1
|
Subedi S, Nag N, Shukla H, Padhi AK, Tripathi T. Comprehensive analysis of liquid-liquid phase separation propensities of HSV-1 proteins and their interaction with host factors. J Cell Biochem 2024; 125:e30480. [PMID: 37796176 DOI: 10.1002/jcb.30480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
In recent years, it has been shown that the liquid-liquid phase separation (LLPS) of virus proteins plays a crucial role in their life cycle. It promotes the formation of viral replication organelles, concentrating viral components for efficient replication and facilitates the assembly of viral particles. LLPS has emerged as a crucial process in the replication and assembly of herpes simplex virus-1 (HSV-1). Recent studies have identified several HSV-1 proteins involved in LLPS, including the myristylated tegument protein UL11 and infected cell protein 4; however, a complete proteome-level understanding of the LLPS-prone HSV-1 proteins is not available. We provide a comprehensive analysis of the HSV-1 proteome and explore the potential of its proteins to undergo LLPS. By integrating sequence analysis, prediction algorithms and an array of tools and servers, we identified 10 HSV-1 proteins that exhibit high LLPS potential. By analysing the amino acid sequences of the LLPS-prone proteins, we identified specific sequence motifs and enriched amino acid residues commonly found in LLPS-prone regions. Our findings reveal a diverse range of LLPS-prone proteins within the HSV-1, which are involved in critical viral processes such as replication, transcriptional regulation and assembly of viral particles. This suggests that LLPS might play a crucial role in facilitating the formation of specialized viral replication compartments and the assembly of HSV-1 virion. The identification of LLPS-prone proteins in HSV-1 opens up new avenues for understanding the molecular mechanisms underlying viral pathogenesis. Our work provides valuable insights into the LLPS landscape of HSV-1, highlighting potential targets for further experimental validation and enhancing our understanding of viral replication and pathogenesis.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
2
|
Soh TK, Ognibene S, Sanders S, Schäper R, Kaufer BB, Bosse JB. A proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses. Nat Commun 2024; 15:10230. [PMID: 39592652 PMCID: PMC11599850 DOI: 10.1038/s41467-024-54668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Structure predictions have become invaluable tools, but viral proteins are absent from the EMBL/DeepMind AlphaFold database. Here, we provide proteome-wide structure predictions for all nine human herpesviruses and analyze them in depth with explicit scoring thresholds. By clustering these predictions into structural similarity groups, we identified new families, such as the HCMV UL112-113 cluster, which is conserved in alpha- and betaherpesviruses. A domain-level search found protein families consisting of subgroups with varying numbers of duplicated folds. Using large-scale structural similarity searches, we identified viral proteins with cellular folds, such as the HSV-1 US2 cluster possessing dihydrofolate reductase folds and the EBV BMRF2 cluster that might have emerged from cellular equilibrative nucleoside transporters. Our HerpesFolds database is available at https://www.herpesfolds.org/herpesfolds and displays all models and clusters through an interactive web interface. Here, we show that system-wide structure predictions can reveal homology between viral species and identify potential protein functions.
Collapse
Affiliation(s)
- Timothy K Soh
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Sofia Ognibene
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Saskia Sanders
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Robin Schäper
- Hannover Medical School, Institute of Virology, Hanover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Benedikt B Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Jens B Bosse
- Hannover Medical School, Institute of Virology, Hanover, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany.
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
| |
Collapse
|
3
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
4
|
The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J Virol 2020; 94:JVI.01564-19. [PMID: 31748398 DOI: 10.1128/jvi.01564-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Molecular chaperones and cochaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that herpes simplex virus 1 (HSV-1) infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (Virus Induced Chaperone Enriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. Here, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded cochaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of nonnative proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins, and (iii) thermoprotection against heat inactivation of firefly luciferase, and (iv) sequence homology analysis indicated that ICP22 contains an N-terminal J domain and a C-terminal substrate binding domain, similar to type II cellular J proteins. ICP22 may thus be functionally similar to J-protein/Hsp40 cochaperones that function together with their HSP70 partners to prevent aggregation of nonnative proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, since simian immunodeficiency virus T antigen was previously shown to contain a J domain; however, this the first known example of the acquisition of a functional J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.IMPORTANCE Viruses have evolved a variety of strategies to succeed in a hostile environment. The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 plays several roles in the virus life cycle, including downregulation of cellular gene expression, upregulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of nonnative proteins, and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 functionally resembles a cellular J-protein/HSP40 family cochaperone, interacting specifically with Hsc70. We suggest that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.
