1
|
Wang H, Weissenhorn W, Boscheron C. Protocol for HIV-1 budding control by inducible inhibition of ESCRT-III. STAR Protoc 2025; 6:103808. [PMID: 40372921 DOI: 10.1016/j.xpro.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
We present a protocol for temporal inhibition of HIV-1 virus-like particle (VLP) release using ESCRT-III proteins fused to the Hepatitis C virus NS3 protease. These fusion proteins function like wild-type ESCRT-III but convert into dominant-negative inhibitors upon addition of the NS3 inhibitor Glecaprevir. The procedure involves co-transfection of Gag and CHMP-NS3-Green plasmids into HEK293 or HeLa cells, followed by drug treatment. Steps for protein expression analysis, VLP quantification by immunoblotting, and live-cell imaging of VLP release kinetics are included. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
2
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
3
|
Valenzuela C, Saucedo S, Llano M. Schlafen14 Impairs HIV-1 Expression in a Codon Usage-Dependent Manner. Viruses 2024; 16:502. [PMID: 38675845 PMCID: PMC11054720 DOI: 10.3390/v16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are important regulatory hubs during translation elongation of mRNAs rich in rare codons. Therefore, we evaluated the potential role of SLFN14 in the expression of mRNAs enriched in rare codons, using HIV-1 genes as a model. We found that, in a variety of cell types, including primary immune cells, SLFN14 regulates the expression of HIV-1 and non-viral genes based on their codon adaptation index, a measurement of the synonymous codon usage bias; consequently, SLFN14 inhibits the replication of HIV-1. The potent inhibitory effect of SLFN14 on the expression of the rare codon-rich transcript HIV-1 Gag was minimized by codon optimization. Mechanistically, we found that the endoribonuclease activity of SLFN14 is required, and that ribosomal RNA degradation is involved. Therefore, we propose that SLFN14 impairs the expression of HIV-1 transcripts rich in rare codons, in a catalytic-dependent manner.
Collapse
Affiliation(s)
- Carlos Valenzuela
- Biological Sciences Department, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Sergio Saucedo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - Manuel Llano
- Biological Sciences Department, The University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
4
|
Wang H, Gallet B, Moriscot C, Pezet M, Chatellard C, Kleman JP, Göttlinger H, Weissenhorn W, Boscheron C. An Inducible ESCRT-III Inhibition Tool to Control HIV-1 Budding. Viruses 2023; 15:2289. [PMID: 38140530 PMCID: PMC10748027 DOI: 10.3390/v15122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Benoit Gallet
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | | | - Mylène Pezet
- University Grenoble Alpes, INSERM, IAB, 38000 Grenoble, France;
| | - Christine Chatellard
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Jean-Philippe Kleman
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| |
Collapse
|
5
|
Miura K, Suzuki Y, Ishida K, Arakawa M, Wu H, Fujioka Y, Emi A, Maeda K, Hamajima R, Nakano T, Tenno T, Hiroaki H, Morita E. Distinct motifs in the E protein are required for SARS-CoV-2 virus particle formation and lysosomal deacidification in host cells. J Virol 2023; 97:e0042623. [PMID: 37830820 PMCID: PMC10617393 DOI: 10.1128/jvi.00426-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/18/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has caused a global public health crisis. The E protein, a structural protein found in this virus particle, is also known to be a viroporin. As such, it forms oligomeric ion channels or pores in the host cell membrane. However, the relationship between these two functions is poorly understood. In this study, we showed that the roles of E protein in virus particle and viroporin formation are distinct. This study contributes to the development of drugs that inhibit SARS-CoV-2 virus particle formation. Additionally, we designed a highly sensitive and high-throughput virus-like particle detection system using the HiBiT tag, which is a useful tool for studying the release of SARS-CoV-2.
Collapse
Affiliation(s)
- Koya Miura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kotaro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yoshihiko Fujioka
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Koki Maeda
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Ryusei Hamajima
- Laboratory of Structural and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takeshi Tenno
- Laboratory of Structural and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
- BeCellBar LLC, Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
- BeCellBar LLC, Nagoya, Aichi, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| |
Collapse
|
6
|
Wang H, Gallet B, Moriscot C, Pezet M, Chatellard C, Kleman JP, Göttlinger H, Weissenhorn W, Boscheron C. An inducible ESCRT-III inhibition tool to control HIV-1 budding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562494. [PMID: 37905063 PMCID: PMC10614826 DOI: 10.1101/2023.10.16.562494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated auto-cleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins with variable modification of Gag VLP budding upon drug administration. Notably, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted a minor effect and synergized with CHMP2A-NS3. Localization studies demonstrated the re-localization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
Collapse
|
7
|
Gurjar P, Karuvantevida N, Rzhepakovsky IV, Khan AA, Khandia R. A Synthetic Biology Approach for Vaccine Candidate Design against Delta Strain of SARS-CoV-2 Revealed Disruption of Favored Codon Pair as a Better Strategy over Using Rare Codons. Vaccines (Basel) 2023; 11:487. [PMID: 36851364 PMCID: PMC9967482 DOI: 10.3390/vaccines11020487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020 and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine is required. In the present study, we envisaged molecular patterns in the structural genes' spike, nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor tRNA and preferred codons from the structural genes. We found specific patterns, including a significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural genes of the delta strain. The interaction between the host tRNA pool and preferred codons of the envisaged structural genes revealed that the virus preferred the codons for those suboptimal numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the translation rate low to facilitate the correct folding of viral proteins. The information generated in the study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare codons, and disrupting favored codons. It found that disrupting favored codons is a better approach to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.
