1
|
Capriotti Z, Klase Z. Innate immune memory in chronic HIV and HIV-associated neurocognitive disorders (HAND): potential mechanisms and clinical implications. J Neurovirol 2024; 30:451-476. [PMID: 39733092 PMCID: PMC11846772 DOI: 10.1007/s13365-024-01239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Although antiretroviral therapy (ART) has dramatically improved the outlook of the HIV/AIDS pandemic, people living with HIV (PLWH) on suppressive therapy are still at higher risk for a range of comorbidities including cardiovascular disease (CVD) and HIV-associated neurocognitive disorders (HAND), among others. Chronic inflammation and immune activation are thought to be an underlying cause of these comorbidities. Many of the factors thought to drive chronic inflammation and immune activation in HIV overlap with factors known to induce trained immunity. Trained immunity is a form of innate immune memory that metabolically and epigenetically reprograms innate immune cells to mount enhanced inflammatory responses upon secondary encounter with unrelated inflammatory stimuli. While this phenotype has been characterized in a variety of disease states in animals and humans, very little is known about its potential contribution to chronic HIV pathogenesis. In this review, a broad overview of innate immune memory in the periphery and the central nervous system (CNS) is provided and the evidence for trained immunity in the context of HIV is considered. In PLWH on ART, this phenotype could contribute to the chronic inflammation and immune activation associated with HIV comorbidities and could complicate HIV cure strategies due to the potential persistence of the phenotype after eradication of the virus. Further research into this immune state in the context of HIV may open the door for new therapeutics aimed at treating HIV comorbidities like HAND.
Collapse
Affiliation(s)
- Zachary Capriotti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19102, USA.
| |
Collapse
|
2
|
Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest. mBio 2024; 15:e0024024. [PMID: 39269169 PMCID: PMC11481869 DOI: 10.1128/mbio.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.
Collapse
Affiliation(s)
- Carina Sandoval
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Karly Nisson
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Oliver I. Fregoso
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Vanegas-Torres CA, Schindler M. HIV-1 Vpr Functions in Primary CD4 + T Cells. Viruses 2024; 16:420. [PMID: 38543785 PMCID: PMC10975730 DOI: 10.3390/v16030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.
Collapse
Affiliation(s)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| |
Collapse
|
4
|
Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.23.541990. [PMID: 37292767 PMCID: PMC10245860 DOI: 10.1101/2023.05.23.541990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lentiviral accessory genes enhance replication through diverse mechanisms. HIV-1 accessory protein Vpr modulates the host DNA damage response (DDR) at multiple steps through DNA damage, cell cycle arrest, the degradation of host proteins, and both the activation and repression of DDR signaling. Vpr also alters host and viral transcription; however, the connection between Vpr-mediated DDR modulation and transcriptional activation remains unclear. Here, we determined the cellular consequences of Vpr-induced DNA damage using Vpr mutants that allow us to separate the ability of Vpr to induce DNA damage from cell cycle arrest and other DDR phenotypes including host protein degradation and repression of DDR. RNA-sequencing of cells expressing Vpr or Vpr mutants identified that Vpr alters cellular transcription through mechanisms both dependent and independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), Vpr-induced DNA damage activates the ATM-NEMO pathway and alters cellular transcription via NF-κB/RelA signaling. HIV-1 infection of primary MDMs validated Vpr-dependent NF-κB transcriptional activation during infection. Both virion delivered and de novo expressed Vpr induced DNA damage and activated ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional reprogramming can occur during early and late stages of viral replication. Together, our data identifies a mechanism by which Vpr activates NF-κB through DNA damage and the ATM-NEMO pathway, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral transcription and replication.
Collapse
Affiliation(s)
- Carina Sandoval
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Karly Nisson
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Oliver I. Fregoso
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Li Y, Liu X, Fujinaga K, Gross JD, Frankel AD. Enhanced NF-κB activation via HIV-1 Tat-TRAF6 cross-talk. SCIENCE ADVANCES 2024; 10:eadi4162. [PMID: 38241362 PMCID: PMC10798561 DOI: 10.1126/sciadv.adi4162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The Tat proteins of HIV-1 and simian immunodeficiency virus (SIV) are essential for activating viral transcription. In addition, Tat stimulates nuclear factor κB (NF-κB) signaling pathways to regulate viral gene expression although its molecular mechanism is unclear. Here, we report that Tat directly activates NF-κB through the interaction with TRAF6, which is an essential upstream signaling molecule of the canonical NF-κB pathway. This interaction increases TRAF6 oligomerization and auto-ubiquitination, as well as the synthesis of K63-linked polyubiquitin chains to further activate the NF-κB pathway and HIV-1 transcription. Moreover, ectopic expression of TRAF6 significantly activates HIV-1 transcription, whereas TRAF6 knockdown inhibits transcription. Furthermore, Tat-mediated activation of NF-κB through TRAF6 is conserved among HIV-1, HIV-2, and SIV isolates. Our study uncovers yet another mechanism by which HIV-1 subverts host transcriptional pathways to enhance its own transcription.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Xi Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Nittayananta W, Promsong A, Levy C, Hladik F, Chaitaveep N, Ungphaiboon S, Tewtrakul S, Satthakarn S. Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227941. [PMID: 36432041 PMCID: PMC9695535 DOI: 10.3390/molecules27227941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Ellagic acid (EA) has a wide range of biological effects. The purpose of this study was to investigate the in vitro effects of EA on HIV-1 replication, viral enzyme activity and cytokine secretion by infected cells. METHODS The anti-HIV-1 activity of EA in solution was determined in vitro using the infection of TZM-bl cells by the nano luciferase-secreting R5-tropic JRCSF strain of HIV-1, which allows for the quantification of viral growth by measuring nano luciferase in the culture supernatants. The effect of EA on the cytokine secretion of TZM-bl cells was determined by a multiplexed bead array after 48 h of HIV-1 exposure. The antiviral effect of EA in the gel formulation (Ellagel), as would be used for vaginal application, was investigated by the inhibition of infection of UC87.CD4.CCR5 cells with R5-tropic pBaLEnv-recombinant HIV-1. RESULTS EA in solutions of up to 100 µM was not toxic to TZM-bl cells. EA added either 1 h before or 4 h after HIV-1 exposure suppressed the replication of R5-tropic HIV-1 in TZM-bl cells in a dose-dependent manner, with up to 69% inhibition at 50 µM. EA-containing solutions also exhibited a dose-dependent inhibitory effect on HIV-1 replication in U87 cells. When EA was formulated as a gel, Ellagel containing 25 µM and 50 µM EA inhibited HIV-1 replication in U87 cells by 56% and 84%, respectively. In assays of specific HIV-1 enzyme activity, Ellagel inhibited HIV-1 integrase but not protease. EA did not significantly modulate cytokine secretion. CONCLUSIONS We conclude that EA either in solution or in a gel form inhibits HIV infection without adverse effects on target cells. Thus, gel containing EA can be tested as a new microbicide against HIV infection.