Collapse
|
5
|
Cai M, Jiang S, Zeng Z, Li X, Mo C, Yang Y, Chen C, Xie P, Bian Y, Wang J, Huang J, Chen D, Peng T, Li M. Probing the nuclear import signal and nuclear transport molecular determinants of PRV ICP22. Cell Biosci 2016; 6:3. [PMID: 26816613 PMCID: PMC4727382 DOI: 10.1186/s13578-016-0069-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) ICP22 is a multifunctional protein and important for HSV-1 replication. Pseudorabies virus (PRV) ICP22 (P-ICP22) is a homologue of HSV-1 ICP22 and is reported to be able to selectively modify the transcription of different kinetic classes of PRV genes, however, the subcellular localization, localization signal and molecular determinants for its transport to execute this function is less well understood. RESULTS In this study, by utilizing live cells fluorescent microscopy, P-ICP22 fused to enhanced yellow fluorescent protein (EYFP) gene was transient expressed in live cells and shown to exhibit a predominantly nucleus localization in the absence of other viral proteins. By transfection of a series of P-ICP22 deletion mutants fused to EYFP, a bona fide nuclear localization signal (NLS) and its key amino acids (aa) of P-ICP22 was, for the first time, determined and mapped to aa 41-60 (PASTPTPPKRGRYVVEHPEY) and aa 49-50 (KR), respectively. Besides, the P-ICP22 was demonstrated to be targeted to the nucleus via Ran-, importin α1-, and α7-mediated pathway. CONCLUSIONS Our findings reported herein disclose the NLS and molecular mechanism for nuclear transport of P-ICP22, these results will uncover new avenues for depicting the biological roles of P-ICP22 during PRV infection.
Collapse
Affiliation(s)
- Mingsheng Cai
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China ; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Si Jiang
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China ; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Zhancheng Zeng
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Xiaowei Li
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Chuncong Mo
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Yanjia Yang
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Chunke Chen
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Peiping Xie
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Yun Bian
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Jinlin Wang
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Jinlu Huang
- Guangdong Haid Group Co., Ltd., Guangzhou, 511400 People's Republic of China
| | - Daixiong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China ; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Tao Peng
- Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Meili Li
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China ; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| |
Collapse
|
6
|
Vaz PK, Mahony TJ, Hartley CA, Fowler EV, Ficorilli N, Lee SW, Gilkerson JR, Browning GF, Devlin JM. The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1. BMC Genomics 2016; 17:70. [PMID: 26800886 PMCID: PMC4724163 DOI: 10.1186/s12864-016-2390-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). Results The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67 % nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. Conclusions This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2390-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola K Vaz
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Ritchie Building (64A), St Lucia, 4072, QLD, Australia.
| | - Carol A Hartley
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Elizabeth V Fowler
- Department of Agriculture and Fisheries, Animal Science, St Lucia, 4072, QLD, Australia.