Collapse
Affiliation(s)
- Pankaj Gurjar
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah Universty, Bhopal 462026, India
| |
Collapse
|
8
|
Rawson JMO, Nikolaitchik OA, Shakya S, Keele BF, Pathak VK, Hu WS. Transcription Start Site Heterogeneity and Preferential Packaging of Specific Full-Length RNA Species Are Conserved Features of Primate Lentiviruses. Microbiol Spectr 2022; 10:e0105322. [PMID: 35736240 PMCID: PMC9430795 DOI: 10.1128/spectrum.01053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end. However, HIV-1 selectively packages RNAs containing one guanosine (1G RNA) over RNAs with three guanosines (3G RNA) at the 5' end. Thus, the 5' context of HIV-1 full-length RNA can affect its function. To determine whether the regulation of genome packaging by TSS usage is unique to NL4-3 and MAL, we examined 15 primate lentiviruses including transmitted founder viruses of HIV-1, HIV-2, and several simian immunodeficiency viruses (SIVs). We found that all 15 viruses used multiple TSS to some extent. However, the level of TSS heterogeneity in infected cells varied greatly, even among closely related viruses belonging to the same subtype. Most viruses also exhibited selective packaging of specific full-length viral RNA species into particles. These findings demonstrate that TSS heterogeneity and selective packaging of certain full-length viral RNA species are conserved features of primate lentiviruses. In addition, an SIV strain closely related to the progenitor virus that gave rise to HIV-1 group M, the pandemic pathogen, exhibited TSS usage similar to some HIV-1 strains and preferentially packaged 1G RNA. These findings indicate that multiple TSS usage and selective packaging of a particular unspliced RNA species predate the emergence of HIV-1. IMPORTANCE Unspliced HIV-1 RNA serves two important roles during viral replication: as the virion genome and as the template for translation of Gag/Gag-Pol. Previous studies of two HIV-1 molecular clones have concluded that the TSS usage affects unspliced HIV-1 RNA structures and functions. To investigate the evolutionary origin of this replication strategy, we determined TSS of HIV-1 RNA in infected cells and virions for 15 primate lentiviruses. All HIV-1 isolates examined, including several transmitted founder viruses, utilized multiple TSS and selected a particular RNA species for packaging. Furthermore, these features were observed in SIVs related to the progenitors of HIV-1, suggesting that these characteristics originated from the ancestral viruses. HIV-2, SIVs related to HIV-2, and other SIVs also exhibited multiple TSS and preferential packaging of specific unspliced RNA species, demonstrating that this replication strategy is broadly conserved across primate lentiviruses.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Saurabh Shakya
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
9
|
Thomas A, Rehfeld F, Zhang H, Chang TC, Goodarzi M, Gillet F, Mendell JT. RBM33 directs the nuclear export of transcripts containing GC-rich elements. Genes Dev 2022; 36:550-565. [PMID: 35589130 PMCID: PMC9186391 DOI: 10.1101/gad.349456.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Although splicing is a major driver of RNA nuclear export, many intronless RNAs are efficiently exported to the cytoplasm through poorly characterized mechanisms. For example, GC-rich sequences promote nuclear export in a splicing-independent manner, but how GC content is recognized and coupled to nuclear export is unknown. Here, we developed a genome-wide screening strategy to investigate the mechanism of export of NORAD, an intronless cytoplasmic long noncoding RNA (lncRNA). This screen revealed an RNA binding protein, RBM33, that directs the nuclear export of NORAD and numerous other transcripts. RBM33 directly binds substrate transcripts and recruits components of the TREX-NXF1/NXT1 RNA export pathway. Interestingly, high GC content emerged as the feature that specifies RBM33-dependent nuclear export. Accordingly, RBM33 directly binds GC-rich elements in target transcripts. These results provide a broadly applicable strategy for the genetic dissection of nuclear export mechanisms and reveal a long-sought nuclear export pathway for transcripts with GC-rich sequences.
Collapse
Affiliation(s)
- Anu Thomas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mohammad Goodarzi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Frank Gillet
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
10
|
Coroadinha AS. Cancer Gene Therapy: Development and Production of Lentiviral Vectors for Gene Therapy. Methods Mol Biol 2022; 2521:297-315. [PMID: 35733005 DOI: 10.1007/978-1-0716-2441-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lentiviral vectors are among the most used vectors in gene therapy to treat pathologies of different origins, such as cancers, rare monogenic diseases or neurological disorders. This chapter provides an overview on lentiviral vector developments in terms of vector design and manufacture for gene therapy applications. The state of the art of vector production will be summarized face to the recent developments contributing to improve vector safety, efficacy and manufacturing robustness, focusing on human immunodeficiency virus 1 (HIV-1) based lentiviral vectors. Transient and stable production systems will be discussed highlighting recent advances in producer cell line development. Challenges in lentiviral vector development upstream and downstream will be addressed with a particular focus on the improvements undertaken to increase vector yields and production scalability.
Collapse
Affiliation(s)
- Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
11
|
Sertkaya H, Hidalgo L, Ficarelli M, Kmiec D, Signell AW, Ali S, Parker H, Wilson H, Neil SJ, Malim MH, Vink CA, Swanson CM. Minimal impact of ZAP on lentiviral vector production and transduction efficiency. Mol Ther Methods Clin Dev 2021; 23:147-157. [PMID: 34703838 PMCID: PMC8517000 DOI: 10.1016/j.omtm.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The antiviral protein ZAP binds CpG dinucleotides in viral RNA to inhibit replication. This has likely led to the CpG suppression observed in many RNA viruses, including retroviruses. Sequences added to retroviral vector genomes, such as internal promoters, transgenes, or regulatory elements, substantially increase CpG abundance. Because these CpGs could allow retroviral vector RNA to be targeted by ZAP, we analyzed whether it restricts vector production, transduction efficiency, and transgene expression. Surprisingly, even though CpG-high HIV-1 was efficiently inhibited by ZAP in HEK293T cells, depleting ZAP did not substantially increase lentiviral vector titer using several packaging and genome plasmids. ZAP overexpression also did not inhibit lentiviral vector titer. In addition, decreasing CpG abundance in a lentiviral vector genome did not increase its titer, and a gammaretroviral vector derived from murine leukemia virus was not substantially restricted by ZAP. Overall, we show that the increased CpG abundance in retroviral vectors relative to the wild-type retroviruses they are derived from does not intrinsically sensitize them to ZAP. Further understanding of how ZAP specifically targets transcripts to inhibit their expression may allow the development of CpG sequence contexts that efficiently recruit or evade this antiviral system.
Collapse
Affiliation(s)
- Helin Sertkaya
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Laura Hidalgo
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Adrian W. Signell
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Sadfer Ali
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Hannah Parker
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Harry Wilson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Stuart J.D. Neil
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Conrad A. Vink
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| |
Collapse
|
12
|
Kitao K, Nakagawa S, Miyazawa T. An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation. Retrovirology 2021; 18:36. [PMID: 34753509 PMCID: PMC8579622 DOI: 10.1186/s12977-021-00580-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 01/19/2023] Open
Abstract
Background Retroviruses utilize multiple unique RNA elements to control RNA processing and translation. However, it is unclear what functional RNA elements are present in endogenous retroviruses (ERVs). Gene co-option from ERVs sometimes entails the conservation of viral cis-elements required for gene expression, which might reveal the RNA regulation in ERVs. Results Here, we characterized an RNA element found in ERVs consisting of three specific sequence motifs, called SPRE. The SPRE-like elements were found in different ERV families but not in any exogenous viral sequences examined. We observed more than a thousand of copies of the SPRE-like elements in several mammalian genomes; in human and marmoset genomes, they overlapped with lineage-specific ERVs. SPRE was originally found in human syncytin-1 and syncytin-2. Indeed, several mammalian syncytin genes: mac-syncytin-3 of macaque, syncytin-Ten1 of tenrec, and syncytin-Car1 of Carnivora, contained the SPRE-like elements. A reporter assay revealed that the enhancement of gene expression by SPRE depended on the reporter genes. Mutation of SPRE impaired the wild-type syncytin-2 expression while the same mutation did not affect codon-optimized syncytin-2, suggesting that SPRE activity depends on the coding sequence. Conclusions These results indicate multiple independent invasions of various mammalian genomes by retroviruses harboring SPRE-like elements. Functional SPRE-like elements are found in several syncytin genes derived from these retroviruses. This element may facilitate the expression of viral genes, which were suppressed due to inefficient codon frequency or repressive elements within the coding sequences. These findings provide new insights into the long-term evolution of RNA elements and molecular mechanisms of gene expression in retroviruses. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-021-00580-2.