Collapse
Affiliation(s)
- Wipawee Nittayananta
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| | - Aornrutai Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat 96000, Thailand
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Nithinart Chaitaveep
- Research Division, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Suwipa Ungphaiboon
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supinya Tewtrakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surada Satthakarn
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
7
|
Huang F, Yao W, Sun B, Fujinaga K. DCAF1 inhibits the NF-κB pathway by targeting p65. Immunol Lett 2022; 249:33-42. [PMID: 36055411 DOI: 10.1016/j.imlet.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
Abstract
DCAF1 is considered to be a general substrate-recognizing subunit of E3 ligases, it has been implicated to be directly involved in different cellular processes. DCAF1 is also defined as a constitutive binding partner of viral protein R (Vpr) of the human immunodeficiency virus type 1 (HIV-1) and is essential for functions of Vpr. Here, we revealed that activation of NF-κB by virion-associated Vpr proteins highly depends on DCAF1, and that exogenous DCAF1 is capable of restraining NF-κB induction by external stimuli. Depletion of DCAF1 augments NF-κB activation. DCAF1 significantly inhibits the nuclear transportation of p65 through interactions with p65, after activation of the NF-κB pathway. Moreover, two main motifs of DCAF1 are identified to promote its inhibitory effects on the NF-κB pathway. Taken together, we propose a new role of DCAF1 in regulating cellular immune responses, beyond the function as a general adaptor for other cytokines or viral proteins.
Collapse
Affiliation(s)
- Fang Huang
- Jiangxia Laboratory in Hubei, Wuhan 430000, China; Departments of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weitong Yao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Koh Fujinaga
- Departments of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Bauby H, Ward CC, Hugh-White R, Swanson CM, Schulz R, Goujon C, Malim MH. HIV-1 Vpr Induces Widespread Transcriptomic Changes in CD4 + T Cells Early Postinfection. mBio 2021; 12:e0136921. [PMID: 34154423 PMCID: PMC8263007 DOI: 10.1128/mbio.01369-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
The interactions between a virus and its host are complex but can be broadly categorized as either viral manipulation of cellular functions or cellular responses to infection. These processes begin at the earliest point of contact between virus and cell and frequently result in changes to cellular gene expression, making genome-wide transcriptomics a useful tool to study them. Several previous studies have used transcriptomics to evaluate the cellular responses to human immunodeficiency virus type 1 (HIV-1) infection; however, none have examined events in primary CD4+ T cells during the first 24 h of infection. Here, we analyzed CD4+ T cells at 4.5, 8, 12, 24, and 48 h following infection. We describe global changes to host gene expression commencing at 4.5 h postinfection and evolving over the ensuing time points. We identify upregulation of genes related to innate immunity, cytokine production, and apoptosis and downregulation of those involved in transcription and translation. We further demonstrate that the viral accessory protein Vpr is necessary for almost all gene expression changes seen at 12 h postinfection and the majority of those seen at 48 h. Identifying this new role for Vpr not only provides fresh perspective on its possible function but also adds further insight into the interplay between HIV-1 and its host at the cellular level. IMPORTANCE HIV-1, while now treatable, remains an important human pathogen causing significant morbidity and mortality globally. The virus predominantly infects CD4+ T cells and, if not treated with medication, ultimately causes their depletion, resulting in AIDS and death. Further refining our understanding of the interaction between HIV-1 and these cells has the potential to inform further therapeutic development. Previous studies have used transcriptomics to assess gene expression changes in CD4+ T cells following HIV-1 infection; here, we provide a detailed examination of changes occurring in the first 24 h of infection. Importantly, we define the viral protein Vpr as essential for the changes observed at this early stage. This finding has significance for understanding the role of Vpr in infection and pathogenesis and also for interpreting previous transcriptomic analyses of HIV-1 infection.
Collapse
Affiliation(s)
- Hélène Bauby
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Christopher C. Ward
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rupert Hugh-White
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Reiner Schulz
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Caroline Goujon
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
McMullen K, Bateman K, Stanley A, Combrinck M, Engelbrecht S, Bryer A. Viral protein R polymorphisms in the pathogenesis of HIV-associated acute ischaemic stroke: a case-control study. J Neurovirol 2021; 27:137-144. [PMID: 33462790 DOI: 10.1007/s13365-020-00936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
HIV-1 viral proteins have been implicated in endothelial dysfunction, which is a major determinant of ischaemic stroke risk in HIV-infected individuals. Polymorphisms in HIV-1 viral protein R (Vpr) may alter its potential to promote endothelial dysfunction, by modifying its effects on viral replication, reactivation of latent cells, upregulation of pro-inflammatory cytokines and infection of macrophages. We analysed Vpr polymorphisms and their association with acute ischaemic stroke by comparing Vpr signature amino acids between 54 HIV-infected individuals with acute ischaemic stroke, and 80 age-matched HIV-infected non-stroke controls. Isoleucine at position 22 and serine at position 41 were associated with ischaemic stroke in HIV. Individuals with stroke had lower CD4 counts and CD4 nadirs than controls. These polymorphisms are unique to individuals with stroke compared to South African subtype C and the control group consensus sequences. Signature Vpr polymorphisms are associated with acute ischaemic stroke in HIV. These may increase stroke risk by promoting endothelial dysfunction and susceptibility to opportunistic infections. Therapeutic targeting of HIV-1 viral proteins may present an additional mechanism of decreasing stroke risk in HIV-infected individuals.
Collapse
Affiliation(s)
- Kate McMullen
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| | - Kathleen Bateman
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Alan Stanley
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Marc Combrinck
- Division of Geriatric Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Services, Cape Town, South Africa
| | - Alan Bryer
- Division of Neurology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. Negative regulation of IL-8 in human astrocytes depends on β-catenin while positive regulation is mediated by TCFs/LEF/ATF2 interaction. Cytokine 2020; 136:155252. [PMID: 32818703 PMCID: PMC7554258 DOI: 10.1016/j.cyto.2020.155252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Expression of cytokines/chemokines is tightly regulated at the transcription level. This is crucial in the central nervous system to maintain neuroimmune homeostasis. IL-8 a chemoattractant, which recruits neutrophils, T cells, and basophils into the brain in response to inflammation and/or injury is secreted predominantly by neurons, microglia, and astrocytes. Here, we investigated the mechanism by which astrocytes regulate IL-8 expression. We demonstrate that while β-catenin negatively regulated IL-8 transcription, its canonical transcriptional partners, members of the TCF/LEF transcription factors (TCF1, TCF3, TCF4 and LEF1) and Activating transcription factor 2 (ATF2) positively regulated IL-8 transcription. We further identified a putative TCF/LEF binding site at -175nt close to the minimal transcription region on the IL-8 promoter, mutation of which caused a significant reduction in IL-8 promoter activity. Chromatin immunoprecipitation demonstrated binding of TCF1, TCF4, LEF1 and ATF2 on the IL-8 promoter suggesting that TCFs/LEF partner with ATF2 to induce IL-8 transcription. These findings demonstrate a novel role for β-catenin in suppression of IL-8 expression and for TCFs/LEF/ATF2 in inducing IL-8. These findings reveal a unique mechanism by which astrocytes tightly regulate IL-8 expression.
