bromo or C/H3 domain of CBP. Zta stimulated acetylation of oligonucleosomes assembled on supercoiled DNA and dinucleosomes assembled on linear DNA, but Zta-stimulated acetylation was significantly reduced for mononucleosomes. Western blotting and amino-terminal protein sequencing indicated that all lysine residues in the H3 and H4 amino-terminal tails were acetylated by CBP and enhanced by the addition of Zta. Histone acetylation was also dependent upon the Zta basic DNA binding domain, which could not be substituted with the homologous basic region of c-Fos, indicating specificity in the bZIP domain nucleosome binding function. Finally, we show that Zta and CBP colocalize to viral immediate-early promoters in vivo and that overexpression of Zta leads to a robust increase in H3 and H4 acetylation at various regions of the EBV genome in vivo. Furthermore, deletion of the CBP bromodomain reduced stable CBP-Zta complex formation and histone acetylation at Zta-responsive viral promoters in vivo. These results suggest that activator- and bromodomain-dependent targeting to oligonucleosomal chromatin is required for stable promoter-bound complex formation and transcription activity.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
El-Guindy AS, Heston L, Endo Y, Cho MS, Miller G. Disruption of Epstein-Barr virus latency in the absence of phosphorylation of ZEBRA by protein kinase C. J Virol 2002; 76:11199-208. [PMID: 12388679 PMCID: PMC136783 DOI: 10.1128/jvi.76.22.11199-11208.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ZEBRA protein converts Epstein-Barr virus (EBV) infection from the latent to the lytic state. The ability of ZEBRA to activate this switch is strictly dependent on the presence of serine or threonine at residue 186 of the protein (A. Francis, T. Ragoczy, L. Gradoville, A. El-Guindy, and G. Miller, J. Virol. 72:4543-4551, 1999). We investigated whether phosphorylation of ZEBRA protein at this site by a serine-threonine protein kinase was required for activation of an early lytic cycle viral gene, BMRF1, as a marker of disruption of latency. Previous studies suggested that phosphorylation of ZEBRA at S186 by protein kinase C (PKC) activated the protein (M. Baumann, H. Mischak, S. Dammeier, W. Kolch, O. Gires, D. Pich, R. Zeidler, H. J. Delecluse, and W. Hammerschmidt, J. Virol 72:8105-8114, 1998). Two residues of ZEBRA, T159 and S186, which fit the consensus for phosphorylation by PKC, were phosphorylated in vitro by this enzyme. Several isoforms of PKC (alpha, beta(1), beta(2), gamma, delta, and epsilon ) phosphorylated ZEBRA. All isoforms that phosphorylated ZEBRA in vitro were blocked by bisindolylmaleimide I, a specific inhibitor of PKC. Studies in cell culture showed that phosphorylation of T159 was not required for disruption of latency in vivo, since the T159A mutant was fully functional. Moreover, the PKC inhibitor did not block the ability of ZEBRA expressed from a transfected plasmid to activate the BMRF1 downstream gene. Of greatest importance, in vivo labeling with [(32)P]orthophosphate showed that the tryptic phosphopeptide maps of wild-type ZEBRA, Z(S186A), and the double mutant Z(T159A/S186A) were identical. Although ZEBRA is a potential target for PKC, in the absence of PKC agonists, ZEBRA is not constitutively phosphorylated in vivo by PKC at T159 or S186. Phosphorylation of ZEBRA by PKC is not essential for the protein to disrupt EBV latency.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
38
|
Hergenhahn M, Soto U, Weninger A, Polack A, Hsu CH, Cheng AL, Rösl F. The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells. Mol Carcinog 2002; 33:137-45. [PMID: 11870879 DOI: 10.1002/mc.10029] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To characterize the effects of inhibitors of Epstein-Barr virus (EBV) reactivation, we established Raji DR-LUC cells as a new test system. These cells contain the firefly luciferase (LUC) gene under the control of an immediate-early gene promoter (duplicated right region [DR]) of EBV on a self-replicating episome. Luciferase induction thus serves as an intrinsic marker indicative for EBV reactivation from latency. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induced the viral key activator BamH fragment Z left frame 1 (BZLF1) protein ("ZEBRA") in this system, as demonstrated by induction of the BZLF1 protein-responsive DR promoter upstream of the luciferase gene. Conversely, both BZLF1 protein and luciferase induction were inhibited effectively by the chemopreventive agent curcumin. Semiquantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) further demonstrated that the EBV inducers TPA, sodium butyrate, and transforming growth factor-beta (TGF-beta) increased levels of the mRNA of BZLF1 mRNA at 12, 24, and 48 h after treatment in these cells. TPA treatment also induced luciferase mRNA with similar kinetics. Curcumin was found to be highly effective in decreasing TPA-, butyrate-, and TGF-beta-induced levels of BZLF1 mRNA, and of TPA-induced luciferase mRNA, indicating that three major pathways of EBV are inhibited by curcumin. Electrophoretic mobility shift assays (EMSA) showed that activator protein 1 (AP-1) binding to a cognate AP-1 sequence was detected at 6 h and could be blocked by curcumin. Protein binding to the complete BZLF1 promoter ZIII site (ZIIIA+ZIIIB) demonstrated several specific complexes that gave weak signals at 6 h and 12 h but strong signals at 24 h, all of which were reduced after application of curcumin. Autostimulation of BZLF1 mRNA induction through binding to the ZIII site at 24 h was confirmed by antibody-induced supershift analysis. The present results confirm our previous finding that curcumin is an effective agent for inhibition of EBV reactivation in Raji DR-CAT cells (carrying DR-dependent chloramphenicol acetyltransferase), and they show for the first time that curcumin inhibits EBV reactivation mainly through inhibition of BZLF1 gene transcription.
Collapse
Affiliation(s)
- Manfred Hergenhahn
- Division of Genetic Alterations in Carcinogenesis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Kung HJ, Xia L, Brunovskis P, Li D, Liu JL, Lee LF. Meq: an MDV-specific bZIP transactivator with transforming properties. Curr Top Microbiol Immunol 2001; 255:245-60. [PMID: 11217425 DOI: 10.1007/978-3-642-56863-3_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- H J Kung
- Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
40
|
Polson AG, Huang L, Lukac DM, Blethrow JD, Morgan DO, Burlingame AL, Ganem D. Kaposi's sarcoma-associated herpesvirus K-bZIP protein is phosphorylated by cyclin-dependent kinases. J Virol 2001; 75:3175-84. [PMID: 11238844 PMCID: PMC114111 DOI: 10.1128/jvi.75.7.3175-3184.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The K8 locus in Kaposi's sarcoma-associated herpesvirus (KSHV) is syntenic with the Epstein-Barr virus (EBV) BZLF (Z) locus and expresses three alternatively spliced transcripts. The fully spliced transcript encodes K-bZIP, the KSHV homologue of the EBV immediate-early transcriptional transactivator Z. Here we show that despite the presence of alternatively spliced transcripts, the protein from the fully spliced RNA, K-bZIP, is the principal product detectable in KSHV-infected B cells. The protein is detected only in lytically infected cells and is localized to the nucleus. We further characterized K-bZIP by determining its phosphorylation status. Phosphoamino acid analysis revealed phosphorylation on serine and threonine. Analysis of the sites of K-bZIP phosphorylation by tandem mass spectrometry revealed that K-bZIP was phosphorylated on Thr 111 and Ser 167. These phosphorylation sites are contained within cyclin-dependent kinase (CDK) recognition sites with the consensus sequence (S/T)PXR, suggesting that K-bZIP could be phosphorylated by CDKs. We tested this hypothesis using an in vitro kinase reaction performed in whole-cell extracts that resemble in vivo conditions more closely than standard in vitro kinase reactions. We found that the three CDK-cyclin complexes we tested phosphorylated K-bZIP but not the control ORF 73 protein, which contains four (S/T)PXR sites. Ectopic expression of K-bZIP cannot reactivate KSHV from latency, and single and double mutants of K-bZIP in which alanines replaced the phosphorylated serine and/or threonine also failed to induce lytic replication. These studies indicate that K-bZIP is a substrate for CDKs and should inform further functional analyses of the protein.
Collapse
Affiliation(s)
- A G Polson
- Departments of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Burz DS, Hanes SD. Isolation of mutations that disrupt cooperative DNA binding by the Drosophila bicoid protein. J Mol Biol 2001; 305:219-30. [PMID: 11124901 DOI: 10.1006/jmbi.2000.4287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cooperative DNA binding is thought to contribute to the ability of the Drosophila melanogaster protein, Bicoid, to stimulate transcription of target genes in precise sub-domains within the embryo. As a first step toward testing this idea, we devised a genetic screen to isolate mutations in Bicoid that specifically disrupt cooperative interactions, but do not disrupt DNA recognition or transcription activation. The screen was carried out in Saccharomyces cerevisiae and 12 cooperativity mutants were identified. The mutations map across most of the Bicoid protein, with some located within the DNA-binding domain (homeodomain). Four homeodomain mutants were characterized in yeast and shown to activate a single-site reporter gene to levels comparable to that of wild-type, indicating that DNA binding per se is not affected. However, these mutants failed to show cooperative coupling between high and low-affinity sites, and showed reduced activation of a reporter gene carrying a natural Drosophila enhancer. Homology modeling indicated that none of the four mutations is in residues that contact DNA. Instead, these residues are likely to interact with other DNA-bound Bicoid monomers or other parts of the Bicoid protein. In vitro, the isolated homeodomains did not show strong cooperativity defects, supporting the idea that other regions of Bicoid are also important for cooperativity. This study describes the first systematic screen to identify cooperativity mutations in a eukaryotic DNA-binding protein.
Collapse
Affiliation(s)
- D S Burz
- Molecular Genetics Program Wadsworth Center, New York State Department of Health, USA
| | | |
Collapse
|
42
|
Segouffin-Cariou C, Farjot G, Sergeant A, Gruffat H. Characterization of the epstein-barr virus BRRF1 gene, located between early genes BZLF1 and BRLF1. J Gen Virol 2000; 81:1791-9. [PMID: 10859385 DOI: 10.1099/0022-1317-81-7-1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The switch from latency to a productive cycle in Epstein-Barr virus (EBV)-infected B cells proliferating in vitro is thought to be due to the transcriptional activation of two viral genes, BZLF1 and BRLF1, encoding two transcription factors called EB1 and R respectively. However, a third gene, BRRF1 is contained in the BZLF1/BRLF1 locus, overlapping with BRLF1 but in inverse orientation. We have characterized the 5' end of the BRRF1 mRNA and the promoter, PNa, at which BRRF1 pre-mRNA is initiated. We show that although a single BRRF1 mRNA species is induced by 12-O-tetradecanoylphorbol 13-acetate/sodium butyrate in several EBV-infected B cell lines, in Akata cells treated with anti-IgG two BRRF1 mRNAs can be detected. Transcription initiated at the BRRF1 promoter was activated by EB1 but not by R, and EB1-binding sites which contribute to the EB1-activated transcription have been mapped to between positions -469 and +1. A 34 kDa protein could be translated from the BRRF1 mRNA both in vitro and in vivo, and was found predominantly in the nucleus of HeLa cells transfected with a BRRF1 expression vector. Thus there are three promoters in the region of the EBV chromatin containing the BZLF1/BRLF1 genes, two of which, PZ and PNa, potentially share regulatory elements.
Collapse
Affiliation(s)
- C Segouffin-Cariou
- Unité de Virologie Humaine U412 INSERM, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | |
Collapse
|
43
|
Abstract
Gene 50 is the only immediate-early gene that appears to be conserved among the characterized gammaherpesviruses. It has recently been demonstrated for the human viruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) that ectopic expression of the gene 50-encoded product in some latently infected cell lines can lead to the induction of virus replication, indicating that gene 50 is likely to play a pivotal role in regulating gammaherpesvirus reactivation. Here we demonstrate that the murine gammaherpesvirus 68 (gammaHV68) gene 50 is an immediate-early gene and that transcription of gammaHV68 gene 50 leads to the production of both spliced and unspliced forms of the gene 50 transcript. Splicing of the transcript near the 5' end serves to extend the gene 50 open reading frame, as has been observed for the gene 50 transcripts encoded by KSHV and herpesvirus saimiri (Whitehouse et al., J. Virol. 71:2550-2554, 1997; Lukac et al., Virology 252:304-312, 1998; Sun et al., Proc. Natl. Acad. Sci. USA 95:10866-10871, 1998). Reverse transcription-PCR analyses, coupled with S1 nuclease protection assays, provided evidence that gene 50 transcripts initiate at several sites within the region from bp 66468 to 66502 in the gammaHV68 genome. Functional characterization of the region upstream of the putative gene 50 transcription initiation site demonstrated orientation-dependent promoter activity and identified a 110-bp region (bp 66442 to 66552) encoding the putative gene 50 promoter. Finally, we demonstrate that the gammaHV68 gene 50 can transactivate the gammaHV68 gene 57 promoter, a known early gene target of the gene 50-encoded transactivator in other gammaherpesviruses. These studies show that the gammaHV68 gene 50 shares several important molecular similarities with the gene 50 homologs in other gammaherpesviruses and thus provides an impetus for future studies analyzing the role of the gammaHV68 gene 50-encoded protein in acute virus replication and reactivation from latency in vivo.
Collapse
Affiliation(s)
- S Liu
- Departments of Pathology and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
44
|
Ragoczy T, Miller G. Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 1999; 73:9858-66. [PMID: 10559298 PMCID: PMC113035 DOI: 10.1128/jvi.73.12.9858-9866.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of the Epstein-Barr virus (EBV) lytic cycle is controlled by two immediate-early genes, BZLF1 and BRLF1. In certain epithelial and B-cell lines, their protein products, ZEBRA and Rta, stimulate their own expression, reciprocally stimulate each other's expression, and activate downstream viral targets. It has been difficult to examine the individual roles of these two transactivators in EBV-infected lymphocytes, as they are expressed simultaneously upon induction of the lytic cycle. Here we show that the Burkitt lymphoma cell line Raji represents an experimental system that allows the study of Rta's role in the lytic cycle of EBV in the absence and presence of ZEBRA. When expressed in Raji cells, exogenous Rta does not activate endogenous BZLF1 expression, yet Rta remains competent to transactivate certain downstream viral targets. Some genes, such as BaRF1, BMLF1, and a late gene, BLRF2, are maximally activated by Rta itself in the absence of detectable ZEBRA. The use of the Z(S186A) mutant form of ZEBRA, whose transactivation function is manifest only by coexpression of Rta, allows identification of a second class of lytic cycle genes, such as BMRF1 and BHRF1, that are activated in synergy by Rta and ZEBRA. It has already been documented that of the two activators, only ZEBRA stimulates the BRLF1 gene in Raji cells. Thus, there is a third class of viral genes activated by ZEBRA but not Rta. Moreover, ZEBRA exhibits an inhibitory effect on Rta's capacity to stimulate the late gene, BLRF2. Consequently ZEBRA may function to repress Rta's potential to activate some late genes. Raji cells thus allow delineation of the combinatorial roles of Rta and ZEBRA in control of several distinct classes of lytic cycle genes.
Collapse
Affiliation(s)
- T Ragoczy
- Departments Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|