| | - Nino Ficorilli
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Sang W Lee
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia. .,College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - James R Gilkerson
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Glenn F Browning
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| |
Collapse
|
7
|
Rice SA, Davido DJ. HSV-1 ICP22: hijacking host nuclear functions to enhance viral infection. Future Microbiol 2013; 8:311-21. [PMID: 23464370 DOI: 10.2217/fmb.13.4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During its productive infection, HSV-1 dramatically remodels the architecture and physiology of the host cell nucleus. The immediate-early proteins, the first viral proteins to be expressed during infection, are key players in this process. Here, we review the known properties and functions of immediate-early protein ICP22. Although this polypeptide has received less attention than other immediate-early proteins, the published evidence indicates that it mediates several striking changes to important host nuclear systems, including those involved in RNA polymerase II transcription, cell cycle regulation and protein quality control. Recent genetic analyses suggest that these alterations can promote HSV-1 productive infection. Thus, future work on ICP22 is likely to reveal novel mechanisms by which herpesviruses, and possibly other DNA viruses, manipulate the host cell nucleus to enhance their replication.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Avenue S, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
8
|
Li ML, Chen JH, Zhao ZY, Zhang KJ, Li Z, Li J, Mai JY, Zhu XM, Cai MS. Molecular cloning and characterization of the pseudorabies virus US1 gene. GENETICS AND MOLECULAR RESEARCH 2013; 12:85-98. [PMID: 23359028 DOI: 10.4238/2013.january.22.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using polymerase chain reaction, a 1050-bp sequence of the US1 gene was amplified from the pseudorabies virus (PRV) Becker strain genome; identification of the US1 gene was confirmed by further cloning and sequencing. Bioinformatics analysis indicated that the PRV US1 gene encodes a putative polypeptide with 349 amino acids. The encoded protein, designated PICP22, had a conserved Herpes_IE68 domain, which was found to be closely related with the herpes virus immediate early regulatory protein family and is highly conserved among the counterparts encoded by Herpes_IE68 genes. Multiple nucleic acid sequence and amino acid sequence alignments suggested that the product of PRV US1 has a relatively higher homology with ICP22-like proteins of genus Varicellovirus than with those of other genera of Alphaherpesvirinae. In addition, phylogenetic analysis showed that PRV US1 has a close evolutionary relationship with members of the genus Varicellovirus, especially Equid herpes virus 1 (EHV-1), EHV-4 and EHV-9. Antigen prediction indicated that several potential B-cell epitopes are located in PICP22. Also, subcellular localization analysis demonstrated that PICP22 is predominantly located in the cytoplasm, suggesting that it might function as a cytoplasmic-targeted protein.
Collapse
Affiliation(s)
- M L Li
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Molecular determinants responsible for the subcellular localization of HSV-1 UL4 protein. Virol Sin 2011; 26:347-56. [PMID: 21979574 DOI: 10.1007/s12250-011-3217-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022] Open
Abstract
The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.
Collapse
|
10
|
Kolb AW, Schmidt TR, Dyer DW, Brandt CR. Sequence variation in the herpes simplex virus U(S)1 ocular virulence determinant. Invest Ophthalmol Vis Sci 2011; 52:4630-8. [PMID: 21519032 DOI: 10.1167/iovs.10-7032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The herpes simplex virus type 1 (HSV-1) U(S)1 gene encodes host-range and ocular virulence determinants. Mutations in U(S)1 affecting virulence are known in strain OD4, but the genomic variation across several strains is not known. The goal was to determine the degree of sequence variation in the gene from several ocular HSV isolates. METHODS The U(S)1 gene from six ocular HSV-1 isolates, as well as strains KOS and F, were sequenced, and bioinformatics analyses were applied to the data. RESULTS Strains 17, F, CJ394, and CJ311 had identical amino acid sequences. With the other strains, most of the variability was concentrated in the amino-terminal third of the protein. MEME analysis identified a 63-residue core sequence (motif 1) present in all α-herpesvirus U(S)1 homologs that were located in a region identified as structured. Ten amino acids were absolutely conserved in all the α-herpesvirus U(S)1 homologs and were all located in the central core. Consensus-binding motifs for cyclin-dependent kinases and pocket proteins were also identified. CONCLUSIONS These results suggest that significant sequence variation exists in the U(S)1 gene, that the α22 protein contains a conserved central core region with structurally variable regions at the amino- and carboxyl termini, that 10 amino acids are conserved in α-herpes U(S)1 homologs, and that additional host proteins may interact with the HSV-1 U(S)1 and U(S)1.5 proteins. This information will be valuable in designing further studies on structure-function relationships and on the role these play in host-range determination and keratitis.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
11
|
Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. J Virol 2010; 85:1881-6. [PMID: 21147926 DOI: 10.1128/jvi.01730-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that herpes simplex virus type 1 UL3, UL4, and UL20.5 proteins are localized to small, dense nuclear bodies together with ICP22 in infected cells. In the present study, we comprehensively characterized these interactions by subcellular colocalization, coimmunoprecipitation, and bimolecular fluorescence complementation assays. For the first time, it was demonstrated that both UL3 and UL20.5 are targeted to small, dense nuclear bodies by a direct interaction with ICP22, whereas UL4 colocalizes with ICP22 through its interaction with UL3 but not UL20.5 or ICP22. There was no detectable interaction between UL3 and UL20.5.