Collapse
Affiliation(s)
- KaReisha F Robinson
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA.
| |
Collapse
|
11
|
Greenwood EJD, Williamson JC, Sienkiewicz A, Naamati A, Matheson NJ, Lehner PJ. Promiscuous Targeting of Cellular Proteins by Vpr Drives Systems-Level Proteomic Remodeling in HIV-1 Infection. Cell Rep 2020; 27:1579-1596.e7. [PMID: 31042482 PMCID: PMC6506760 DOI: 10.1016/j.celrep.2019.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
HIV-1 encodes four “accessory proteins” (Vif, Vpr, Vpu, and Nef), dispensable for viral replication in vitro but essential for viral pathogenesis in vivo. Well characterized cellular targets have been associated with Vif, Vpu, and Nef, which counteract host restriction and promote viral replication. Conversely, although several substrates of Vpr have been described, their biological significance remains unclear. Here, we use complementary unbiased mass spectrometry-based approaches to demonstrate that Vpr is both necessary and sufficient for the DCAF1/DDB1/CUL4 E3 ubiquitin ligase-mediated degradation of at least 38 cellular proteins, causing systems-level changes to the cellular proteome. We therefore propose that promiscuous targeting of multiple host factors underpins complex Vpr-dependent cellular phenotypes and validate this in the case of G2/M cell cycle arrest. Our model explains how Vpr modulates so many cell biological processes and why the functional consequences of previously described Vpr targets, identified and studied in isolation, have proved elusive. HIV-1 Vpr is responsible for almost all proteomic changes in HIV-1-infected cells Vpr directly targets multiple nuclear proteins for degradation Vpr cellular phenotypes (e.g., cell cycle arrest) stem from broad substrate targeting Targeting of a few proteins is conserved across diverse primate lentiviral species
Collapse
Affiliation(s)
- Edward J D Greenwood
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - James C Williamson
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Agata Sienkiewicz
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adi Naamati
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
12
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. β-Catenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. Cell Commun Signal 2020; 18:93. [PMID: 32546183 PMCID: PMC7296971 DOI: 10.1186/s12964-020-00565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway is a prolific regulator of cell-to-cell communication and gene expression. Canonical Wnt/β-catenin signaling involves partnering of β-catenin with members of the TCF/LEF family of transcription factors (TCF1, TCF3, TCF4, LEF1) to regulate gene expression. IL-6 is a key cytokine involved in inflammation and is particularly a hallmark of inflammation in the brain. Astrocytes, specialized glial cells in the brain, secrete IL-6. How astrocytes regulate IL-6 expression is not entirely clear, although in other cells NFκB and C/EBP pathways play a role. We evaluated here the interface between β-catenin, TCFs/LEF and C/EBP and NF-κB in relation to IL-6 gene regulation in astrocytes. Methods We performed molecular loss and/or gain of function studies of β-catenin, TCF/LEF, NFκB, and C/EBP to assess IL-6 regulation in human astrocytes. Specifically, siRNA mediated target gene knockdown, cDNA over expression of target gene, and pharmacological agents for regulation of target proteins were used. IL-6 levels was evaluated by real time quantitative PCR and ELISA. We also cloned the IL-6 promoter under a firefly luciferase reporter and used bioinformatics, site directed mutagenesis, and chromatin immunoprecipitation to probe the interaction between β-catenin/TCFs/LEFs and IL-6 promoter activity. Results β-catenin binds to TCF/LEF to inhibits IL-6 while TCFs/LEF induce IL-6 transcription through interaction with ATF-2/SMADs. β-catenin independent of TCFs/LEF positively regulates C/EBP and NF-κB, which in turn activate IL-6 expression. The IL-6 promoter has two putative regions for TCFs/LEF binding, a proximal site located at -91 nt and a distal site at -948 nt from the transcription start site, both required for TCF/LEF induction of IL-6 independent of β-catenin. Conclusion IL-6 regulation in human astrocytes engages a discordant interaction between β-catenin and TCF/LEF. These findings are intriguing given that no role for β-catenin nor TCFs/LEF to date is associated with IL-6 regulation and suggest that β-catenin expression in astrocytes is a critical regulator of anti-inflammatory responses and its disruption can potentially mediate persistent neuroinflammation. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- KaReisha F Robinson
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Srinivas D Narasipura
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Jennillee Wallace
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019; 8:cells8111310. [PMID: 31652959 PMCID: PMC6912716 DOI: 10.3390/cells8111310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.
Collapse
|
14
|
Nodder SB, Gummuluru S. Illuminating the Role of Vpr in HIV Infection of Myeloid Cells. Front Immunol 2019; 10:1606. [PMID: 31396206 PMCID: PMC6664105 DOI: 10.3389/fimmu.2019.01606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication in vivo. Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure in vivo, remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests that its major importance lies in overcoming restriction to virus replication in non-cycling myeloid cell populations, such as macrophages and dendritic cells. HIV-1 replication is attenuated in the absence of Vpr in myeloid cells such as monocyte-derived dendritic cells (MDDCs) and macrophages, and is correlated with the ability of Vpr to overcome a post-integration transcriptional defect in these cells. Intriguingly, recent identification of the human hub silencing (HUSH) complex as a target for DCAFCRL4-mediated degradation by numerous ancestral SIV Vpr alleles, and the Vpr paralog Vpx, signifies the potential function of HIV-1 Vpr to alter yet-to-be identified chromatin remodeling complexes and prevent host-mediated transcriptional repression of both invading viral genomes and pro-inflammatory responses. Myeloid cells constitute an important bridge between innate and adaptive immune responses to invading pathogens. Here, we seek to illustrate the numerous means by which Vpr manipulates the myeloid cellular environment and facilitates virus replication, myeloid cell-dependent HIV transmission, and systemic virus dissemination.
Collapse
Affiliation(s)
- Sarah Beth Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Giuliani E, Vassena L, Galardi S, Michienzi A, Desimio MG, Doria M. Dual regulation of L-selectin (CD62L) by HIV-1: Enhanced expression by Vpr in contrast with cell-surface down-modulation by Nef and Vpu. Virology 2018; 523:121-128. [PMID: 30119013 DOI: 10.1016/j.virol.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The HIV-1 accessory protein Vpr displays various activities that can favor viral replication such as G2 cell cycle arrest. Vpr also modulates host gene expression, although this property is poorly characterized. Here, we investigated the effect of Vpr on L-selectin (CD62L), which crucially controls leukocytes circulation and generation of immune responses against pathogens. We report that Vpr up-regulates CD62L mRNA level when individually expressed in Jurkat T cells as well as during HIV-1 infection of primary CD4+ T cells. Vpr mutant analysis and use of inhibitors suggest that the effect of Vpr on CD62L occurs independently of G2 arrest but requires activation of the ATR kinase. Yet, induction of CD62L expression by Vpr is contrasted by down-regulation of CD62L protein by Nef that, together with Vpu, induces a net reduction of cell-surface CD62L on HIV-1-infected cells, which may impact viral spread and evasion of immune responses.
Collapse
Affiliation(s)
- Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lia Vassena
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
16
|
Sauter D, Kirchhoff F. Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 2018. [PMID: 29526437 DOI: 10.1016/j.cytogfr.2018.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-1, the main causative agent of AIDS, and related primate lentiviruses show a striking ability to efficiently replicate throughout the lifetime of an infected host. In addition to their high variability, the acquisition of several accessory genes has enabled these viruses to efficiently evade or counteract seemingly strong antiviral immune responses. The respective viral proteins, i.e. Vif, Vpr, Vpu, Vpx and Nef, show a stunning functional diversity, acting by various mechanisms and targeting a large variety of cellular factors involved in innate and adaptive immunity. A focus of the present review is the accumulating evidence that Vpr, Vpu and Nef not only directly target cellular antiviral factors at the protein level, but also suppress their expression by modulating the activity of immune-regulatory transcription factors such as NF-κB. Furthermore, we will discuss the ability of accessory proteins to act as versatile adaptors, removing antiviral proteins from their sites of action and/or targeting them for proteasomal or endolysosomal degradation. Here, the main emphasis will be on emerging examples for functional interactions, synergisms and switches between accessory primate lentiviral proteins. A better understanding of this complex interplay between cellular immune defense mechanisms and viral countermeasures might facilitate the development of effective vaccines, help to prevent harmful chronic inflammation, and provide insights into the establishment and maintenance of latent viral reservoirs.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany.