Collapse
Affiliation(s)
- Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
13
|
Efficient Pseudotyping of Different Retroviral Vectors Using a Novel, Codon-Optimized Gene for Chimeric GALV Envelope. Viruses 2021; 13:v13081471. [PMID: 34452336 PMCID: PMC8402753 DOI: 10.3390/v13081471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/26/2022] Open
Abstract
The Gibbon Ape Leukemia Virus envelope protein (GALV-Env) mediates efficient transduction of human cells, particularly primary B and T lymphocytes, and is therefore of great interest in gene therapy. Using internal domains from murine leukemia viruses (MLV), chimeric GALV-Env proteins such as GALV-C4070A were derived, which allow pseudotyping of lentiviral vectors. In order to improve expression efficiency and vector titers, we developed a codon-optimized (co) variant of GALV-C4070A (coGALV-Env). We found that coGALV-Env mediated efficient pseudotyping not only of γ-retroviral and lentiviral vectors, but also α-retroviral vectors. The obtained titers on HEK293T cells were equal to those with the classical GALV-Env, whereas the required plasmid amounts for transient vector production were significantly lower, namely, 20 ng coGALV-Env plasmid per 106 293T producer cells. Importantly, coGALV-Env-pseudotyped γ- and α-retroviral, as well as lentiviral vectors, mediated efficient transduction of primary human T cells. We propose that the novel chimeric coGALV-Env gene will be very useful for the efficient production of high-titer vector preparations, e.g., to equip human T cells with novel specificities using transgenic TCRs or CARs. The considerably lower amount of plasmid needed might also result in a significant cost advantage for good manufacturing practice (GMP) vector production based on transient transfection.
Collapse
|
14
|
HIV-1 sequences in lentiviral vector genomes can be substantially reduced without compromising transduction efficiency. Sci Rep 2021; 11:12067. [PMID: 34103612 PMCID: PMC8187449 DOI: 10.1038/s41598-021-91309-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 11/12/2022] Open
Abstract
Many lentiviral vectors used for gene therapy are derived from HIV-1. An optimal vector genome would include only the viral sequences required for transduction efficiency and gene expression to minimize the amount of foreign sequence inserted into a patient’s genome. However, it remains unclear whether all of the HIV-1 sequence in vector genomes is essential. To determine which viral sequences are required, we performed a systematic deletion analysis, which showed that most of the gag region and over 50% of the env region could be deleted. Because the splicing profile for lentiviral vectors is poorly characterized, we used long-read sequencing to determine canonical and cryptic splice site usage. Deleting specific regions of env sequence reduced the number of splicing events per transcript and increased the proportion of unspliced genomes. Finally, combining a large deletion in gag with repositioning the Rev-response element downstream of the 3’ R to prevent its reverse transcription showed that 1201 nucleotides of HIV-1 sequence can be removed from the integrated vector genome without substantially compromising transduction efficiency. Overall, this allows the creation of lentiviral vector genomes that contain minimal HIV-1 sequence, which could improve safety and transfer less viral sequence into a patient’s DNA.
Collapse
|
15
|
Sweeney NP, Vink CA. The impact of lentiviral vector genome size and producer cell genomic to gag-pol mRNA ratios on packaging efficiency and titre. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:574-584. [PMID: 34095341 PMCID: PMC8141603 DOI: 10.1016/j.omtm.2021.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Lentiviral vectors are showing success in the clinic, but producing enough vector to meet the growing demand is a major challenge. Furthermore, next-generation gene therapy vectors encode multiple genes resulting in larger genome sizes, which is reported to reduce titers. A packaging limit has not been defined. The aim of this work was to assess the impact of genome size on the production of lentiviral vectors with an emphasis on producer cell mRNA levels, packaging efficiency, and infectivity measures. Consistent with work by others, vector titers reduced as genome size increased. While genomic infectivity accounted for much of this effect, genome sizes exceeding that of clinical HIV-1 isolates result in low titers due to a combination of both low genomic infectivity and decreased packaging efficiency. Manipulating the relative level of genomic RNA to gag-pol mRNA in the producer cells revealed a direct relationship between producer cell mRNA levels and packaging efficiency yet could not rescue packaging of oversized genomes, implying a de facto packaging defect. However, independent of genome size, an equimolar ratio between wild-type gag-pol mRNA and vector genomic RNA in producer cells was optimal for titer.
Collapse
Affiliation(s)
- Nathan P Sweeney
- GlaxoSmithKline, Cell and Gene Therapy, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Conrad A Vink
- GlaxoSmithKline, Cell and Gene Therapy, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| |
Collapse
|
16
|
Sabo Y, de Los Santos K, Goff SP. IQGAP1 Negatively Regulates HIV-1 Gag Trafficking and Virion Production. Cell Rep 2021; 30:4065-4081.e4. [PMID: 32209469 PMCID: PMC7199802 DOI: 10.1016/j.celrep.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
IQGAP1 is a master regulator of many cellular processes, including intracellular vesicle trafficking and endocytosis. We show that depletion of IQGAP1 in a variety of cell types increases the release of HIV-1 infectious virions and that overexpression diminishes virion production, with neither affecting the early stages of infection. IQGAP1 negatively regulates the steady-state levels of HIV-1 Gag at the plasma membrane, the site of assembly. We establish that IQGAP1 interacts with both the nucleocapsid and p6 domains of Gag, and interaction with either domain is sufficient for its regulatory function. Finally, we demonstrate that IQGAP1 regulation is independent of HIV-1 Gag “late-domains” sequences required by the virus to recruit the cellular ESCRT machinery. Thus, we provide evidence that IQGAP1 is a negative regulatory factor inhibiting efficient budding of HIV-1 by reducing Gag accumulation at the plasma membrane. IQGAP1 is a ubiquitously expressed master regulator of many cellular processes, including intracellular trafficking. Sabo et al. demonstrate that in a variety of cell types, IQGAP1 acts as a negative regulator of HIV-1 viral particle release by reducing accumulation of the Gag viral structural protein at the plasma membrane.