Collapse
|
12
|
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, The University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
13
|
Analysis of the cellular localization of herpes simplex virus 1 immediate-early protein ICP22. Virol Sin 2010; 25:158-67. [PMID: 20960289 DOI: 10.1007/s12250-010-3118-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/08/2010] [Indexed: 12/26/2022] Open
Abstract
Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell protein 22 (ICP22), in the nucleus by observing the localization of ICP22-EGFP fusion protein. Results showed that, in high-level expression conditions, ICP22-EGFP gradually concentrates in the nucleus, persists throughout the cell cycle without disaggregation even in the cell division phase, and is finally distributed to daughter cells. We subsequently constructed a mammalian cell expression system, which had tetracycline-dependent transcriptional regulators. Consequently, the location of ICP22-EGFP in the nucleus changed with distinct induction conditions. This suggests that the cellular location of ICP22 is also influenced by promoter regulation, in addition to its own structure. Our findings provide new clues for the investigation of transcriptional regulation of viral genes. In addition, the non-protease reporter system we constructed could be utilized to evaluate the role of internal ribosome entry sites (IRES) on transcriptional regulation.
Collapse
|
14
|
Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J Virol 2009; 84:2384-94. [PMID: 20032172 DOI: 10.1128/jvi.01686-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During productive infection, herpes simplex virus type 1 (HSV-1) induces the formation of discrete nuclear foci containing cellular chaperone proteins, proteasomal components, and ubiquitinated proteins. These structures are known as VICE domains and are hypothesized to play an important role in protein turnover and nuclear remodeling in HSV-1-infected cells. Here we show that VICE domain formation in Vero and other cells requires the HSV-1 immediate-early protein ICP22. Since ICP22 null mutants replicate efficiently in Vero cells despite being unable to induce VICE domain formation, it can be concluded that VICE domain formation is not essential for HSV-1 productive infection. However, our findings do not exclude the possibility that VICE domain formation is required for viral replication in cells that are nonpermissive for ICP22 mutants. Our studies also show that ICP22 itself localizes to VICE domains, suggesting that it could play a role in forming these structures. Consistent with this, we found that ICP22 expression in transfected cells is sufficient to reorganize the VICE domain component Hsc70 into nuclear inclusion bodies that resemble VICE domains. An N-terminal segment of ICP22, corresponding to residues 1 to 146, is critical for VICE domain formation in infected cells and Hsc70 reorganization in transfected cells. We previously found that this portion of the protein is dispensable for ICP22's effects on RNA polymerase II phosphorylation. Thus, ICP22 mediates two distinct regulatory activities that both modify important components of the host cell nucleus.
Collapse
|
15
|
Pan W, Ren X, Guo H, Ding Q, Zheng AC. Expression, purification of herpes simplex virus type 1 UL4 protein, and production and characterization of UL4 polyclonal antibody. J Virol Methods 2009; 163:465-9. [PMID: 19917314 DOI: 10.1016/j.jviromet.2009.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 11/30/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) UL4 protein is a late protein encoded by the UL4 gene. To date, the function of this protein is poorly understood. To aid further investigation of the function of this protein, the UL4 gene was cloned into the vector pET28a (+) to express His-tagged UL4 protein in Escherichia coli. The recombinant fusion protein was purified from inclusion body by histidine selected nickel affinity chromatography under denaturing conditions. After refolding, the purified recombinant protein was used to produce anti-UL4 polyclonal antibody. Western blot analysis demonstrated that the polyclonal sera could recognize the purified UL4 protein specifically, and in the immunofluorescence assay, the antibody was able to probe the UL4 protein with a punctate staining in HSV-1 infected cells.