| |
Collapse
|
17
|
Vermeire J, Roesch F, Sauter D, Rua R, Hotter D, Van Nuffel A, Vanderstraeten H, Naessens E, Iannucci V, Landi A, Witkowski W, Baeyens A, Kirchhoff F, Verhasselt B. HIV Triggers a cGAS-Dependent, Vpu- and Vpr-Regulated Type I Interferon Response in CD4 + T Cells. Cell Rep 2017; 17:413-424. [PMID: 27705790 DOI: 10.1016/j.celrep.2016.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/18/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
Several pattern-recognition receptors sense HIV-1 replication products and induce type I interferon (IFN-I) production under specific experimental conditions. However, it is thought that viral sensing and IFN induction are virtually absent in the main target cells of HIV-1 in vivo. Here, we show that activated CD4+ T cells sense HIV-1 infection through the cytosolic DNA sensor cGAS and mount a bioactive IFN-I response. Efficient induction of IFN-I by HIV-1 infection requires proviral integration and is regulated by newly expressed viral accessory proteins: Vpr potentiates, while Vpu suppresses cGAS-dependent IFN-I induction. Furthermore, Vpr also amplifies innate sensing of HIV-1 infection in Vpx-treated dendritic cells. Our results identify cGAS as mediator of an IFN-I response to HIV-1 infection in CD4+ T cells and demonstrate that this response is modulated by the viral accessory proteins Vpr and Vpu. Thus, viral innate immune evasion is incomplete in the main target cells of HIV-1.
Collapse
Affiliation(s)
- Jolien Vermeire
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ferdinand Roesch
- Département de Virologie, Unité Virus et Immunité, Institut Pasteur, 75015 Paris, France
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Réjane Rua
- Département de Virologie, Unité Virus et Immunité, Institut Pasteur, 75015 Paris, France
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anouk Van Nuffel
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Hanne Vanderstraeten
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Veronica Iannucci
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Alessia Landi
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Wojciech Witkowski
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Ann Baeyens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Dufrasne FE, Lucchetti M, Martin A, André E, Dessilly G, Kabamba B, Goubau P, Ruelle J. Modulation of the NF-κB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism. Virology 2017; 513:11-16. [PMID: 29028477 DOI: 10.1016/j.virol.2017.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
Abstract
The HIVs have evolved by selecting means to hijack numerous host cellular factors. HIVs exploit the transcription factor NF-κB to ensure efficient LTR-driven gene transcription. However, NF-κB is primarily known to act as a key regulator of the proinflammatory and antiviral responses. Interestingly, retroviruses activate NF-κB during early stages of infection to initiate proviral genome expression while suppressing it at later stages to restrain expression of antiviral genes. During HIV-1 infection, diverse viral proteins such as Env, Nef and Vpr have been proposed to activate NF-κB activity, whereas Vpu has been shown to inhibit NF-κB activation. It is still unclear how HIV-2 regulates NF-κB signaling pathway during its replication cycle. Here we confirm that human BST-2 and HIV-1 Env proteins can trigger potent activation of NF-κB. Importantly, we demonstrate for the first time that the HIV-2 Env induces NF-κB activation in HEΚ293T cells. Furthermore, the anti-BST-2 activity of the HIV-2 Env is not sufficient to completely inhibit NF-κB activity.
Collapse
Affiliation(s)
- François E Dufrasne
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Mara Lucchetti
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Emmanuel André
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Géraldine Dessilly
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Benoit Kabamba
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Patrick Goubau
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Jean Ruelle
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
19
|
Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation. PLoS Pathog 2017; 13:e1006598. [PMID: 28859166 PMCID: PMC5597281 DOI: 10.1371/journal.ppat.1006598] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023] Open
Abstract
Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes. The cellular transcription factor NF-κB plays a complex role in the lentiviral replication cycle. On the one hand, activation of NF-κB is required for efficient transcription of viral genes and reactivation of latent proviruses. On the other hand, NF-κB is also a key driver of antiviral gene expression, immune activation and progression to AIDS. As a result, primate lentiviruses tightly regulate the activation of NF-κB throughout their replication cycle to enable transcription of viral genes while minimizing antiviral gene expression. Here, we show that human and simian immunodeficiency viruses have evolved at least three alternative strategies to suppress NF-κB-dependent immune activation: HIV-2 and most SIVs prevent T cell activation via Nef-mediated downmodulation of CD3. In comparison, HIV-1 and its vpu-containing SIV precursors inhibit NF-κB activation via their accessory protein Vpu and lost the CD3 downmodulation function of Nef. Finally, SIVcol and SIVolc, infecting mantled guerezas and olive colobus monkeys, respectively, utilize Vpr. Our findings emphasize the key role of NF-κB as inducer of antiretroviral immune responses and add to the accumulating evidence that lentiviral accessory proteins target innate signaling cascades by sophisticated mechanisms to evade restriction.
Collapse
|
20
|
Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1 Infection of Dendritic Cells. J Virol 2017; 91:JVI.00051-17. [PMID: 28424288 DOI: 10.1128/jvi.00051-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/16/2017] [Indexed: 01/23/2023] Open
Abstract
Viral protein R (Vpr) is an HIV-1 accessory protein whose function remains poorly understood. In this report, we sought to determine the requirement of Vpr for facilitating HIV-1 infection of monocyte-derived dendritic cells (MDDCs), one of the first cell types to encounter virus in the peripheral mucosal tissues. In this report, we characterize a significant restriction of Vpr-deficient virus replication and spread in MDDCs alone and in cell-to-cell spread in MDDC-CD4+ T cell cocultures. This restriction of HIV-1 replication in MDDCs was observed in a single round of virus replication and was rescued by the expression of Vpr in trans in the incoming virion. Interestingly, infections of MDDCs with viruses that encode Vpr mutants unable to interact with either the DCAF1/DDB1 E3 ubiquitin ligase complex or a host factor hypothesized to be targeted for degradation by Vpr also displayed a significant replication defect. While the extent of proviral integration in HIV-1-infected MDDCs was unaffected by the absence of Vpr, the transcriptional activity of the viral long terminal repeat (LTR) from Vpr-deficient proviruses was significantly reduced. Together, these results characterize a novel postintegration restriction of HIV-1 replication in MDDCs and show that the interaction of Vpr with the DCAF1/DDB1 E3 ubiquitin ligase complex and the yet-to-be-identified host factor might alleviate this restriction by inducing transcription from the viral LTR. Taken together, these findings identify a robust in vitro cell culture system that is amenable to addressing mechanisms underlying Vpr-mediated enhancement of HIV-1 replication.IMPORTANCE Despite decades of work, the function of the HIV-1 protein Vpr remains poorly understood, primarily due to the lack of an in vitro cell culture system that demonstrates a deficit in replication upon infection with viruses in the absence of Vpr. In this report, we describe a novel cell infection system that utilizes primary human dendritic cells, which display a robust decrease in viral replication upon infection with Vpr-deficient HIV-1. We show that this replication difference occurs in a single round of infection and is due to decreased transcriptional output from the integrated viral genome. Viral transcription could be rescued by virion-associated Vpr. Using mutational analysis, we show that domains of Vpr involved in binding to the DCAF1/DDB1/E3 ubiquitin ligase complex and prevention of cell cycle progression into mitosis are required for LTR-mediated viral expression, suggesting that the evolutionarily conserved G2 cell cycle arrest function of Vpr is essential for HIV-1 replication.
Collapse
|
21
|
PKC-δ isoform plays a crucial role in Tat-TLR4 signalling pathway to activate NF-κB and CXCL8 production. Sci Rep 2017; 7:2384. [PMID: 28539656 PMCID: PMC5443767 DOI: 10.1038/s41598-017-02468-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
HIV-1 Tat protein induces the production of CXCL8 chemokine in a TLR4/MD2 and PKC dependent manner. The objective of this study was to understand whether these two pathways were distinct or constituted a single common pathway, and to determine the nature of the PKC isoforms involved and their interrelation with the activation of NF-κB and CXCL8 gene product expression. Here, we show that Tat-induced CXCL8 production is essentially dependent on the activation of PKC delta isoform, as shown a) by the capacity of PKC delta dominant negative (DN), and Rottlerin, a selective PKC delta pharmacological inhibitor, to inhibit Tat-induced CXCL8 production and b) by the ability of the constitutively active (CAT) isoform of PKC delta to induce CXCL8 production in a HEK cell line in the absence of Tat stimulation. The finding that comparable amounts of CXCL8 were produced following stimulation with either Tat protein, PKC-delta CAT transfection, or both, argue for the implication of one common pathway where PKC delta is activated downstream of TLR4 recruitment and leads to the activation of NF-κB. Altogether, our results underline the crucial role of PKC delta isoform in activating gene expression of CXCL8, a cytokine largely implicated in the physiopathology of HIV-1 infection.
Collapse
|
22
|
Pasquereau S, Kumar A, Herbein G. Targeting TNF and TNF Receptor Pathway in HIV-1 Infection: from Immune Activation to Viral Reservoirs. Viruses 2017; 9:v9040064. [PMID: 28358311 PMCID: PMC5408670 DOI: 10.3390/v9040064] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Several cellular functions such as apoptosis, cellular proliferation, inflammation, and immune regulation involve the tumor necrosis factor-α (TNF)/TNF receptor (TNFR) pathway. Human immunodeficiency virus 1 (HIV-1) interacts with the TNF/TNFR pathway. The activation of the TNF/TNFR pathway impacts HIV-1 replication, and the TNF/TNFR pathway is the target of HIV-1 proteins. A hallmark of HIV-1 infection is immune activation and inflammation with increased levels of TNF in the plasma and the tissues. Therefore, the control of the TNF/TNFR pathway by new therapeutic approaches could participate in the control of immune activation and impact both viral replication and viral persistence. In this review, we will describe the intricate interplay between HIV-1 proteins and TNF/TNFR signaling and how TNF/TNFR activation modulates HIV-1 replication and discuss new therapeutic approaches, especially anti-TNF therapy, that could control this pathway and ultimately favor the clearance of infected cells to cure HIV-infected patients.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Department of Virology, University of Franche-Comte, University of Bourgogne-Franche-Comté (UBFC), CHRU Besançon, UPRES EA4266 Pathogens & Inflammation/EPILAB, SFR FED 4234, F-25030 Besançon, France.
| | - Amit Kumar
- Department of Virology, University of Franche-Comte, University of Bourgogne-Franche-Comté (UBFC), CHRU Besançon, UPRES EA4266 Pathogens & Inflammation/EPILAB, SFR FED 4234, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, University of Franche-Comte, University of Bourgogne-Franche-Comté (UBFC), CHRU Besançon, UPRES EA4266 Pathogens & Inflammation/EPILAB, SFR FED 4234, F-25030 Besançon, France.
| |
Collapse
|
23
|
Heusinger E, Kirchhoff F. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol 2017; 8:198. [PMID: 28261165 PMCID: PMC5306280 DOI: 10.3389/fmicb.2017.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle.
Collapse
Affiliation(s)
- Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
24
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
25
|
HIV-1 Vpr Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication by Inducing MicroRNA miR-942-5p and Activating NF-κB Signaling. J Virol 2016; 90:8739-53. [PMID: 27440900 DOI: 10.1128/jvi.00797-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.
Collapse
|
26
|
Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 2016; 22:403-15. [PMID: 27056720 DOI: 10.1007/s13365-016-0436-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.
Collapse
|
27
|
Doi A, Iijima K, Kano S, Ishizaka Y. Viral protein R of HIV type-1 induces retrotransposition and upregulates glutamate synthesis by the signal transducer and activator of transcription 1 signaling pathway. Microbiol Immunol 2016; 59:398-409. [PMID: 25990091 DOI: 10.1111/1348-0421.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/05/2023]
Abstract
Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-β and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-β production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.
Collapse
Affiliation(s)
- Akihiro Doi
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083
| | - Kenta Iijima
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| | - Shigeyuki Kano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| |
Collapse
|
28
|
Liang Z, Liu R, Lin Y, Liang C, Tan J, Qiao W. HIV-1 Vpr protein activates the NF-κB pathway to promote G2/M cell cycle arrest. Virol Sin 2015; 30:441-8. [PMID: 26676942 DOI: 10.1007/s12250-015-3654-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022] Open
Abstract
Viral protein R (Vpr) plays an important role in the replication and pathogenesis of Human immunodeficiency virus type 1 (HIV-1). Some of the various functions attributed to Vpr, including the induction of G2/M cell cycle arrest, activating the NF-κB pathway, and promoting viral reverse transcription, might be interrelated. To test this hypothesis, a panel of Vpr mutants were investigated for their ability to induce G2/M arrest and to activate the NF-κB pathway. The results showed that the Vpr mutants that failed to activate NF-κB also lost the activity to induce G2/M arrest, which suggests that inducing G2/M arrest via Vpr depends at least partially on the activation of NF-κB. This latter possibility is supported by data showing that knocking down the key factors in the NF-κB pathway-p65, RelB, IKKα, or IKKβ-partially rescued the G2/M arrest induced by Vpr. Our results suggest that the NF-κB pathway is probably involved in Vpr-induced G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Zhibin Liang
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruikang Liu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongquan Lin
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, H3T 1E2, Canada
- Departments of Medicine, McGill University, Montreal, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, H3T 1E2, Canada
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Desai TM, Marin M, Sood C, Shi J, Nawaz F, Aiken C, Melikyan GB. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus. Retrovirology 2015; 12:88. [PMID: 26511606 PMCID: PMC4625717 DOI: 10.1186/s12977-015-0215-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Results Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr—monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. Conclusions The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanay M Desai
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Chetan Sood
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Fatima Nawaz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
30
|
Vpr Enhances Tumor Necrosis Factor Production by HIV-1-Infected T Cells. J Virol 2015; 89:12118-30. [PMID: 26401039 DOI: 10.1128/jvi.02098-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the cell cycle in the G2 phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the production of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion by infected lymphocytes. De novo production of Vpr is required for this effect. Vpr mutants known to be defective for G2 cell cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-1-infected cells triggers NF-κB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus, the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replication in vivo. IMPORTANCE The role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogenesis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and antiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1 and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates TNF production and helps clarify the role of Vpr in innate immune responses and inflammation.