Collapse
Affiliation(s)
- Yosef Sabo
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Infectious Diseases, Columbia University, New York, NY 10032, USA
| | - Kenia de Los Santos
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Stephen P Goff
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
17
|
Berkhout B, Herrera-Carrillo E. Design and Evaluation of AgoshRNAs with 3'-Terminal HDV Ribozymes to Enhance the Silencing Activity. Methods Mol Biol 2021; 2167:225-252. [PMID: 32712923 DOI: 10.1007/978-1-0716-0716-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNA (shRNA) molecules for targeted gene silencing has become a benchmark technology. Plasmid and viral vector systems can be used to express shRNA precursor transcripts that are processed by the cellular RNAi pathway to trigger sequence-specific gene knockdown. Intensive RNAi investigations documented that only a small percentage of computationally predicted target sequences can be used for efficient gene silencing, in part because not all shRNA designs are active. Many factors influence the shRNA activity and guidelines for optimal shRNA design have been proposed. We recently described an alternatively processed shRNA molecule termed AgoshRNA with a ~18 base pairs (bp) stem and a 3-5 nucleotides (nt) loop. This molecule is alternatively processed by the Argonaute (Ago) protein into a single guide RNA strand that efficiently induces the RNAi mechanism. The design rules proposed for regular shRNAs do not apply to AgoshRNA molecules and therefore new rules had to be defined. We optimized the AgoshRNA design and managed to create a set of active AgoshRNAs targeted against the human immunodeficiency virus (HIV). In an attempt to enhance the silencing activity of the AgoshRNA molecules, we included the hepatitis delta virus (HDV) ribozyme at the 3' terminus, which generates a uniform 3' end instead of a 3' U-tail of variable length. We evaluated the impact of this 3'-end modification on AgoshRNA processing and its gene silencing activity and we demonstrate that this novel AgoshRNA-HDV design exhibits enhanced antiviral activity.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Expression of transgenes enriched in rare codons is enhanced by the MAPK pathway. Sci Rep 2020; 10:22166. [PMID: 33335127 PMCID: PMC7746698 DOI: 10.1038/s41598-020-78453-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
The ability to translate three nucleotide sequences, or codons, into amino acids to form proteins is conserved across all organisms. All but two amino acids have multiple codons, and the frequency that such synonymous codons occur in genomes ranges from rare to common. Transcripts enriched in rare codons are typically associated with poor translation, but in certain settings can be robustly expressed, suggestive of codon-dependent regulation. Given this, we screened a gain-of-function library for human genes that increase the expression of a GFPrare reporter encoded by rare codons. This screen identified multiple components of the mitogen activated protein kinase (MAPK) pathway enhancing GFPrare expression. This effect was reversed with inhibitors of this pathway and confirmed to be both codon-dependent and occur with ectopic transcripts naturally coded with rare codons. Finally, this effect was associated, at least in part, with enhanced translation. We thus identify a potential regulatory module that takes advantage of the redundancy in the genetic code to modulate protein expression.
Collapse
|
19
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
20
|
Bednarska J, Pelchen-Matthews A, Novak P, Burden JJ, Summers PA, Kuimova MK, Korchev Y, Marsh M, Shevchuk A. Rapid formation of human immunodeficiency virus-like particles. Proc Natl Acad Sci U S A 2020; 117:21637-21646. [PMID: 32817566 PMCID: PMC7474690 DOI: 10.1073/pnas.2008156117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular mechanisms involved in the assembly of viruses is essential for discerning how viruses transmit from cell to cell and host to host. Although molecular aspects of assembly have been studied for many viruses, we still have little information about these events in real time. Enveloped viruses such as HIV that assemble at, and bud from, the plasma membrane have been studied in some detail using live cell fluorescence imaging techniques; however, these approaches provide little information about the real-time morphological changes that take place as viral components come together to form individual virus particles. Here we used correlative scanning ion conductance microscopy and fluorescence confocal microscopy to measure the topological changes, together with the recruitment of fluorescently labeled viral proteins such as Gag and Vpr, during the assembly and release of individual HIV virus-like particles (VLPs) from the top, nonadherent surfaces of living cells. We show that 1) labeling of viral proteins with green fluorescent protein affects particle formation, 2) the kinetics of particle assembly on different plasma membrane domains can vary, possibly as a consequence of differences in membrane biophysical properties, and 3) VLPs budding from the top, unimpeded surface of cells can reach full size in 20 s and disappear from the budding site in 0.5 to 3 min from the moment curvature is initially detected, significantly faster than has been previously reported.
Collapse
Affiliation(s)
- Joanna Bednarska
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
| | - Annegret Pelchen-Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | - Pavel Novak
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
- Functional Low-Dimensional Structures Laboratory, National University of Science and Technology "MISIS", 119991 Moscow, Russian Federation
| | - Jemima J Burden
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | - Peter A Summers
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Marina K Kuimova
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Yuri Korchev
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
- Nano Life Science Institute, Kanazawa University, 920-1192 Kanazawa, Japan
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom;
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom;
| |
Collapse
|
21
|
Lundstrom K. Viral Vectors Applied for RNAi-Based Antiviral Therapy. Viruses 2020; 12:v12090924. [PMID: 32842491 PMCID: PMC7552024 DOI: 10.3390/v12090924] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) provides the means for alternative antiviral therapy. Delivery of RNAi in the form of short interfering RNA (siRNA), short hairpin RNA (shRNA) and micro-RNA (miRNA) have demonstrated efficacy in gene silencing for therapeutic applications against viral diseases. Bioinformatics has played an important role in the design of efficient RNAi sequences targeting various pathogenic viruses. However, stability and delivery of RNAi molecules have presented serious obstacles for reaching therapeutic efficacy. For this reason, RNA modifications and formulation of nanoparticles have proven useful for non-viral delivery of RNAi molecules. On the other hand, utilization of viral vectors and particularly self-replicating RNA virus vectors can be considered as an attractive alternative. In this review, examples of antiviral therapy applying RNAi-based approaches in various animal models will be described. Due to the current coronavirus pandemic, a special emphasis will be dedicated to targeting Coronavirus Disease-19 (COVID-19).
Collapse
|
22
|
Ferreira MV, Cabral ET, Coroadinha AS. Progress and Perspectives in the Development of Lentiviral Vector Producer Cells. Biotechnol J 2020; 16:e2000017. [PMID: 32686901 DOI: 10.1002/biot.202000017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Indexed: 12/12/2022]
Abstract
After two decades of clinical trials, gene therapy demonstrated effectiveness in the treatment of a series of diseases. Currently, several gene therapy products are approved and used in the clinic. Lentiviral vectors (LVs) are one of the most used transfer vehicles to deliver genetic material and the vector of choice to modify hematopoietic cells to correct primary immunodeficiencies, hemoglobinopathies, and leukodystrophies. LVs are also widely used to modify T cells to treat cancers in immunotherapies (e.g., chimeric antigen receptors T cell therapies, CAR-T). In genome editing, LVs are used to deliver sequence-specific designer nucleases and DNA templates. The approval LV gene therapy products (e.g., Kymriah, for B-cell Acute lymphoblastic leukemia treatment; LentiGlobin, for β-thalassemia treatment) reinforced the need to improve their bioprocess manufacturing. The production has been mostly dependent on transient transfection. Production from stable cell lines facilitate GMP compliant processes, providing an easier scale-up, reproducibility and cost-effectiveness. The establishment of stable LV producer cell lines presents, however, several difficulties, with the cytotoxicity of some of the vector proteins being a major challenge. Genome editing technologies pose additional challenges to LV producer cells. Herein the major bottlenecks, recent achievements, and perspectives in the development of LV stable cell lines are revised.