Collapse
Affiliation(s)
- Weiwei Pan
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, China
| | | | | | | | | |
Collapse
|
16
|
Cun W, Guo L, Zhang Y, Liu L, Wang L, Li J, Dong C, Wang J, Li Q. Transcriptional regulation of the Herpes Simplex Virus 1alpha-gene by the viral immediate-early protein ICP22 in association with VP16. ACTA ACUST UNITED AC 2009; 52:344-51. [PMID: 19381460 DOI: 10.1007/s11427-009-0051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/21/2008] [Indexed: 11/27/2022]
Abstract
Herpes Simplex Virus 1 (HSV1) is capable of inducing two forms of infection in individuals, and the establishment of which type of infection occurs is linked to the transcriptional activation of viral alpha genes. One of the HSV1 alpha genes, ICP22, is known to have multiple functions during virus replication, but its distinct roles are still unclear. This study showed that ICP22 functions as a general repressor for certain viral and cellular promoters, and this transcriptional repression by ICP22 is independent of the specific upstream promoter element, as shown using the CAT enzyme assay system. Further work also found that VP16 interfered with ICP22 mediated transcriptional repression of the viral alpha4 gene, through interactions with specific elements upstream of the alpha4 gene promoter. These findings support the possibility that ICP22 and VP16 control transcription of HSV1alpha genes in a common pathway for the establishment of either viral lytic or latent infections.
Collapse
Affiliation(s)
- Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol 2008; 83:128-39. [PMID: 18971282 DOI: 10.1128/jvi.01954-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.
Collapse
|
18
|
Guo H, Cun W, Liu L, Wang L, Zhao H, Dong C, Li Q. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2. ACTA ACUST UNITED AC 2007; 50:473-8. [PMID: 17653667 DOI: 10.1007/s11427-007-0039-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 08/03/2006] [Indexed: 12/29/2022]
Abstract
As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular transcriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells' entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.
Collapse
Affiliation(s)
- HongXiong Guo
- Department of Viral Immunology, Institute of Medical Biology, CAMS and PUMC, Kunming 650118, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
20
|
Markovitz NS. The herpes simplex virus type 1 UL3 transcript starts within the UL3 open reading frame and encodes a 224-amino-acid protein. J Virol 2007; 81:10524-31. [PMID: 17626086 PMCID: PMC2045449 DOI: 10.1128/jvi.00123-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/02/2007] [Indexed: 11/20/2022] Open
Abstract
Several different herpes simplex viruses (HSVs) and vectors are being explored as therapeutic products for use in the treatment of cancer and neurological disorders. The viral strain and the combination of mutant viral genes that ultimately may serve as a safe and optimal backbone for such products are still being explored. The large genome size and complexity of the viral life cycle make such determinations difficult, because the significance of differences between proposed products is difficult to evaluate. For example, we previously reported that two lineages of gamma34.5-deleted HSVs used in clinical studies differ from each other in the size of the UL3 protein expressed (M. J. Dambach et al., Mol. Ther. 13:891-898, 2006). Because the function of UL3 is not known and UL3 gene expression is poorly understood, the significance of such a difference cannot be predicted. Here, I begin to address the function of UL3 by investigating UL3 gene expression. I report that the transcript start site of UL3 mRNA isolated from HSV type 1 (HSV-1)-infected cells maps to a position downstream of the predicted translation start site. By constructing and characterizing the recombinant virus CB8116, which has a mutation in the first in-frame start codon of this UL3 transcript, I demonstrated that UL3 protein translation initiates at the second in-frame start codon of the UL3 open reading frame. This information adds to the body of basic knowledge of HSV-1 biology that forms the foundation for our current understanding of HSV-based products. Future research on HSV-1 biology will facilitate the rational design and evaluation of future generations of therapeutic viruses.