Collapse
|
31
|
Gangwani MR, Kumar A. Multiple Protein Kinases via Activation of Transcription Factors NF-κB, AP-1 and C/EBP-δ Regulate the IL-6/IL-8 Production by HIV-1 Vpr in Astrocytes. PLoS One 2015; 10:e0135633. [PMID: 26270987 PMCID: PMC4535882 DOI: 10.1371/journal.pone.0135633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022] Open
Abstract
Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Mohitkumar R. Gangwani
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, Missouri, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sauter D, Hotter D, Van Driessche B, Stürzel CM, Kluge SF, Wildum S, Yu H, Baumann B, Wirth T, Plantier JC, Leoz M, Hahn BH, Van Lint C, Kirchhoff F. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Rep 2015; 10:586-99. [PMID: 25620704 PMCID: PMC4682570 DOI: 10.1016/j.celrep.2014.12.047] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
NF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs) in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Benoît Van Driessche
- Institute for Molecular Biology and Medicine, University of Brussels, 6041 Gosselies, Belgium
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Steffen Wildum
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Hangxing Yu
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University Medical Center, 89081 Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Marie Leoz
- Laboratoire Associé au Centre National de Référence du VIH, 76031 Rouen, France
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Carine Van Lint
- Institute for Molecular Biology and Medicine, University of Brussels, 6041 Gosselies, Belgium
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
33
|
Liu R, Lin Y, Jia R, Geng Y, Liang C, Tan J, Qiao W. HIV-1 Vpr stimulates NF-κB and AP-1 signaling by activating TAK1. Retrovirology 2014; 11:45. [PMID: 24912525 PMCID: PMC4057933 DOI: 10.1186/1742-4690-11-45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS Here, we have identified transforming growth factor-β-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|
34
|
TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy? Mediators Inflamm 2013; 2013:484378. [PMID: 24453421 PMCID: PMC3880767 DOI: 10.1155/2013/484378] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/24/2013] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor (TNF) and TNF receptors (TNFR) superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.
Collapse
|
35
|
Gangwani MR, Noel RJ, Shah A, Rivera-Amill V, Kumar A. Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCL5 expression in astrocytes via PI3K and MAPK signaling pathways. J Neuroinflammation 2013; 10:136. [PMID: 24225433 PMCID: PMC3831867 DOI: 10.1186/1742-2094-10-136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022] Open
Abstract
Background Neurocognitive impairments remain prevalent in HIV-1 infected individuals despite current antiretroviral therapies. It is increasingly becoming evident that astrocytes play a critical role in HIV-1 neuropathogenesis through the production of proinflammatory cytokines/chemokines. HIV-1 viral protein R (Vpr) plays an important role in neuronal dysfunction; however, its role in neuroinflammation is not well characterized. The major objective of this study was to determine the effect of Vpr in induction of proinflammatory chemokine CCL5 in astrocytes and to define the underlying mechanism(s). Methods SVGA astrocytes were either mock transfected or were transfected with a plasmid encoding HIV-1 Vpr, and the cells were harvested at different time intervals. The mRNA level of CCL5 expression was quantified using real-time RT-PCR, and cell culture supernatants were assayed for CCL5 protein concentration. Immunocytochemistry was performed on HIV-1 Vpr transfected astrocytes to check CCL5 expression. Various signaling mechanisms such as p38 MAPK, PI3K/Akt, NF-κB and AP-1 were explored using specific chemical inhibitors and siRNAs. Results HIV-1 Vpr transfected astrocytes exhibited time-dependent induction of CCL5 as compared to mock-transfected astrocytes at both the mRNA and protein level. Immunostained images of astrocytes transfected with HIV-1 Vpr also showed much higher accumulation of CCL5 in comparison to untransfected and mock-transfected astrocytes. Pre-treatment with NF-κB (SC514) and PI3K/Akt (LY294002) inhibitor partially abrogated CCL5 mRNA and protein expression levels as opposed to untreated controls after HIV-1 Vpr transfection. Specific siRNAs against p50 and p65 subunits of NF-κB, p38δ MAPK, Akt-2 and Akt-3, and AP-1 transcription factor substantially inhibited the production of CCL5 in HIV-1 Vpr transfected astrocytes. Conclusion These results demonstrate the ability of HIV-1 Vpr to induce CCL5 in astrocytes in a time-dependent manner. Furthermore, this effect was observed to be mediated by transcription factors NF-κB and AP-1 and involved the p38-MAPK and PI3K/Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA.
| |
Collapse
|
36
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Maudet C, Sourisce A, Dragin L, Lahouassa H, Rain JC, Bouaziz S, Ramirez BC, Margottin-Goguet F. HIV-1 Vpr induces the degradation of ZIP and sZIP, adaptors of the NuRD chromatin remodeling complex, by hijacking DCAF1/VprBP. PLoS One 2013; 8:e77320. [PMID: 24116224 PMCID: PMC3792905 DOI: 10.1371/journal.pone.0077320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023] Open
Abstract
The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.
Collapse
Affiliation(s)
- Claire Maudet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Adèle Sourisce
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Loïc Dragin
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Hichem Lahouassa
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | | | - Serge Bouaziz
- University Paris Descartes, Paris, France
- CNRS UMR8015, Paris, France
| | - Bertha Cécilia Ramirez
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Florence Margottin-Goguet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Rivera I, García Y, Gangwani MR, Noel RJ, Maldonado L, Kumar A, Rivera-Amill V. Identification and molecular characterization of SIV Vpr R50G mutation associated with long term survival in SIV-infected morphine dependent and control macaques. Virology 2013; 446:144-51. [PMID: 24074576 DOI: 10.1016/j.virol.2013.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/06/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Viral protein R (Vpr) is an accessory protein of HIV and SIV involved in the pathogenesis of viral infection. In this study, we monitored SIV evolution in the central nervous system and other organs from morphine-dependent and control animals by sequencing vpr in an attempt to understand the relationship between drug abuse, disease progression, and compartmentalization of viral evolution. Animals in the morphine group developed accelerated disease and died within twenty weeks post-infection. A unique mutation, R50G, was identified in the macaques that survived regardless of morphine exposure. Functional studies revealed that the R50G mutation exhibited altered cellular localization and decreased the expression levels of both IL-6 and IL-8. Our results, therefore, suggest that sequence changes within the SIV/17E-Fr vpr occur regardless of drug abuse but correlate with survival, and that they alter disease progression rates by affecting Vpr functions.
Collapse
Affiliation(s)
- Ivelisse Rivera
- Department of Microbiology, Ponce School of Medicine and Health Sciences, Ponce, PR 00716, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abbas W, Herbein G. T-Cell Signaling in HIV-1 Infection. Open Virol J 2013; 7:57-71. [PMID: 23986795 PMCID: PMC3751038 DOI: 10.2174/1874357920130621001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-ĸB, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France
| | | |
Collapse
|
40
|
Casey Klockow L, Sharifi HJ, Wen X, Flagg M, Furuya AKM, Nekorchuk M, de Noronha CMC. The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. Virology 2013; 444:191-202. [PMID: 23849790 DOI: 10.1016/j.virol.2013.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4(DCAF1) ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified. UNG2 and SMUG1 are the only known substrates for Vpr-directed depletion through CRL4(DCAF1). Here we identify the endoribonuclease Dicer as a target of HIV-1 Vpr-directed proteasomal degradation through CRL4(DCAF1). We show that HIV-1 Vpr inhibits short hairpin RNA function as expected upon reduction of Dicer levels. Dicer inhibits HIV-1 replication in T cells. We demonstrate that Dicer also restricts HIV-1 replication in human monocyte-derived macrophages (MDM) and that reducing Dicer expression in MDMs enhances HIV-1 infection in a Vpr-dependent manner. Our results support a model in which Vpr complexes with human Dicer to boost its interaction with the CRL4(DCAF1) ubiquitin ligase complex and its subsequent degradation.
Collapse
Affiliation(s)
- Laurieann Casey Klockow
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Kogan M, Deshmane S, Sawaya BE, Gracely EJ, Khalili K, Rappaport J. Inhibition of NF-κB activity by HIV-1 Vpr is dependent on Vpr binding protein. J Cell Physiol 2013; 228:781-90. [PMID: 23001849 DOI: 10.1002/jcp.24226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 09/06/2012] [Indexed: 01/22/2023]
Abstract
Numerous studies have reported that Vpr alters NF-κB signaling in various cell types, however, the findings have been largely conflicting with reports of both stimulatory and inhibitory effects of Vpr. Our aim was to investigate the role of Vpr signaling in myeloid cells using an adenovirus based expression and indicator system. Our results show that Vpr is inhibitory to NF-κB, however, this effect is dependent on the particular manner of NF-κB stimulation. Consistent with this notion, we report that Vpr has inhibitory effects that are specific to the TNF-α pathway, but not affecting the LPS pathway, suggesting that differential targets of Vpr may exist for NF-κB regulation. Further, we identify VprBP as one possible cellular component of Vpr's regulation of IκBα in response to TNF-α stimulation. We did not identify such a role for HSP27, which instead seems to inhibit Vpr functions. Chronically HIV-1 infected U1 cells with knockdown constructs for Vpr were unexpectedly less responsive to TNF-α mediated viral replication, perhaps suggesting that other HIV-1 components may antagonize these anti-NF-κB effects in infected cells. We hypothesize that Vpr may serve an important role in the context of viral infection and immune function in vivo, through its selective inhibition of NF-κB pathways.
Collapse
Affiliation(s)
- Michael Kogan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|
42
|
HIV-1 Vpr activates both canonical and noncanonical NF-κB pathway by enhancing the phosphorylation of IKKα/β. Virology 2013; 439:47-56. [PMID: 23453579 DOI: 10.1016/j.virol.2013.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/21/2022]
Abstract
The human immunodeficiency virus type I (HIV-1) Vpr plays an essential role in viral replication. A number of studies have reported that Vpr modulates the nuclear factor-κB (NF-κB) pathway. Yet, the reported effects of Vpr on NF-κB signaling are controversial. In this study, we investigate the interplay between Vpr and NF-κB pathway. We discover that HIV-1 infection elevates the phosphorylation of IκBα and p100, and that this increase is greatly reduced when a Vpr-negative HIV-1 is used for infection. Our data further show that Vpr regulates the activity of IKKα/β through interactions. In addition, Vpr modulates the phosphorylation of p65 and p100, suggesting that Vpr activates both canonical and noncanonical NF-κB pathway. Knock down of endogenous IKKα/β result in a decrease in Vpr-mediated NF-κB and HIV-1 LTR activation. Given that Vpr is present in HIV-1 particles, our data suggest that Vpr activates the NF-κB pathway immediately after HIV-1 entry.
Collapse
|
43
|
Emeagwali N, Hildreth JEK. Human immunodeficiency virus type 1 Vpu and cellular TASK proteins suppress transcription of unintegrated HIV-1 DNA. Virol J 2012; 9:277. [PMID: 23164059 PMCID: PMC3547713 DOI: 10.1186/1743-422x-9-277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unintegrated HIV-1 DNA serves as transcriptionally active templates in HIV-infected cells. Several host factors including NF-κβ enhance HIV-1 transcription. HIV-1 induced NF-κβ activation can be suppressed by viral protein U (Vpu). Interestingly HIV-1 Vpu shares amino acid homology with cellular Twik-related Acid Sensitive K+ (TASK) channel 1 and the proteins physically interact in cultured cells and AIDS lymphoid tissue. Furthermore, the first transmembrane domain of TASK-1 is functionally interchangeable with Vpu and like Vpu enhances HIV-1 release. RESULTS Here we further characterize the role of TASK channels and Vpu in HIV-1 replication. We demonstrate that both TASK channels and Vpu can preferentially inhibit transcription of unintegrated HIV-1 DNA. Interestingly, TASK-1 ion channel function is not required and suppression of HIV-1 transcription by TASK-1 and Vpu was reversed by overexpression of RelA (NF-κβ p65). CONCLUSION TASK proteins and Vpu suppress transcription of unintegrated HIV-1 DNA through an NF-κβ-dependent mechanism. Taken together these findings support a possible physiological role for HIV-1 Vpu and TASK proteins as modulators of transcription of unintegrated HIV-1 DNA genomes.
Collapse
Affiliation(s)
- Nkiruka Emeagwali
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN, 37208, USA
| | - James EK Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
44
|
Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V. Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. J Neuroinflammation 2012; 9:138. [PMID: 22727020 PMCID: PMC3425332 DOI: 10.1186/1742-2094-9-138] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/19/2012] [Indexed: 01/13/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) induces neuronal dysfunction through host cellular factors and viral proteins including viral protein R (Vpr) released from infected macrophages/microglia. Vpr is important for infection of terminally differentiated cells such as macrophages. The objective of this study was to assess the effect of Vpr in the context of infectious virus particles on neuronal death through proinflammatory cytokines released from macrophages. Methods Monocyte-derived macrophages (MDM) were infected with either HIV-1 wild type (HIV-1wt), Vpr deleted mutant (HIV-1∆Vpr) or mock. Cell lysates and culture supernatants from MDMs were analyzed for the expression and release of proinflammatory cytokines by quantitative reverse transcription-PCR and enzyme-linked immunosorbent assay respectively. Mitogen-activated protein kinases (MAPK) were analyzed in activated MDMs by western blots. Further, the effect of Vpr on neuronal apoptosis was examined using primary neurons exposed to culture supernatants from HIV-1wt, HIV-1∆Vpr or mock-infected MDMs by Annexin-V staining, MTT and Caspase - Glo® 3/7 assays. The role of interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α on neuronal apoptosis was also evaluated in the presence or absence of neutralizing antibodies against these cytokines. Results HIV-1∆Vpr-infected MDMs exhibited reduced infection over time and specifically a significant downregulation of IL-1β, IL-8 and TNF-α at the transcriptional and/or protein levels compared to HIV-1wt-infected cultures. This downregulation was due to impaired activation of p38 and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) in HIV-1∆Vpr-infected MDMs. The association of SAPK/JNK and p38 to IL-1β and IL-8 production was confirmed by blocking MAPKs that prevented the elevation of IL-1β and IL-8 in HIV-1wt more than in HIV-1∆Vpr-infected cultures. Supernatants from HIV-1∆Vpr-infected MDMs containing lower concentrations of IL-1β, IL-8 and TNF-α as well as viral proteins showed a reduced neurotoxicity compared to HIV-1wt-infected MDM supernatants. Reduction of neuronal death in the presence of anti-IL-1β and anti-IL-8 antibodies only in HIV-1wt-infected culture implies that the effect of Vpr on neuronal death is in part mediated through released proinflammatory factors. Conclusion Collectively, these results demonstrate the ability of HIV-1∆Vpr to restrict neuronal apoptosis through dysregulation of multiple proinflammatory cytokines in the infected target cells either directly or indirectly by suppressing viral replication.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Infectious Diseases & Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF, Rossi JJ. Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 2012; 40:2181-96. [PMID: 22080513 PMCID: PMC3300021 DOI: 10.1093/nar/gkr961] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
Using microRNA array analyses of in vitro HIV-1-infected CD4(+) cells, we find that several host microRNAs are significantly up- or downregulated around the time HIV-1 infection peaks in vitro. While microRNA-223 levels were significantly enriched in HIV-1-infected CD4(+)CD8(-) PBMCs, microRNA-29a/b, microRNA-155 and microRNA-21 levels were significantly reduced. Based on the potential for microRNA binding sites in a conserved sequence of the Nef-3'-LTR, several host microRNAs potentially could affect HIV-1 gene expression. Among those microRNAs, the microRNA-29 family has seed complementarity in the HIV-1 3'-UTR, but the potential suppressive effect of microRNA-29 on HIV-1 is severely blocked by the secondary structure of the target region. Our data support a possible regulatory circuit at the peak of HIV-1 replication which involves downregulation of microRNA-29, expression of Nef, the apoptosis of host CD4 cells and upregulation of microRNA-223.
Collapse
Affiliation(s)
- Guihua Sun
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Haitang Li
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Xiwei Wu
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Maricela Covarrubias
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Lisa Scherer
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Keith Meinking
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Brian Luk
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Pritsana Chomchan
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Jessica Alluin
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - Adrian F. Gombart
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| | - John J. Rossi
- Graduate School of Biological Science, Department of Molecular and Cellular Biology, Functional Genomics Core Facility, Department of Virology, Summer Internship Program, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010 and Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 2011 Ag & Life Sciences Bldg, Corvallis, OR 97331, USA
| |
Collapse
|
46
|
Calcium-calmodulin signaling induced by epithelial cell differentiation upregulates BRAK/CXCL14 expression via the binding of SP1 to the BRAK promoter region. Biochem Biophys Res Commun 2012; 420:217-22. [PMID: 22382027 DOI: 10.1016/j.bbrc.2012.01.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
The chemokine BRAK/CXCL14 (BRAK) is expressed in normal squamous epithelium, but is not expressed or is expressed at negligible levels in head and neck squamous cell carcinoma. Malignant cells are known to be dedifferentiated compared with normal epithelial cells, suggesting a role for differentiation cues in the expression of BRAK. Thus, we examined the relationship between BRAK expression and stages of differentiation level in epithelial cells. Immunohistochemical analysis showed that BRAK protein was expressed in cells above the spinous cell layer in normal epithelia. In HSC-3 cells in culture, expression of BRAK mRNA was significantly upregulated by cell contact in a cell density-dependent manner, and mRNA expression of cell differentiation markers such as involucrin, cystatin-A, TGM1, TGM3, and TGM5 was concomitantly augmented. Furthermore, the upregulation of BRAK induced by cell contact was suppressed by chlorpromazine, a specific inhibitor of calmodulin. We previously reported that GC boxes and a TATA-like sequence in the BRAK promoter region are associated with the expression of BRAK. Using a promoter assay and ChIP, we demonstrated that binding of the stimulating protein-1 (SP1) transcription factor to a GC box upstream of the BRAK transcription start site was necessary for cell density-dependent upregulation of BRAK. These results indicated that upregulation of BRAK was accompanied by differentiation of epithelial cells induced by calcium/calmodulin signaling, and that SP1 binding to the BRAK promoter region played an important role in this signaling.
Collapse
|
47
|
Rance E, Tanner JE, Alfieri C. Inhibition of IκB kinase by thalidomide increases hepatitis C virus RNA replication. J Viral Hepat 2012; 19:e73-80. [PMID: 22239529 DOI: 10.1111/j.1365-2893.2011.01505.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic fibrosis is an integral element in the progression of chronic liver disease. Elevated hepatic interleukin (IL)-8 is an important contributor to fibrosis in patients chronically infected with the hepatitis C virus (HCV). Thalidomide has been used to reduce liver inflammation and fibrosis in HCV-infected patients, but its impact on HCV replication remains unclear. This study examined the effect of thalidomide on HCV replication in vitro. Results revealed that while thalidomide reduced IL-8 and nuclear factor kappa B (NF-κB) activity by 95% and 46% in Huh-7 cells, increasing concentrations of thalidomide correlated with a linear rise in HCV replication (17-fold at 200 μm). The NF-κB inhibitors, wedelolactone and NF-κB activation inhibitor-1, which mimic the actions of thalidomide by preventing phosphorylation and activation of IκB kinase (IKK) and hence block NF-κB activity, increased HCV RNA by 18- and 19-fold, respectively. During in vitro HCV replication in Huh-7 cells, we observed a 30% increase in IKKα protein and 55% decrease in NF-κB(p65)/RelA protein relative to cellular β-actin. Ectopic expression of IKKα to enhance the inactive form of IKK in cells undergoing virus replication led to a 13-fold increase in HCV RNA. Conversely, enhanced expression of NF-κB(p65)/RelA in infected cells resulted in a 17-fold reduction in HCV RNA. In conclusion, HCV RNA replication was significantly augmented by the inhibition of IKK activation and subsequent NF-κB signalling, whereas a restoration of NF-κB activity by the addition of NF-κB/RelA markedly reduced HCV replication. This study lends added importance to the role of the NF-κB signalling pathway in controlling HCV replication.
Collapse
Affiliation(s)
- E Rance
- Laboratory of Viral Pathogenesis, Research Center, Sainte-Justine University Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
48
|
Zhao RY, Li G, Bukrinsky MI. Vpr-host interactions during HIV-1 viral life cycle. J Neuroimmune Pharmacol 2011; 6:216-29. [PMID: 21318276 PMCID: PMC5482210 DOI: 10.1007/s11481-011-9261-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/23/2011] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a multifunctional viral protein that plays important role at multiple stages of the HIV-1 viral life cycle. Although the molecular mechanisms underlying these activities are subject of ongoing investigations, overall, these activities have been linked to promotion of viral replication and impairment of anti-HIV immunity. Importantly, functional defects of Vpr have been correlated with slow disease progression of HIV-infected patients. Vpr is required for efficient viral replication in non-dividing cells such as macrophages, and it promotes, to some extent, viral replication in proliferating CD4+ T cells. The specific activities of Vpr include modulation of fidelity of viral reverse transcription, nuclear import of the HIV-1 pre-integration complex, transactivation of the HIV-1 LTR promoter, induction of cell cycle G2 arrest and cell death via apoptosis. In this review, we focus on description of the cellular proteins that specifically interact with Vpr and discuss their significance with regard to the known Vpr activities at each step of the viral life cycle in proliferating and non-proliferating cells.
Collapse
Affiliation(s)
- Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
49
|
Kogan M, Rappaport J. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 2011; 8:25. [PMID: 21489275 PMCID: PMC3090340 DOI: 10.1186/1742-4690-8-25] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/13/2011] [Indexed: 01/11/2023] Open
Abstract
The HIV protein, Vpr, is a multifunctional accessory protein critical for efficient viral infection of target CD4+ T cells and macrophages. Vpr is incorporated into virions and functions to transport the preintegration complex into the nucleus where the process of viral integration into the host genome is completed. This action is particularly important in macrophages, which as a result of their terminal differentiation and non-proliferative status, would be otherwise more refractory to HIV infection. Vpr has several other critical functions including activation of HIV-1 LTR transcription, cell-cycle arrest due to DCAF-1 binding, and both direct and indirect contributions to T-cell dysfunction. The interactions of Vpr with molecular pathways in the context of macrophages, on the other hand, support accumulation of a persistent reservoir of HIV infection in cells of the myeloid lineage. The role of Vpr in the virus life cycle, as well as its effects on immune cells, appears to play an important role in the immune pathogenesis of AIDS and the development of HIV induced end-organ disease. In view of the pivotal functions of Vpr in virus infection, replication, and persistence of infection, this protein represents an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Kogan
- Department of Neuroscience, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
50
|
Salsalate is poorly tolerated and fails to improve endothelial function in virologically suppressed HIV-infected adults. AIDS 2010; 24:1958-61. [PMID: 20613460 DOI: 10.1097/qad.0b013e32833c3251] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this 13-week, open-label, randomized study of the anti-inflammatory salsalate versus usual care, there were no significant improvements in flow-mediated dilation of the brachial artery, endothelial activation, inflammation or coagulation markers, homeostasis model assessment of insulin resistance or lipoproteins with salsalate or between groups in virologically suppressed, HIV-infected adults on antiretrovirals. Tinnitus and transaminitis occurred frequently in the salsalate group. Dose reduction due to toxicities encountered and low level of inflammation may explain these results.
Collapse
|