Collapse
Affiliation(s)
- Mariana V Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Elisa T Cabral
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,The Discoveries centre for Regenerative and Precision Medicine, Nova University Lisbon, Oeiras Campus, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
23
|
Mordstein C, Savisaar R, Young RS, Bazile J, Talmane L, Luft J, Liss M, Taylor MS, Hurst LD, Kudla G. Codon Usage and Splicing Jointly Influence mRNA Localization. Cell Syst 2020; 10:351-362.e8. [PMID: 32275854 PMCID: PMC7181179 DOI: 10.1016/j.cels.2020.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
In the human genome, most genes undergo splicing, and patterns of codon usage are splicing dependent: guanine and cytosine (GC) content is the highest within single-exon genes and within first exons of multi-exon genes. However, the effects of codon usage on gene expression are typically characterized in unspliced model genes. Here, we measured the effects of splicing on expression in a panel of synonymous reporter genes that varied in nucleotide composition. We found that high GC content increased protein yield, mRNA yield, cytoplasmic mRNA localization, and translation of unspliced reporters. Splicing did not affect the expression of GC-rich variants. However, splicing promoted the expression of AT-rich variants by increasing their steady-state protein and mRNA levels, in part through promoting cytoplasmic localization of mRNA. We propose that splicing promotes the nuclear export of AU-rich mRNAs and that codon- and splicing-dependent effects on expression are under evolutionary pressure in the human genome.
Collapse
Affiliation(s)
- Christine Mordstein
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Rosina Savisaar
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Robert S Young
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeanne Bazile
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Michael Liss
- Thermo Fisher Scientific, GENEART GmbH, Regensburg, Germany
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Herrera-Carrillo E, Gao Z, Berkhout B. Influence of a 3' Terminal Ribozyme on AgoshRNA Biogenesis and Activity. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:452-462. [PMID: 31048184 PMCID: PMC6488825 DOI: 10.1016/j.omtn.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
Short hairpin RNAs (shRNAs) can induce gene silencing via the RNA interference (RNAi) mechanism. We designed an alternative shRNA molecule with a relatively short base-paired stem that bypasses Dicer and instead is processed by the Argonaute 2 (Ago2) protein into a single guide RNA strand that effectively induces RNAi. We called these molecules AgoshRNAs. Active anti-HIV AgoshRNAs were developed, but their RNAi activity was generally reduced compared with the matching shRNAs. In an attempt to further optimize the AgoshRNA design, we inserted several self-cleaving ribozymes at the 3′ terminus of the transcribed AgoshRNA and evaluated the impact on AgoshRNA processing and activity. The hepatitis delta virus (HDV) ribozyme is efficiently removed from the transcribed AgoshRNAs and generates a uniform 3′ overhang, which translates into the enhanced antiviral activity of these molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Dai X, Mei Y, Cai D, Han W. Standardizing CAR-T therapy: Getting it scaled up. Biotechnol Adv 2018; 37:239-245. [PMID: 30543841 DOI: 10.1016/j.biotechadv.2018.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 01/21/2023]
Abstract
CAR-T therapy, grafting the specificity of a monoclonal antibody onto a T cell to target certain cancer cells, has been recognized as a promising therapeutic approach for cancer control as evidenced by the two CAR-T products proved by FDA in 2017. However, the unique heterogeneity of CAR-T therapy has restricted its production in a limited number of institutions and made it a boutique oncotherapy. By reviewing outstanding issues surrounding the commercial scale production of CAR-T therapy, we conclude that achieving mass production of CAR-T therapy without sacrificing its personalized nature is a worldwild challenge for making CAR-T a key element in the next generation of precision medicine, which can be achieved by standardizing 7 prominent factors that collectively determine the scale of CAR-T manufacturing.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yi Mei
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Weidong Han
- Department of Molecular & Immunological Research, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
26
|
Park J, Inwood S, Kruthiventi S, Jenkins J, Shiloach J, Betenbaugh M. Progressing from transient to stable packaging cell lines for continuous production of lentiviral and gammaretroviral vectors. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Rawson JMO, Nikolaitchik OA, Keele BF, Pathak VK, Hu WS. Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity. Nucleic Acids Res 2018; 46:10535-10545. [PMID: 30307534 PMCID: PMC6237782 DOI: 10.1093/nar/gky910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Retroviruses package two complete RNA genomes into a viral particle but generate only one provirus after each infection. This pseudodiploid replication strategy facilitates frequent recombination, which occurs during DNA synthesis when reverse transcriptase switches templates between two copackaged RNA genomes, generating chimeric DNA. Recombination has played an important role in shaping the current HIV-1 pandemic; however, whether recombination is required for HIV-1 replication is currently unknown. In this report, we examined viral replication when recombination was blocked in defined regions of the HIV-1 genome. We found that blocking recombination reduced viral titers. Furthermore, a significant proportion of the resulting proviruses contained large deletions. Analyses of the deletion junctions indicated that these deletions were the direct consequence of blocking recombination. Thus, our findings illustrate that recombination is a major mechanism to maintain HIV-1 genome integrity. Our study also shows that both obligatory and nonobligatory crossovers occur during reverse transcription, thereby supporting both the forced and dynamic copy-choice models of retroviral recombination. Taken together, our results demonstrate that, in most viruses, both packaged RNA genomes contribute to the genetic information in the DNA form. Furthermore, recombination allows generation of the intact HIV-1 DNA genome and is required for efficient viral replication.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| |
Collapse
|
28
|
Lee WYJ, Fu RM, Liang C, Sloan RD. IFITM proteins inhibit HIV-1 protein synthesis. Sci Rep 2018; 8:14551. [PMID: 30266929 PMCID: PMC6162285 DOI: 10.1038/s41598-018-32785-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023] Open
Abstract
Interferon induced transmembrane proteins (IFITMs) inhibit the cellular entry of a broad range of viruses, but it has been suspected that for HIV-1 IFITMs may also inhibit a post-integration replicative step. We show that IFITM expression reduces HIV-1 viral protein synthesis by preferentially excluding viral mRNA transcripts from translation and thereby restricts viral production. Codon-optimization of proviral DNA rescues viral translation, implying that IFITM-mediated restriction requires recognition of viral RNA elements. In addition, we find that expression of the viral accessory protein Nef can help overcome the IFITM-mediated inhibition of virus production. Our studies identify a novel role for IFITMs in inhibiting HIV replication at the level of translation, but show that the effects can be overcome by the lentiviral protein Nef.
Collapse
Affiliation(s)
- Wing-Yiu Jason Lee
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Rebecca Menhua Fu
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Richard D Sloan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom.
- ZJU-UoE Institute, Zhejiang University, Haining, Zhejiang, 314400, P.R. China.
| |
Collapse
|
29
|
Johnson DS, Bleck M, Simon SM. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife 2018; 7:36221. [PMID: 29972351 PMCID: PMC6080951 DOI: 10.7554/elife.36221] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022] Open
Abstract
The Endosomal Sorting Complexes Required for Transport III (ESCRT-III) proteins are critical for cellular membrane scission processes with topologies inverted relative to clathrin-mediated endocytosis. Some viruses appropriate ESCRT-IIIs for their release. By imaging single assembling viral-like particles of HIV-1, we observed that ESCRT-IIIs and the ATPase VPS4 arrive after most of the virion membrane is bent, linger for tens of seconds, and depart ~20 s before scission. These observations suggest that ESCRT-IIIs are recruited by a combination of membrane curvature and the late domains of the HIV-1 Gag protein. ESCRT-IIIs may pull the neck into a narrower form but must leave to allow scission. If scission does not occur within minutes of ESCRT departure, ESCRT-IIIs and VPS4 are recruited again. This mechanistic insight is likely relevant for other ESCRT-dependent scission processes including cell division, endosome tubulation, multivesicular body and nuclear envelope formation, and secretion of exosomes and ectosomes.
Collapse
Affiliation(s)
- Daniel S Johnson
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, United States.,Department of Physics and Astronomy, Hofstra University, Hempstead, United States
| | - Marina Bleck
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, United States
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
30
|
Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors. Hum Gene Ther Methods 2018; 28:177-190. [PMID: 28712309 DOI: 10.1089/hgtb.2017.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
31
|
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 2017; 14:49. [PMID: 29121951 PMCID: PMC5679385 DOI: 10.1186/s12977-017-0374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood. RESULTS To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication. CONCLUSIONS The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.
Collapse
Affiliation(s)
- Irati Antzin-Anduetza
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Mahiet
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Luke A Granger
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Odendall
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
32
|
Liu Y, Nikolaitchik OA, Rahman SA, Chen J, Pathak VK, Hu WS. HIV-1 Sequence Necessary and Sufficient to Package Non-viral RNAs into HIV-1 Particles. J Mol Biol 2017; 429:2542-2555. [PMID: 28673553 DOI: 10.1016/j.jmb.2017.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/23/2023]
Abstract
Genome packaging is an essential step to generate infectious HIV-1 virions and is mediated by interactions between the viral protein Gag and cis-acting elements in the full-length RNA. The sequence necessary and sufficient to allow RNA genome packaging into an HIV-1 particle has not been defined. Here, we used two distinct reporter systems to determine the HIV-1 sequence required for heterologous, non-viral RNAs to be packaged into viral particles. Although the 5' untranslated region (UTR) of the HIV-1 RNA is known to be important for RNA packaging, we found that its ability to mediate packaging relies heavily on the context of the downstream sequences. Insertion of the 5' UTR and the first 32-nt of gag into two different reporter RNAs is not sufficient to mediate the packaging of these RNA into HIV-1 particles. However, adding the 5' half of the gag gene to the 5' UTR strongly facilitates the packaging of two reporter RNAs; such RNAs can be packaged at >50% of the efficiencies of an HIV-1 near full-length vector. To further examine the role of the gag sequence in RNA packaging, we replaced the 5' gag sequence in the HIV-1 genome with two codon-optimized gag sequences and found that such substitutions only resulted in a moderate decrease of RNA packaging efficiencies. Taken together, these results indicated that both HIV-1 5' UTR and the 5' gag sequence are required for efficient packaging of non-viral RNA into HIV-1 particles, although the gag sequence likely plays an indirect role in genome packaging.
Collapse
Affiliation(s)
- Yang Liu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Sheikh Abdul Rahman
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Jianbo Chen
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
33
|
Herrera-Carrillo E, Harwig A, Berkhout B. Silencing of HIV-1 by AgoshRNA molecules. Gene Ther 2017; 24:453-461. [DOI: 10.1038/gt.2017.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
|
34
|
Herrera-Carrillo E, Berkhout B. Novel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection. PLoS One 2017; 12:e0177935. [PMID: 28542329 PMCID: PMC5443530 DOI: 10.1371/journal.pone.0177935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Allogeneic transplantation of blood stem cells from a CCR5-Δ32 homozygous donor to an HIV-infected individual, the "Berlin patient", led to a cure. Since then there has been a search for approaches that mimic this intervention in a gene therapy setting. RNA interference (RNAi) has evolved as a powerful tool to regulate gene expression in a sequence-specific manner and can be used to inactivate the CCR5 mRNA. Short hairpin RNA (shRNA) molecules can impair CCR5 expression, but these molecules may cause unintended side effects and they will not be processed in cells that lack Dicer, such as monocytes. Dicer-independent RNAi pathways have opened opportunities for new AgoshRNA designs that rely exclusively on Ago2 for maturation. Furthermore, AgoshRNA processing yields a single active guide RNA, thus reducing off-target effects. In this study, we tested different AgoshRNA designs against CCR5. We selected AgoshRNAs that potently downregulated CCR5 expression on human T cells and peripheral blood mononuclear cells (PBMC) and that had no apparent adverse effect on T cell development as assessed in a competitive cell growth assay. CCR5 knockdown significantly protected T cells from CCR5 tropic HIV-1 infection.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Maunder HE, Wright J, Kolli BR, Vieira CR, Mkandawire TT, Tatoris S, Kennedy V, Iqball S, Devarajan G, Ellis S, Lad Y, Clarkson NG, Mitrophanous KA, Farley DC. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat Commun 2017; 8:14834. [PMID: 28345582 PMCID: PMC5378976 DOI: 10.1038/ncomms14834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
A key challenge in the field of therapeutic viral vector/vaccine manufacturing is maximizing production. For most vector platforms, the ‘benchmark' vector titres are achieved with inert reporter genes. However, expression of therapeutic transgenes can often adversely affect vector titres due to biological effects on cell metabolism and/or on the vector virion itself. Here, we exemplify the novel ‘Transgene Repression In vector Production' (TRiP) system for the production of both RNA- and DNA-based viral vectors. The TRiP system utilizes a translational block of one or more transgenes by employing the bacterial tryptophan RNA-binding attenuation protein (TRAP), which binds its target RNA sequence close to the transgene initiation codon. We report enhancement of titres of lentiviral vectors expressing Cyclo-oxygenase-2 by 600-fold, and adenoviral vectors expressing the pro-apoptotic gene Bax by >150,000-fold. The TRiP system is transgene-independent and will be a particularly useful platform in the clinical development of viral vectors expressing problematic transgenes. The maximum titre of therapeutic viral vectors can be adversely affected by the encoded transgene. Here the authors repress transgene expression in producing cells by employing the tryptophan RNA-binding attenuation protein and show that it improves titre of RNA- and DNA-based viral vectors expressing toxic transgenes.
Collapse
Affiliation(s)
- H E Maunder
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - J Wright
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - B R Kolli
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - C R Vieira
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - T T Mkandawire
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Tatoris
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - V Kennedy
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Iqball
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - G Devarajan
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Ellis
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Y Lad
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - N G Clarkson
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - K A Mitrophanous
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - D C Farley
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| |
Collapse
|
36
|
Tanwar HS, Khoo KK, Garvey M, Waddington L, Leis A, Hijnen M, Velkov T, Dumsday GJ, McKinstry WJ, Mak J. The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV. PLoS Pathog 2017; 13:e1006221. [PMID: 28222188 PMCID: PMC5336307 DOI: 10.1371/journal.ppat.1006221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
The interactions that occur during HIV Pr55Gag oligomerization and genomic RNA packaging are essential elements that facilitate HIV assembly. However, mechanistic details of these interactions are not clearly defined. Here, we overcome previous limitations in producing large quantities of full-length recombinant Pr55Gag that is required for isothermal titration calorimetry (ITC) studies, and we have revealed the thermodynamic properties of HIV assembly for the first time. Thermodynamic analysis showed that the binding between RNA and HIV Pr55Gag is an energetically favourable reaction (ΔG<0) that is further enhanced by the oligomerization of Pr55Gag. The change in enthalpy (ΔH) widens sequentially from: (1) Pr55Gag-Psi RNA binding during HIV genome selection; to (2) Pr55Gag-Guanosine Uridine (GU)-containing RNA binding in cytoplasm/plasma membrane; and then to (3) Pr55Gag-Adenosine(A)-containing RNA binding in immature HIV. These data imply the stepwise increments of heat being released during HIV biogenesis may help to facilitate the process of viral assembly. By mimicking the interactions between A-containing RNA and oligomeric Pr55Gag in immature HIV, it was noted that a p6 domain truncated Pr50Gag Δp6 is less efficient than full-length Pr55Gag in this thermodynamic process. These data suggest a potential unknown role of p6 in Pr55Gag-Pr55Gag oligomerization and/or Pr55Gag-RNA interaction during HIV assembly. Our data provide direct evidence on how nucleic acid sequences and the oligomeric state of Pr55Gag regulate HIV assembly. Formation of any virus particle will require energy, yet the precise biophysical properties that drive the formation of HIV particles remain undefined. Isothermal titration calorimetry (ITC) is a biophysical technique that is the gold standard to reveal parameters governing biochemical and biophysical reaction. However, ITC requires large amount of proteins for analysis. As large quantities of full-length recombinant HIV Pr55Gag proteins have not been available in the past 30 years due to technical limitation, a comprehensive thermodynamic analysis of full-length HIV Pr55Gag has not been possible. Here, we have generated sufficient amount of full-length recombinant HIV Pr55Gag protein for isothermal titration calorimetry analysis. Our analyses have shown that the major interactions amongst HIV proteins and RNA sequences during viral assembly are energetically favourable reactions. In other words, HIV Pr55Gag proteins and viral RNA have evolved to overcome the energy barrier for virus formation by utilising energy obtained from protein-RNA interactions in order to facilitate the viral assembly process. Furthermore, HIV also use the oligomeric states of HIV Pr55Gag proteins and the RNA sequences as means to regulate the viral assembly process.
Collapse
Affiliation(s)
- Hanumant S. Tanwar
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Keith K. Khoo
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Megan Garvey
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | | | - Andrew Leis
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | | | - Tony Velkov
- Monash Institute of Pharmaceutical Science, Parkville, Victoria, Australia
| | | | | | - Johnson Mak
- School of Medicine, Deakin University, Geelong, Australia
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
- * E-mail:
| |
Collapse
|
37
|
Global Manufacturing of CAR T Cell Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:92-101. [PMID: 28344995 PMCID: PMC5363291 DOI: 10.1016/j.omtm.2016.12.006] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Immunotherapy using chimeric antigen receptor-modified T cells has demonstrated high response rates in patients with B cell malignancies, and chimeric antigen receptor T cell therapy is now being investigated in several hematologic and solid tumor types. Chimeric antigen receptor T cells are generated by removing T cells from a patient’s blood and engineering the cells to express the chimeric antigen receptor, which reprograms the T cells to target tumor cells. As chimeric antigen receptor T cell therapy moves into later-phase clinical trials and becomes an option for more patients, compliance of the chimeric antigen receptor T cell manufacturing process with global regulatory requirements becomes a topic for extensive discussion. Additionally, the challenges of taking a chimeric antigen receptor T cell manufacturing process from a single institution to a large-scale multi-site manufacturing center must be addressed. We have anticipated such concerns in our experience with the CD19 chimeric antigen receptor T cell therapy CTL019. In this review, we discuss steps involved in the cell processing of the technology, including the use of an optimal vector for consistent cell processing, along with addressing the challenges of expanding chimeric antigen receptor T cell therapy to a global patient population.
Collapse
|
38
|
Zhang X, Jia R, Zhou J, Wang M, Yin Z, Cheng A. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections. Viruses 2016; 8:E258. [PMID: 27657114 PMCID: PMC5035972 DOI: 10.3390/v8090258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid-enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research.
Collapse
Affiliation(s)
- Xingcui Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
39
|
Yu TW, Chueh HY, Tsai CC, Lin CT, Qiu JT. Novel GM-CSF-based vaccines: One small step in GM-CSF gene optimization, one giant leap for human vaccines. Hum Vaccin Immunother 2016; 12:3020-3028. [PMID: 27560197 DOI: 10.1080/21645515.2016.1221551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a potent immunomodulatory cytokine that is known to facilitate vaccine efficacy by promoting the development and prolongation of both humoral and cellular immunity. In the past years we have generated a novel codon-optimized GM-CSF gene as an adjuvant. The codon-optimized GM-CSF gene significantly increased protein expression levels in all cells tested and helped in generating a strong immune responses against HIV-1 Gag and HPV-associated cancer. Here, we review the literature dealing with the adjuvant activity of GM-CSF both in animal models and clinical trials. We anticipate that the codon-optimized GM-CSF gene offers a practical molecular strategy for potentiating immune responses to tumor cell-based vaccinations as well as other immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ting-Wei Yu
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Ho-Yen Chueh
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Ching-Chou Tsai
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,c Department of Obstetrics and Gynecology , Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Kaohsiung , Taiwan , ROC
| | - Cheng-Tao Lin
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Jiantai Timothy Qiu
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC.,d Department of Biomedical Sciences , School of Medicine, Chang Gung University , Taoyuan , Taiwan , ROC
| |
Collapse
|
40
|
Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, Hu WS, Pathak VK. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation. PLoS Pathog 2016; 12:e1005646. [PMID: 27186986 PMCID: PMC4871359 DOI: 10.1371/journal.ppat.1005646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
41
|
Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16017. [PMID: 27110581 PMCID: PMC4830361 DOI: 10.1038/mtm.2016.17] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented.
Collapse
Affiliation(s)
| | | | - Chiara Bovolenta
- New Technologies Unit, Research Division, MolMed S.p.A. , Milan, Italy
| |
Collapse
|
42
|
Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv 2015; 13:295-310. [PMID: 26578324 DOI: 10.1517/17425247.2016.1121990] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Electroporation allows efficient delivery of DNA into cells and tissues, thereby improving the expression of therapeutic or immunogenic proteins that are encoded by plasmid DNA. This simple and versatile method holds a great potential and could address unmet medical needs such as the prevention or treatment of many cancers or infectious diseases. AREAS COVERED This review explores the electroporation mechanism and the parameters affecting its efficacy. An analysis of past and current clinical trials focused on DNA electroporation is presented. The pathologies addressed, the protocol used, the treatment outcome and the tolerability are highlighted. In addition, several of the possible optimization strategies for improving patient compliance and therapeutic efficacy are discussed such as plasmid design, use of genetic adjuvants for DNA vaccines, choice of appropriate delivery site and electrodes as well as pulse parameters. EXPERT OPINION The growing number of clinical trials and the results already available underline the strong potential of DNA electroporation which combines both safety and efficiency. Nevertheless, it remains critical to further increase fundamental knowledge to refine future strategies, to develop concerted and common DNA electroporation protocols and to continue exploring new electroporation-based therapeutic options.
Collapse
Affiliation(s)
- Laure Lambricht
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| | - Alessandra Lopes
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| | - Spela Kos
- b Institute of Oncology Ljubljana , Department of Experimental Oncology , Ljubljana , Slovenia
| | - Gregor Sersa
- b Institute of Oncology Ljubljana , Department of Experimental Oncology , Ljubljana , Slovenia
| | - Véronique Préat
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| | - Gaëlle Vandermeulen
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| |
Collapse
|
43
|
Mutations of Conserved Residues in the Major Homology Region Arrest Assembling HIV-1 Gag as a Membrane-Targeted Intermediate Containing Genomic RNA and Cellular Proteins. J Virol 2015; 90:1944-63. [PMID: 26656702 PMCID: PMC4734008 DOI: 10.1128/jvi.02698-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
The major homology region (MHR) is a highly conserved motif that is found within the Gag protein of all orthoretroviruses and some retrotransposons. While it is widely accepted that the MHR is critical for assembly of HIV-1 and other retroviruses, how the MHR functions and why it is so highly conserved are not understood. Moreover, consensus is lacking on when HIV-1 MHR residues function during assembly. Here, we first addressed previous conflicting reports by confirming that MHR deletion, like conserved MHR residue substitution, leads to a dramatic reduction in particle production in human and nonhuman primate cells expressing HIV-1 proviruses. Next, we used biochemical analyses and immunoelectron microscopy to demonstrate that conserved residues in the MHR are required after assembling Gag has associated with genomic RNA, recruited critical host factors involved in assembly, and targeted to the plasma membrane. The exact point of inhibition at the plasma membrane differed depending on the specific mutation, with one MHR mutant arrested as a membrane-associated intermediate that is stable upon high-salt treatment and other MHR mutants arrested as labile, membrane-associated intermediates. Finally, we observed the same assembly-defective phenotypes when the MHR deletion or conserved MHR residue substitutions were engineered into Gag from a subtype B, lab-adapted provirus or Gag from a subtype C primary isolate that was codon optimized. Together, our data support a model in which MHR residues act just after membrane targeting, with some MHR residues promoting stability and another promoting multimerization of the membrane-targeted assembling Gag oligomer. IMPORTANCE The retroviral Gag protein exhibits extensive amino acid sequence variation overall; however, one region of Gag, termed the major homology region, is conserved among all retroviruses and even some yeast retrotransposons, although the reason for this conservation remains poorly understood. Highly conserved residues in the major homology region are required for assembly of retroviruses; however, when these residues are required during assembly is not clear. Here, we used biochemical and electron microscopic analyses to demonstrate that these conserved residues function after assembling HIV-1 Gag has associated with genomic RNA, recruited critical host factors involved in assembly, and targeted to the plasma membrane but before Gag has completed the assembly process. By revealing precisely when conserved residues in the major homology region are required during assembly, these studies resolve existing controversies and set the stage for future experiments aimed at a more complete understanding of how the major homology region functions.
Collapse
|
44
|
Virological and preclinical characterization of a dendritic cell targeting, integration-deficient lentiviral vector for cancer immunotherapy. J Immunother 2015; 38:41-53. [PMID: 25658613 PMCID: PMC4323576 DOI: 10.1097/cji.0000000000000067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.
Collapse
|
45
|
Liu YP, Karg M, Herrera-Carrillo E, Berkhout B. Towards Antiviral shRNAs Based on the AgoshRNA Design. PLoS One 2015; 10:e0128618. [PMID: 26087209 PMCID: PMC4472832 DOI: 10.1371/journal.pone.0128618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2) protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Margarete Karg
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Zhao C, Sun Y, Zhao Y, Wang S, Yu T, Du F, Yang XF, Luo E. Immunogenicity of a multi-epitope DNA vaccine against hantavirus. Hum Vaccin Immunother 2014; 8:208-15. [DOI: 10.4161/hv.18389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
47
|
López CS, Sloan R, Cylinder I, Kozak SL, Kabat D, Barklis E. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release. Virology 2014; 462-463:126-34. [PMID: 24971705 DOI: 10.1016/j.virol.2014.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/16/2014] [Accepted: 05/17/2014] [Indexed: 12/14/2022]
Abstract
The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export.
Collapse
Affiliation(s)
- Claudia S López
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Rachel Sloan
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Isabel Cylinder
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Susan L Kozak
- Biochemistry and Molecular Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - David Kabat
- Biochemistry and Molecular Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Eric Barklis
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
48
|
Godinho RMDC, Matassoli FL, Lucas CGDO, Rigato PO, Gonçalves JLS, Sato MN, Maciel M, