1
|
Sankovski E, Abroi A, Ustav M, Ustav M. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Virology 2018; 514:142-155. [PMID: 29179037 DOI: 10.1016/j.virol.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022]
Abstract
Nuclear myosin 1c (NM1) associates with RNA polymerases and is a partner in the chromatin remodeling complex B-WICH. This complex, which also contains WSTF and SNF2h proteins, is involved in transcriptional regulation. We report herein that papillomavirus protein E2 binds to NM1 and co-precipitates with the WSTF and SNF2h proteins. Our data suggest that E2 associates with the cellular B-WICH complex through binding to NM1. E2 and NM1 associate via their N-terminal domains and this interaction is ATP dependent. The cellular multifunctional protein Brd4 and beta-actin are also present in the NM1-E2 complex. NM1 downregulation by siRNA increases the replication of the BPV1 and HPV5 genomes but does not affect HPV18 genome replication. These results suggest that the B-WICH complex may play a role in the papillomavirus life cycle through NM1 and E2 protein interaction.
Collapse
Affiliation(s)
- Eve Sankovski
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Aare Abroi
- Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia; Icosagen Cell Factory OÜ, Eerika tee 1, Õssu küla, Ülenurme vald, 61713 Tartumaa, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia; Icosagen Cell Factory OÜ, Eerika tee 1, Õssu küla, Ülenurme vald, 61713 Tartumaa, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
2
|
Sankovski E, Karro K, Sepp M, Kurg R, Ustav M, Abroi A. Characterization of the nuclear matrix targeting sequence (NMTS) of the BPV1 E8/E2 protein--the shortest known NMTS. Nucleus 2016. [PMID: 26218798 DOI: 10.1080/19491034.2015.1074359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Technological advantages in sequencing and proteomics have revealed the remarkable diversity of alternative protein isoforms. Typically, the localization and functions of these isoforms are unknown and cannot be predicted. Also the localization signals leading to particular subnuclear compartments have not been identified and thus, predicting alternative functions due to alternative subnuclear localization is limited only to very few subnuclear compartments. Knowledge of the localization and function of alternative protein isoforms allows for a greater understanding of cellular complexity. In this article, we characterize a short and well-defined signal targeting the bovine papillomavirus type 1 E8/E2 protein to the nuclear matrix. The targeting signal comprises the peptide coded by E8 ORF, which is spliced together with part of the E2 ORF to generate the E8/E2 mRNA. Localization to the nuclear matrix correlates well with the transcription repression activities of E8/E2; a single point mutation directs the E8/E2 protein into the nucleoplasm, and transcription repression activity is lost. Our data prove that adding as few as ˜10 amino acids by alternative transcription/alternative splicing drastically alters the function and subnuclear localization of proteins. To our knowledge, E8 is the shortest known nuclear matrix targeting signal.
Collapse
|
3
|
Wilson AD, Hicks C. Both tumour cells and infiltrating T-cells in equine sarcoids express FOXP3 associated with an immune-supressed cytokine microenvironment. Vet Res 2016; 47:55. [PMID: 27160146 PMCID: PMC4862206 DOI: 10.1186/s13567-016-0339-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Bovine papillomavirus (BPV) infections of equine species have a central role in the aetiology of equine sarcoids; a common benign skin tumour of horses, zebras and donkeys. Within the lesions, all of the early papillomavirus genes are expressed and promote the excessive replication of fibroblasts which characterise these tumours. Equine sarcoids differ from BPV induced fibro-papillomas of cattle (the natural host of BPV), in that they do not produce high amounts of virus particles, do not usually regress spontaneously and do not sero-convert to BPV; features which suggest that affected horses lack an effective anti-viral immune response to BPV. Equine sarcoids contain large numbers of CD4+ CD8+ dual positive T-cells which uniformly express FOXP3, the key transcription factor of regulatory T-cells, and FOXP3 is also expressed within the BPV infected fibroblasts. Compared to healthy skin, sarcoids showed increased mRNA transcription for FOXP3 and the regulatory cytokine TGFβ. Transcription of IL17, which has been shown to have a regulatory function in human papillomavirus-associated tumours, was also elevated in equine sarcoids compared to spleen. In contrast, the levels of mRNA transcripts for effector T cell cytokines IL2, IL4 and interferon-gamma (IFNγ) were not elevated in sarcoids compared to healthy skin or spleen. Similarly neither interferon-alpha (IFNα), interferon-beta (IFNβ) nor IL12 family members were elevated in sarcoids compared to normal skin. We suggest that the regulatory cytokine micro-environment within sarcoids enables the persistence of the lesions by preventing an effective anti-viral immune response.
Collapse
Affiliation(s)
- A Douglas Wilson
- School of Veterinary Sciences, University of Bristol, Langford, Bristol, BS40 5DU, UK.
| | - Chelsea Hicks
- School of Veterinary Sciences, University of Bristol, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
4
|
Gagnon D, Sénéchal H, D'Abramo CM, Alvarez J, McBride AA, Archambault J. Genetic analysis of the E2 transactivation domain dimerization interface from bovine papillomavirus type 1. Virology 2013; 439:132-9. [PMID: 23490049 DOI: 10.1016/j.virol.2013.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
The bovine papillomavirus type 1 (BPV1) E2 protein binds as a dimer to the viral genome to promote its transcription, replication and maintenance in keratinocytes. Although BPV1 E2 dimerizes primarily through its DNA-binding domain, it was shown previously that its transactivation domain (TAD) can also dimerize in vitro through formation of a disulfide bond between cysteine 57 (C57) of adjacent monomers and of an ion pair between arginine 172 (R172) and aspartic acid 175 (D175). The function of this TAD dimerization interface in vivo remains unknown. Here, we report the effects of substituting C57, R172 and D175 by alanine on the transactivation activity of BPV E2 as well as on its ability to support viral DNA replication using a novel luciferase-based assay. Results for this mutational analysis suggest that the TAD dimerization interface is not essential for either process but may contribute to the DNA replication activity of BPV1 E2.
Collapse
Affiliation(s)
- David Gagnon
- Molecular Virology Laboratory, Institut de Recherches Cliniques de Montréal (IRCM) and Department of Biochemistry, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Wilson AD, Armstrong ELR, Gofton RG, Mason J, De Toit N, Day MJ. Characterisation of early and late bovine papillomavirus protein expression in equine sarcoids. Vet Microbiol 2012; 162:369-380. [PMID: 23123175 DOI: 10.1016/j.vetmic.2012.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
Sarcoids are common skin tumours of horses and donkeys that are characterised by persistent proliferation of dermal fibroblasts associated with the presence of bovine papillomavirus (BPV) DNA. Some early BPV proteins have been demonstrated within sarcoids and RNA containing both early and late transcripts is present, yet it remains unclear whether late replication of BPV, culminating in the production of infectious virus particles, can occur in equids. Here we report that BPV1 RNA isolated from equine sarcoids encodes a unique deletion of four residues within the L2 protein suggesting a novel variant of virus has evolved in equines. Such viral evolution would require the production and transmission of virus particles among horses with sarcoids. Quantitative RT-PCR demonstrated the presence of mRNA transcripts containing early gene message in sarcoid tissues and BPV-E2 early virus antigen was detected by immunofluorescence in the nuclei of dermal fibroblasts, but no E2 expression could be detected within the overlying epidermis where productive virus replication would be expected to occur. Although immunohistochemistry clearly detected late virus proteins in the nuclei of dermal cells from samples of bovine papillomas, no late protein expression was detected in formalin-fixed tissue from equine sarcoids; either in the dermis or epidermis. Moreover, quantitative RT-PCR demonstrated that late gene mRNA represented <0.3% of the transcribed BPV RNA. We conclude that BPV does not undergo productive infection in the epidermis overlying equine sarcoids at levels comparable with that occurring in its natural bovine host.
Collapse
Affiliation(s)
- A D Wilson
- University of Bristol, School of Veterinary Sciences, Langford, Bristol BS40 7DU, UK.
| | - E L R Armstrong
- University of Bristol, School of Veterinary Sciences, Langford, Bristol BS40 7DU, UK
| | - R G Gofton
- University of Bristol, School of Veterinary Sciences, Langford, Bristol BS40 7DU, UK
| | - J Mason
- University of Bristol, School of Veterinary Sciences, Langford, Bristol BS40 7DU, UK
| | - N De Toit
- University of Bristol, School of Veterinary Sciences, Langford, Bristol BS40 7DU, UK; Veterinary Laboratory, The Donkey Sanctuary, Sidmouth, Devon EX10 0NU, UK
| | - M J Day
- University of Bristol, School of Veterinary Sciences, Langford, Bristol BS40 7DU, UK
| |
Collapse
|
6
|
Identification and analysis of papillomavirus E2 protein binding sites in the human genome. J Virol 2011; 86:348-57. [PMID: 22031941 DOI: 10.1128/jvi.05606-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Papillomavirus E2 protein is required for the replication and maintenance of viral genomes and transcriptional regulation of viral genes. E2 functions through sequence-specific binding to 12-bp DNA motifs-E2 binding sites (E2BS)-in the virus genome. Papillomaviruses are able to establish persistent infection in their host and have developed a long-term relationship with the host cell in order to guarantee the propagation of the virus. In this study, we have analyzed the occurrence and functionality of E2BSs in the human genome. Our computational analysis indicates that most E2BSs in the human genome are found in repetitive DNA regions and have G/C-rich spacer sequences. Using a chromatin immunoprecipitation approach, we show that human papillomavirus type 11 (HPV11) E2 interacts with a subset of cellular E2BSs located in active chromatin regions. Two E2 activities, sequence-specific DNA binding and interaction with cellular Brd4 protein, are important for E2 binding to consensus sites. E2 binding to cellular E2BSs has a moderate or no effect on cellular transcription. We suggest that the preference of HPV E2 proteins for E2BSs with A/T-rich spacers, which are present in the viral genomes and underrepresented in the human genome, ensures E2 binding to specific binding sites in the virus genome and may help to prevent extensive and possibly detrimental changes in cellular transcription in response to the viral protein.
Collapse
|
7
|
Kurg R, Uusen P, Võsa L, Ustav M. Human papillomavirus E2 protein with single activation domain initiates HPV18 genome replication, but is not sufficient for long-term maintenance of virus genome. Virology 2010; 408:159-66. [PMID: 20940072 DOI: 10.1016/j.virol.2010.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/28/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
The papillomavirus life cycle is regulated by a family of proteins encoded by the E2 open reading frame; E2 proteins regulate viral gene expression, DNA replication and genome maintenance. We have previously shown that the bovine papillomavirus (BPV1) full-length E2 protein forms heterodimers with repressor forms of E2, and these E2 heterodimers serve as activators of transcription and replication during the viral life cycle. In the present study, using the single-chain E2 heterodimer as a model, we show that human papillomavirus (HPV) 11 and 18 E2 heterodimers with single activation domain are able to initiate replication of URR-containing plasmid in transient assay. Single-chain E2 heterodimer in the context of HPV18 genome initiates genome replication, but is not sufficient for long-term replication of HPV18 genome. We also show that HPV18 genome has a capacity to encode truncated E2 repressor E8/E2 which acts as a negative regulator of HPV18 genome replication.
Collapse
Affiliation(s)
- Reet Kurg
- Institute of Technology, University of Tartu, Estonia.
| | | | | | | |
Collapse
|
8
|
Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division. J Virol 2010; 84:11175-88. [PMID: 20810736 DOI: 10.1128/jvi.01366-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4.
Collapse
|
9
|
Kurg R, Uusen P, Sepp T, Sepp M, Abroi A, Ustav M. Bovine papillomavirus type 1 E2 protein heterodimer is functional in papillomavirus DNA replication in vivo. Virology 2009; 386:353-9. [PMID: 19232665 DOI: 10.1016/j.virol.2009.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/26/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Papillomaviruses are small DNA viruses that induce epithelial lesions in their host. The viral life cycle is regulated by the family of proteins encoded by the E2 open reading frame. In addition to the full-length E2 protein, the BPV-1 genome encodes two truncated E2 proteins, E2C and E8/E2, which maintain the DNA-binding-dimerization domains, but lack the activation domain. Heterodimers formed between the full-length E2 and truncated E2 proteins serve as activators of E2-dependent transcription and papillomavirus DNA replication. We show that the single activation domain of E2 is sufficient for interaction with viral helicase E1 and for initiation of DNA replication from different papillomavirus origins. Single-chain E2 heterodimer is able to activate papillomavirus DNA replication in the context of entire BPV genome in the absence of other E2 proteins. These data suggest that E2 heterodimers with single activation domain are functional in initiation of papillomavirus replication in vivo.
Collapse
Affiliation(s)
- Reet Kurg
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
10
|
Tamm T. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast. Yeast 2009; 26:55-66. [DOI: 10.1002/yea.1650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Kurg R, Tekkel H, Abroi A, Ustav M. Characterization of the functional activities of the bovine papillomavirus type 1 E2 protein single-chain heterodimers. J Virol 2006; 80:11218-25. [PMID: 16943289 PMCID: PMC1642174 DOI: 10.1128/jvi.01127-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses are small DNA viruses which establish persistent infection in the epithelial tissue of various animal species. Three papillomavirus proteins encoded by the bovine papillomavirus type 1 E2 open reading frame have a common C-terminal DNA binding and dimerization domain and function as dimeric proteins in the regulation of viral gene expression, genome replication, and maintenance. The full-length E2 protein, expressed usually at the lowest level of the three, is an activator, while shorter forms of E2, lacking the transactivation domain, serve as repressors of replication and transcription. In virally infected cells, the full-length E2 protein forms heterodimers with repressor forms of the E2 protein and the biological activities of such heterodimers are poorly known. In order to study the functionality of E2 heterodimers, we joined the full-length E2 protein and E2 repressor by a flexible polypeptide hinge so that they formed a single-chain intramolecular dimer. The single-chain E2 heterodimers folded correctly to form genuine pseudodimers capable of binding to the specific E2 protein binding site with high affinity. Characterization of the activities of this protein in transcription showed that it functions as an effective transcriptional activator, which is comparable to what was found for the full-length E2 protein. The single-chain heterodimer is dependent to some extent on Brd4 protein and is able to support papillomavirus origin replication; however, it does not support the partitioning of the multimeric E2 binding site containing plasmids in dividing cells. Our results suggest that E2 heterodimers serve as activators of transcription and replication during the viral life cycle.
Collapse
Affiliation(s)
- Reet Kurg
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | | | | | | |
Collapse
|
12
|
Ilves I, Mäemets K, Silla T, Janikson K, Ustav M. Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J Virol 2006; 80:3660-5. [PMID: 16537635 PMCID: PMC1440376 DOI: 10.1128/jvi.80.7.3660-3665.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brd4 protein has been proposed to act as a cellular receptor for the bovine papillomavirus type 1 (BPV1) E2 protein in the E2-mediated chromosome attachment and mitotic segregation of viral genomes. Here, we provide data that show the involvement of Brd4 in multiple early functions of the BPV1 life cycle, suggest a Brd4-dependent mechanism for E2-dependent transcription activation, and indicate the role of Brd4 in papillomavirus and polyomavirus replication as well as cell-specific utilization of Brd4-linked features in BPV1 DNA replication. Our data also show the potential therapeutic value of the disruption of the E2-Brd4 interaction for the development of antiviral drugs.
Collapse
Affiliation(s)
- Ivar Ilves
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | | | | | | | | |
Collapse
|
13
|
Silla T, Hääl I, Geimanen J, Janikson K, Abroi A, Ustav E, Ustav M. Episomal maintenance of plasmids with hybrid origins in mouse cells. J Virol 2005; 79:15277-88. [PMID: 16306599 PMCID: PMC1316011 DOI: 10.1128/jvi.79.24.15277-15288.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/29/2005] [Indexed: 11/20/2022] Open
Abstract
Bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and human herpesvirus 8 genomes are stably maintained as episomes in dividing host cells during latent infection. The mitotic segregation/partitioning function of these episomes is dependent on single viral protein with specific DNA-binding activity and its multimeric binding sites in the viral genome. In this study we show that, in the presence of all essential viral trans factors, the segregation/partitioning elements from both BPV1 and EBV can provide the stable maintenance function to the mouse polyomavirus (PyV) core origin plasmids but fail to do so in the case of complete PyV origin. Our study is the first which follows BPV1 E2- and minichromosome maintenance element (MME)-dependent stable maintenance function with heterologous replication origins. In mouse fibroblast cell lines expressing PyV large T antigen (LT) and either BPV1 E2 or EBV EBNA1, the long-term episomal replication of plasmids carrying the PyV minimal origin together with the MME or family of repeats (FR) element can be monitored easily for 1 month under nonselective conditions. Our data demonstrate clearly that the PyV LT-dependent replication function and the segregation/partitioning function of the BPV1 or EBV are compatible in certain, but not all, configurations. The quantitative analysis indicates a loss rate of 6% per cell, doubling in the case of MME-dependent plasmids, and 13% in the case of FR-dependent plasmids in nonselective conditions. Our data clearly indicate that maintenance functions from different viruses are principally interexchangeable and can provide a segregation/partitioning function to different heterologous origins in a variety of cells.
Collapse
Affiliation(s)
- Toomas Silla
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University, Riia 23 St., Tartu 51010, Estonia
| | | | | | | | | | | | | |
Collapse
|
14
|
Kiiver K, Merits A, Ustav M, Zusinaite E. Complex formation between hepatitis C virus NS2 and NS3 proteins. Virus Res 2005; 117:264-72. [PMID: 16324764 DOI: 10.1016/j.virusres.2005.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/25/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis C virus (HCV) NS2 and NS3 proteins as well as the NS3 protease cofactor NS4A are essential for the replication of the virus. The presence of in vivo heterodimeric complex between HCV NS2 and NS3 has been suggested by biochemical studies. Detailed characterization of the interactions between these viral proteins is of great importance for better understanding their role in viral replication cycle and represents attractive target for antiviral agents. In this study, we demonstrated in vivo interactions between HCV NS2 and NS3 proteins using an epitope tagging technique. For this purpose NS2, NS3 and NS4A were expressed in fusion with two different tags in Cos7 cells. Immunofluorescence analysis and co-immunoprecipitation with tag-specific antibodies revealed the existence of biologically important NS3/NS4A and NS3/NS2 complexes. Similar complexes were detected also in Huh7 cells infected with Semliki Forest virus vectors expressing NS2 and NS3 or NS23 precursor polyprotein. The formation of complex between NS2 and NS3 was found not to depend on whether the proteins were expressed individually or in form of common precursor. This observation suggests the existence of direct interaction between these two proteins that may have importance for the formation of the whole HCV replication complex.
Collapse
Affiliation(s)
- Kaja Kiiver
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University, Riia Street 23, 51010 Tartu, Estonia.
| | | | | | | |
Collapse
|
15
|
Kurg R, Sild K, Ilves A, Sepp M, Ustav M. Association of bovine papillomavirus E2 protein with nuclear structures in vivo. J Virol 2005; 79:10528-39. [PMID: 16051845 PMCID: PMC1182638 DOI: 10.1128/jvi.79.16.10528-10539.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses are small DNA viruses which have the capacity to establish a persistent infection in mammalian epithelial cells. The papillomavirus E2 protein is a central coordinator of viral gene expression, genome replication, and maintenance. We have investigated the distribution of bovine papillomavirus E2 protein in nuclei of proliferating cells and found that E2 is associated with cellular chromatin. This distribution does not change during the entire cell cycle. The N-terminal transactivation domain, but not the C-terminal DNA-binding domain, of the E2 protein is responsible for this association. The majority of the full-length E2 protein can only be detected in chromatin-enriched fractions but not as a free protein in the nucleus. Limited micrococcal nuclease digestion revealed that the E2 protein partitioned to different chromatin regions. A fraction of the E2 protein was located at nuclear sites that are resistant against nuclease attack, whereas the remaining E2 resided on compact chromatin accessible to micrococcal nuclease. These data suggest that there are two pools of E2 in the cell nucleus: one that localizes on transcriptionally inactive compact chromatin and the other, which compartmentalizes to transcriptionally active nuclear structures of the cell. Our data also suggest that E2 associates with chromatin through cellular protein(s), which in turn is released from chromatin at 0.4 M salt.
Collapse
Affiliation(s)
- Reet Kurg
- Institute of Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia.
| | | | | | | | | |
Collapse
|
16
|
You J, Croyle JL, Nishimura A, Ozato K, Howley PM. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 2004; 117:349-60. [PMID: 15109495 DOI: 10.1016/s0092-8674(04)00402-7] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 02/20/2004] [Accepted: 02/27/2004] [Indexed: 11/21/2022]
Abstract
The papillomavirus E2 protein tethers viral genomes to host mitotic chromosomes to ensure genome maintenance. We have identified the bromodomain protein Brd4 as a major cellular interacting partner of the bovine papillomavirus E2. Brd4 associates with mitotic chromosomes and colocalizes with E2 on mitotic chromosomes. The site of E2 binding maps to the C-terminal domain of Brd4. Expression of this C-terminal Brd4 domain functions in a dominant-negative manner to abrogate the colocalization of E2 with Brd4 on mitotic chromosomes, to block association of the viral episomes with Brd4, and to inhibit BPV-1 DNA-mediated cellular transformation. Brd4 also associates with HPV16 E2, indicating that Brd4 binding may be a shared property of all papillomavirus E2 proteins. The interaction of E2 with Brd4 is required to ensure the tethering of viral genomes to the host mitotic chromosomes for persistence of viral episomes in PV-infected cells.
Collapse
Affiliation(s)
- Jianxin You
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Järving R, Järving I, Kurg R, Brash AR, Samel N. On the Evolutionary Origin of Cyclooxygenase (COX) Isozymes. J Biol Chem 2004; 279:13624-33. [PMID: 14732711 DOI: 10.1074/jbc.m313258200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, COX-1 and COX-2, two cyclooxygenase isozymes with different physiological functions and gene regulation, catalyze identical reactions in prostaglandin synthesis. It is still not understood why there are multiple forms of COX enzyme in the same cell type and when the evolutionary duplication of the COX gene occurred. Here we report the structure of two genes encoding for COX isozymes in the coral Gersemia fruticosa, the first non-vertebrate organism from which a cyclooxygenase was characterized. Both genes are about 20 kb in size and consist of nine exons. Intron/exon boundaries are well conserved between coral and mammalian COX genes. mRNAs of the previously reported G. fruticosa COX-A (GenBank trade mark accession number AY004222) and the novel COX-B share 94% sequence identity in the coding regions and less than 30% in the 5'- and 3'-untranslated region. Transcripts of both COX genes are detectable in coral cells, although the transcriptional level of COX-A is 2 orders of magnitude higher than COX-B. Expression of both coral genes in mammalian cells gave functional proteins with similar catalytic properties. By data base analyses we also detected and constructed different pairs of COX genes from the primitive chordates, Ciona savignyi and Ciona intestinalis. These two gene pairs encode proteins with 50% intra-species and only 70% cross-species sequence identity. Our results suggest that invertebrate COX gene pairs do not correspond to vertebrate COX-1 and COX-2 and are consistent with duplication of the COX gene having occurred independently in corals, ascidians, and vertebrates. It is evident that due to the importance and complexity of its regulatory role, COX has multiple isoforms in all organisms known to express it, and the genes encoding for the isozymes may to be regulated differently.
Collapse
Affiliation(s)
- Reet Järving
- Department of Chemistry, Tallinn Technical University, Akadeemia tee 15, Tallinn 12618
| | | | | | | | | |
Collapse
|
18
|
Abstract
We analyzed the codon usage bias of eight open reading frames (ORFs) across up to 79 human papillomavirus (HPV) genotypes from three distinct phylogenetic groups. All eight ORFs across HPV genotypes show a strong codon usage bias, amongst degenerately encoded amino acids, toward 18 codons mainly with T at the 3rd position. For all 18 degenerately encoded amino acids, codon preferences amongst human and animal PV ORFs are significantly different from those averaged across mammalian genes. Across the HPV types, the L2 ORFs show the highest codon usage bias (73.2+/-1.6% and the E4 ORFs the lowest (51.1+/-0.5%), reflecting as similar bias in codon 3rd position A+T content (L2: 76.1+/-4.2%; E4: 58.6+/-4.5%). The E4 ORF, uniquely amongst the HPV ORFs, is G+C rich, while the other ORFs are A+T rich. Codon usage bias correlates positively with A+T content at the codon 3rd position in the E2, E6, L1 and L2 ORFs, but negatively in the E4 ORFs. A general conservation of preferred codon usage across human and non-human PV genotypes whether they originate from a same supergroup or not, together with observed difference between the preferred codon usage for HPV ORFs and for genes of the cells they infect, suggests that specific codon usage bias and A+T content variation may somehow increase the replicational fitness of HPVs in mammalian epithelial cells, and have practical implications for gene therapy of HPV infection.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Centre for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Qld 4102, Woolloongabba, Australia.
| | | | | |
Collapse
|
19
|
Abroi A, Ilves I, Kivi S, Ustav M. Analysis of chromatin attachment and partitioning functions of bovine papillomavirus type 1 E2 protein. J Virol 2004; 78:2100-13. [PMID: 14747575 PMCID: PMC369436 DOI: 10.1128/jvi.78.4.2100-2113.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 11/03/2003] [Indexed: 12/14/2022] Open
Abstract
Recent studies have suggested that the tethering of viral genomes to host cell chromosomes could provide one of the ways to achieve their nuclear retention and partitioning during extrachromosomal maintenance in dividing cells. The data we present here provide firm evidence that the partitioning of the bovine papillomavirus type 1 (BPV1) genome is dependent on the chromatin attachment process mediated by viral E2 protein and its multiple binding sites. On the other hand, the attachment of E2 and the E2-mediated tethering of reporter plasmids to host chromosomes are not necessarily sufficient for efficient partitioning, suggesting that additional E2-dependent activities might be involved in the latter process. The activity of E2 protein in chromatin attachment and partitioning is more sensitive to the point mutations in the N-terminal domain than its transactivation and replication initiation functions. Therefore, at least part of the interactions of the E2 N-terminal domain with its targets during the chromatin attachment and partitioning processes are likely to involve specific receptors not involved in transactivation and replication activities of the protein. The mutational analysis also indicates that the binding of E2 to chromatin is not achieved through interaction of linear N-terminal subsequences of the E2 protein with putative receptors. Instead, the composite surface elements of the N-terminal domain build up the receptor-binding surface of E2. In this regard, the interaction of BPV1 E2 with its chromosomal targets clearly differs from the interactions of LANA1 protein from Kaposi's sarcoma-associated human herpesvirus and EBNA1 from Epstein-Barr virus with their specific receptors.
Collapse
Affiliation(s)
- Aare Abroi
- Estonian Biocentre, University of Tartu, Tartu 51010, Estonia
| | | | | | | |
Collapse
|
20
|
Jaanson N, Möll K, Kulla A, Ustav M. Identification of the immunodominant regions of the melanoma antigen tyrosinase by anti-tyrosinase monoclonal antibodies. Melanoma Res 2003; 13:473-82. [PMID: 14512789 DOI: 10.1097/00008390-200310000-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tyrosinase, the critical enzyme in melanin synthesis, is also found to be expressed in most malignant melanomas and can serve as a target for the immune response by both CD4+ and CD8+ T-cells. Therefore it could be used as a potential target for therapeutic intervention in tyrosinase-positive melanomas. In order to develop serological reagents for the immunodetection of human tyrosinase and to find the most immunogenic region of the protein, we have raised a panel of monoclonal antibodies (MAbs) against recombinant tyrosinase expressed and purified from bacteria. Epitope mapping revealed the 79 amino acid long stretch between 163 and 241 residues to be the most immunodominant region of the tyrosinase. This region could be further divided into three parts by binding different MAbs. These MAbs were very useful tools for the detection of tyrosinase expression from different constructs in tissue culture cells by immunocytochemistry and in melanocytes by immunohistochemistry. Some of the MAbs that recognized epitopes between 163 and 204 amino acids also recognized an additional distinct protein of about 70 kDa seen on Western blot analysis of transfected and non-transfected COS-7 cells. One of these, the MAb 4B1, was used in immunohistochemistry, and cross reaction with the basement membrane of the human tissue was observed. The analysis of the 4B1 MAb epitope showed that the C-terminal part of that region almost entirely overlaps with the sequence of the recently reported basement membrane protein beta-netrin.
Collapse
Affiliation(s)
- Nele Jaanson
- Department of Microbiology and Virology, Tartu University, Estonia and Department of Pathology and Neuropathology, Tartu University Clinics, Tartu, Estonia
| | | | | | | |
Collapse
|
21
|
Cerutti ML, Centeno JM, de Prat-Gay G, Goldbaum FA. Antibody response to a viral transcriptional regulator. FEBS Lett 2003; 534:202-6. [PMID: 12527387 DOI: 10.1016/s0014-5793(02)03850-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The E2 transcriptional activator of the human papillomavirus regulates the expression of most viral transcripts. Its binding to specific target DNA sequences involves large conformational changes in the interacting macromolecules. The high stability of the E2:DNA complex prompted us to analyze the role of macromolecular interactions and adjuvant emulsions in the appearance of conformation-specific antibodies. We demonstrate that immunization with free or DNA-complexed E2 emulsified in an oil-in-water adjuvant elicits a humoral response shifted to the recognition of discontinuous epitopes. Epitope mapping and functional analysis of the generated anti-E2 mAbs reveals that two separate antibodies populations can be obtained: those able to form a stable ternary complex with protein and DNA, and those which recognize the DNA-binding surface of the transcription factor, interfering with E2 binding to DNA.
Collapse
Affiliation(s)
- M Laura Cerutti
- Fundación Instituto Leloir (IIBBA-CONICET, IIB-FCEN-UBA), Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | | | |
Collapse
|
22
|
Männik A, Rünkorg K, Jaanson N, Ustav M, Ustav E. Induction of the bovine papillomavirus origin "onion skin"-type DNA replication at high E1 protein concentrations in vivo. J Virol 2002; 76:5835-45. [PMID: 11992014 PMCID: PMC137012 DOI: 10.1128/jvi.76.11.5835-5845.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the replication of plasmids composed of bovine papillomavirus type 1 (BPV1) origin of replication and expression cartridges for viral proteins E1 and E2 in hamster and mouse cells. We found that the replication mode changed dramatically at different expression levels of the E1 protein. At high levels of the E1 protein, overreplication of the origin region of the plasmid was observed. Analysis of the replication products by one-dimensional and two-dimensional gel electrophoresis suggested that initially "onion skin"-type replication intermediates were generated, presumably resulting from initiation of the new replication forks before the leading fork completed the synthesis of the DNA on the episomal plasmid. These replication intermediates served as templates for generation of a heterogeneous set of origin region-containing linear fragments by displacement synthesis at the partially replicated plasmid. Additionally, the linear fragments may have been generated by DNA break-up of the onion skin-type intermediates. Analysis of replication products indicated that generated linear fragments recombined and formed concatemers or circular molecules, which presumably were able to replicate in an E1- and E2-dependent fashion. At moderate and low levels of E1, generated by transcription of the E1 open reading frame using weaker promoters, DNA replication was initiated at much lower levels, which allowed elongation of the replication fork starting from the origin to be more balanced and resulted in the generation of full-sized replication products.
Collapse
Affiliation(s)
- Andres Männik
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Estonian Biocentre, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
23
|
Allikas A, Ord D, Kurg R, Kivi S, Ustav M. Roles of the hinge region and the DNA binding domain of the bovine papillomavirus type 1 E2 protein in initiation of DNA replication. Virus Res 2001; 75:95-106. [PMID: 11325464 DOI: 10.1016/s0168-1702(01)00219-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The bovine papillomavirus (BPV-1) E2 protein is the regulator of extrachromosomal replication of papillomaviruses. The mutants with C-terminal truncations and in-frame internal deletions were constructed to study the role of structural domains of E2 in the initiation of DNA replication. We show that the replication initiation function of E2 is absolutely dependent on the ability of the protein to bind to DNA. Our study also confirms the borders of the functional domains of the E2 protein; residues 1-192 form the activation domain and residues 310-410 the DNA binding-dimerization domain. Some critical length and flexibility, but not the particular amino acid sequence between these two functional domains is required for the activity of the protein to support replication. The hinge region, including the major phosphorylation sites of E2, is also dispensable for the mediation of attachment of the BPV1 genome to the mitotic chromosomes.
Collapse
Affiliation(s)
- A Allikas
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010, Tartu, Estonia
| | | | | | | | | |
Collapse
|
24
|
Kivimäe S, Allikas A, Kurg R, Ustav M. Replication of a chimeric origin containing elements from Epstein-Barr virus ori P and bovine papillomavirus minimal origin. Virus Res 2001; 75:1-11. [PMID: 11311423 DOI: 10.1016/s0168-1702(01)00218-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bovine papillomavirus E2 protein is a multifunctional protein that activates viral transcription, co-operates in initiation of viral DNA replication, and is required for long-term episomal maintenance of viral genomes. The EBNA1 protein of Epstein-Barr virus is required for synthesis and maintenance of Epstein-Barr virus genomes. Both viral proteins act through direct interactions with their respective DNA sequences in their origins of replication. The chimeric protein E2:EBNA1, which consists of an transactivation domain of E2 and DNA binding domain of EBNA1 supported the replication of the chimeric origin that contained EBNA1 binding sites in place of the E2 binding sites principally as full-length E2 did in the case of papillomavirus minimal origin. This indicates that the chimeric protein E2:EBNA1 is competent to assemble a replication complex similar to the E2 protein. These data confirm the earlier observations that the only part of E2 specifically required for its activity in replication is the N-terminal activation domain and the function of the DNA binding domain of E2 in the initiation of replication is to tether the transactivation domain of E2 to the origin of replication.
Collapse
Affiliation(s)
- S Kivimäe
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010, Tartu, Estonia
| | | | | | | |
Collapse
|
25
|
Koljak R, Järving I, Kurg R, Boeglin WE, Varvas K, Valmsen K, Ustav M, Brash AR, Samel N. The basis of prostaglandin synthesis in coral: molecular cloning and expression of a cyclooxygenase from the Arctic soft coral Gersemia fruticosa. J Biol Chem 2001; 276:7033-40. [PMID: 11085996 DOI: 10.1074/jbc.m009803200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In vertebrates, the synthesis of prostaglandin hormones is catalyzed by cyclooxygenase (COX)-1, a constitutively expressed enzyme with physiological functions, and COX-2, induced in inflammation and cancer. Prostaglandins have been detected in high concentrations in certain corals, and previous evidence suggested their biosynthesis through a lipoxygenase-allene oxide pathway. Here we describe the discovery of an ancestor of cyclooxygenases that is responsible for prostaglandin biosynthesis in coral. Using a homology-based polymerase chain reaction cloning strategy, the cDNA encoding a polypeptide with approximately 50% amino acid identity to both mammalian COX-1 and COX-2 was cloned and sequenced from the Arctic soft coral Gersemia fruticosa. Nearly all the amino acids essential for substrate binding and catalysis as determined in the mammalian enzymes are represented in coral COX: the arachidonate-binding Arg(120) and Tyr(355) are present, as are the heme-coordinating His(207) and His(388); the catalytic Tyr(385); and the target of aspirin attack, Ser(530). A key amino acid that determines the sensitivity to selective COX-2 inhibitors (Ile(523) in COX-1 and Val(523) in COX-2) is present in coral COX as isoleucine. The conserved Glu(524), implicated in the binding of certain COX inhibitors, is represented as alanine. Expression of the G. fruticosa cDNA afforded a functional cyclooxygenase that converted exogenous arachidonic acid to prostaglandins. The biosynthesis was inhibited by indomethacin, whereas the selective COX-2 inhibitor nimesulide was ineffective. We conclude that the cyclooxygenase occurs widely in the animal kingdom and that vertebrate COX-1 and COX-2 are evolutionary derivatives of the invertebrate precursor.
Collapse
Affiliation(s)
- R Koljak
- Department of Bioorganic Chemistry, Institute of Chemistry, Tallinn Technical University, Akadeemia tee 15, Tallinn 12618, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kaldalu N, Toots U, de Lorenzo V, Ustav M. Functional domains of the TOL plasmid transcription factor XylS. J Bacteriol 2000; 182:1118-26. [PMID: 10648539 PMCID: PMC94389 DOI: 10.1128/jb.182.4.1118-1126.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.
Collapse
Affiliation(s)
- N Kaldalu
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
27
|
Kurg R, Langel U, Ustav M. Inhibition of the bovine papillomavirus E2 protein activity by peptide nucleic acid. Virus Res 2000; 66:39-50. [PMID: 10653916 DOI: 10.1016/s0168-1702(99)00124-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The bovine papillomavirus type-1 E2 protein is the master regulator of the papillomavirus transcription and replication, the activity of which is regulated through sequence-specific DNA binding. Peptide nucleic acid (PNA) is a nucleic acid analogue, which associates with high affinity to complementary DNA, RNA or PNA, yielding in formation of stable complexes. The potential use of PNA as a sequence-specific inhibitor of the E2 protein activity is studied in this report. We demonstrate that replacement of one or both DNA strands with the complementary PNA reduced drastically the affinity of the BPV-1 E2 protein to its target site in the direct as well as in competitive binding as shown by in vitro gel-shift assays. We demonstrate that PNA could specifically bind to the double stranded E2 binding site by forming the complex with DNA oligonucleotide. In addition, PNA was able to bind specifically to the E2 binding site within the supercoiled plasmid DNA. Such binding of PNA to the E2 binding site within the origin of replication specifically abolished the activity of the E2 protein in the initiation of DNA replication in vivo.
Collapse
Affiliation(s)
- R Kurg
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010, Tartu, Estonia
| | | | | |
Collapse
|