Collapse
Affiliation(s)
- Nancy S Markovitz
- Division of Cellular and Gene Therapies, HFM-725, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852, USA.
| |
Collapse
|
21
|
Cun W, Hong M, Liu LD, Dong CH, Luo J, Li QH. Structural and functional characterization of herpes simplex virus 1 immediate-early protein infected-cell protein 22. J Biochem 2006; 140:67-73. [PMID: 16877770 DOI: 10.1093/jb/mvj135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the five HSV1 immediate-early proteins, infected-cell protein 22 (ICP22), the product of the Us1 gene, is a member whose function is less understood. In order to promote better understanding of the role of ICP22 in viral replication, mutation and fluorescence techniques were used to investigate the biochemical relationship between ICP22's structure and nuclear localization, and the CAT assay was used to analyze the relationship between ICP22's structure and its transcriptional repression. The results of these experiments implied (i) ICP22 is localized to small dense nuclear bodies and is paired with the SC-35 domain in the nucleus, (ii) ICP22 localization in a punctate state requires completion of the main sequence which includes the 1-320th amino acids, (iii) a conservative mutation in the nucleotidylylation site is important for its nuclear localization and transcriptional repression, and (4) despite possessing the same amino acid sequence as the ICP22 carboxyl-terminal, Us1.5 was distinct from ICP22 in location and function.
Collapse
Affiliation(s)
- Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, P.R. China
| | | | | | | | | | | |
Collapse
|
22
|
Fuchs W, Granzow H, Klopfleisch R, Klupp BG, Mettenleiter TC. The UL4 gene of pseudorabies virus encodes a minor infected-cell protein that is dispensable for virus replication. J Gen Virol 2006; 87:2517-2525. [PMID: 16894189 DOI: 10.1099/vir.0.81813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although homologues of the open reading frame (ORF) UL4 of herpes simplex virus 1 (Human herpesvirus 1) have been found in the genomes of all hitherto-analysed alphaherpesviruses, little is known about their function. In a project to analyse systematically, in an isogenic and standardized assay system, the gene products of the alphaherpesvirus pseudorabies virus (PrV; Suid herpesvirus 1), the PrV UL4 gene product was identified using a monospecific rabbit antiserum prepared against a bacterial fusion protein. Western blot and immunofluorescence analyses revealed that the 146 codon UL4 ORF of PrV was translated into a nuclear 15 kDa protein which was detectable from 6 h after infection of rabbit kidney cells, but was not found in purified virus particles. For functional analysis, a UL4-negative virus recombinant (PrV-DeltaUL4F) was generated by mutagenesis of an infectious full-length clone of the PrV genome in E. coli. PrV-DeltaUL4F was replication-competent in rabbit kidney cells, and plaque formation was not affected by the mutation. However, maximum virus titres of PrV-DeltaUL4F were decreased about fivefold compared with wild-type PrV, and electron microscopy of infected cells demonstrated an impairment of release of mature virions. This growth defect of PrV-DeltaUL4F could be corrected completely by propagation in UL4-expressing cells. Correlating with the inconspicuous in vitro phenotype, neurovirulence of PrV-DeltaUL4F was also not affected significantly. Thus, UL4 encodes a non-structural protein of PrV that enhances virion formation but is not essential for PrV replication in vitro or in vivo.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Robert Klopfleisch
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
23
|
Baiker A, Bagowski C, Ito H, Sommer M, Zerboni L, Fabel K, Hay J, Ruyechan W, Arvin AM. The immediate-early 63 protein of Varicella-Zoster virus: analysis of functional domains required for replication in vitro and for T-cell and skin tropism in the SCIDhu model in vivo. J Virol 2004; 78:1181-94. [PMID: 14722273 PMCID: PMC321405 DOI: 10.1128/jvi.78.3.1181-1194.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immediate-early 63-kDa (IE63) protein of varicella-zoster virus (VZV) is a phosphoprotein encoded by open reading frame (ORF) ORF63/ORF70. To identify functional domains, 22 ORF63 mutations were evaluated for effects on IE63 binding to the major VZV transactivator, IE62, and on IE63 phosphorylation and nuclear localization in transient transfections, and after insertion into the viral genome with VZV cosmids. The IE62 binding site was mapped to IE63 amino acids 55 to 67, with R59/L60 being critical residues. Alanine substitutions within the IE63 center region showed that S165, S173, and S185 were phosphorylated by cellular kinases. Four mutations that changed two putative nuclear localization signal (NLS) sequences altered IE63 distribution to a cytoplasmic/nuclear pattern. Only three of 22 mutations in ORF63 were compatible with recovery of infectious VZV from our cosmids, but infectivity was restored by inserting intact ORF63 into each mutated cosmid. The viable IE63 mutants had a single alanine substitution, altering T171, S181, or S185. These mutants, rOKA/ORF63rev[T171], rOKA/ORF63rev[S181], and rOKA/ORF63rev[S185], produced less infectious virus and had a decreased plaque phenotype in vitro. ORF47 kinase protein and glycoprotein E (gE) synthesis was reduced, indicating that IE63 contributed to optimal expression of early and late gene products. The three IE63 mutants replicated in skin xenografts in the SCIDhu mouse model, but virulence was markedly attenuated. In contrast, infectivity in T-cell xenografts was not altered. Comparative analysis suggested that IE63 resembled the herpes simplex virus type 1 U(S)1.5 protein, which is expressed colinearly with ICP22 (U(S)1). In summary, most mutations of ORF63 made with our VZV cosmid system were lethal for infectivity. The few IE63 changes that were tolerated resulted in VZV mutants with an impaired capacity to replicate in vitro. However, the IE63 mutants were attenuated in skin but not T cells in vivo, indicating that the contribution of the IE63 tegument/regulatory protein to VZV pathogenesis depends upon the differentiated human cell type which is targeted for infection within the intact tissue microenvironment.
Collapse
Affiliation(s)
- Armin Baiker
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hutchinson I, Whiteley A, Browne H, Elliott G. Sequential localization of two herpes simplex virus tegument proteins to punctate nuclear dots adjacent to ICP0 domains. J Virol 2002; 76:10365-73. [PMID: 12239313 PMCID: PMC136574 DOI: 10.1128/jvi.76.20.10365-10373.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 07/10/2002] [Indexed: 11/20/2022] Open
Abstract
The subcellular localization of herpes simplex virus tegument proteins during infection is varied and complex. By using viruses expressing tegument proteins tagged with fluorescent proteins, we previously demonstrated that the major tegument protein VP22 exhibits a cytoplasmic localization, whereas the major tegument protein VP13/14 localizes to nuclear replication compartments and punctate domains. Here, we demonstrate the presence of a second minor population of VP22 in nuclear dots similar in appearance to those formed by VP13/14. We have constructed the first-described doubly fluorescence-tagged virus expressing VP22 and VP13/14 as fusion proteins with cyan fluorescent protein and yellow fluorescent protein, respectively. Visualization of both proteins within the same live infected cells has indicated that these two tegument proteins localize to the same nuclear dots but that VP22 appears there earlier than VP13/14. Further studies have shown that these tegument-specific dots are detectable as phase-dense bodies as early as 2 h after infection and that they are different from the previously described nuclear domains that contain capsid proteins. They are also different from the ICP0 domains formed at cellular nuclear domain 10 sites early in infection but, in almost all cases, are located in juxtaposition to these ICP0 domains. Hence, these tegument proteins join a growing number of proteins that are targeted to discrete nuclear domains in the herpesvirus-infected cell nucleus.
Collapse
Affiliation(s)
- Ian Hutchinson
- Virus Assembly Group, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | | | | | | |
Collapse
|
25
|
Stelz G, Rücker E, Rosorius O, Meyer G, Stauber RH, Spatz M, Eibl MM, Hauber J. Identification of two nuclear import signals in the alpha-gene product ICP22 of herpes simplex virus 1. Virology 2002; 295:360-70. [PMID: 12033795 DOI: 10.1006/viro.2002.1384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus 1 (HSV-1) infected cell protein 22 (ICP22) is a multifunctional viral regulator that localizes in the nucleus of infected cells. ICP22 is required for optimal virus replication in certain cell types and is subject to extensive posttranslational modification. To map the signals in ICP22 which mediate its efficient nuclear localization, we investigated the nuclear import of fusion proteins comprising various fragments of ICP22 fused to green fluorescent protein (GFP) or beta-galactosidase (beta-Gal). These data demonstrated that ICP22 contains two independent regions with nuclear localization signal (NLS) activity. NLS1 maps to ICP22 amino acid position 16-31 and closely resembles the classical bipartite NLS of the type originally identified in nucleoplasmin. In contrast, NLS2 maps to ICP22 amino acid position 118-131 and contains multiple critical basic residues. Furthermore, fusion of both NLSs to chimeric glutathione-S-transferase (GST)-GFP protein and subsequent cytoplasmic microinjection of the respective transport substrates allowed us to monitor nuclear import in real-time. These data demonstrated that both ICP22-derived NLSs mediated efficient nuclear import with identical kinetics, resulting in complete nuclear accumulation of the chimeric transport cargoes at approximately 30 min postinjection. Finally, our data provide new insights into the domain structure of the multifunctional alpha-gene product ICP22 of HSV-1.
Collapse
Affiliation(s)
- Gerhard Stelz
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Schlossgarten 4, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ward PL, Taddeo B, Markovitz NS, Roizman B. Identification of a novel expressed open reading frame situated between genes U(L)20 and U(L)21 of the herpes simplex virus 1 genome. Virology 2000; 266:275-85. [PMID: 10639314 DOI: 10.1006/viro.1999.0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An open reading frame (ORF) situated between the U(L)20 and U(L)21 genes encodes a protein designated as U(L)20.5. The U(L)20.5 ORF lies 5' and in the same orientation as the U(L)20 ORF. The expression of the U(L)20.5 ORF was verified by RNase protection assays and by in-frame insertion of an amino acid sequence encoding an epitope of an available monoclonal antibody. The tagged U(L)20.5 protein colocalized in small dense nuclear structures with products of the alpha22/U(S)1.5, U(L)3, and U(L)4 genes. Expression of the U(L)20.5 gene was blocked in cells infected and maintained in the presence of phosphonoacetate, indicating that it belongs to the late, or gamma(2), kinetic class. U(L)20.5 is not essential for viral replication inasmuch as a recombinant virus made by insertion of the thymidine kinase gene into the U(L)20.5 ORF replicates in all cell lines tested [J. D. Baines, P. L. Ward, G. Campadelli-Fiume, and B. Roizman (1991) J. Virol. 65, 6414-6424]. The genomic location of the recently discovered genes illustrates the compact nature of the viral genome.
Collapse
Affiliation(s)
- P L Ward
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 E. 58th Street, Chicago, Illinois, 60637, USA
| | | | | | | |
Collapse
|
27
|
Markovitz NS, Roizman B. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 U(L)3 and U(L)4 proteins and of ICP22 only when the latter protein is present. J Virol 2000; 74:523-8. [PMID: 10590143 PMCID: PMC111565 DOI: 10.1128/jvi.74.1.523-528.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 U(L)3 and U(L)4 open reading frames are expressed late in infection and are not essential for viral replication in cultured cells in vitro. An earlier report showed that the U(L)4 protein colocalizes with the products of the alpha22/U(S)1.5 genes in small nuclear dense bodies. Here we report that the U(L)3 protein also colocalized in these small nuclear dense bodies and the localization of U(L)3 and U(L)4 proteins in these bodies required the presence of alpha22/U(S)1.5 genes. In cells infected with a mutant lacking intact alpha22/U(S)1.5 genes, U(L)3 was diffused throughout the nucleus even though the overall accumulation of the gamma2 U(L)3 protein was decreased. The results suggest that ICP22 acts both as a regulator of U(L)3 accumulation and as the structural component and anchor of these small dense nuclear bodies.
Collapse
Affiliation(s)
- N S Markovitz
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|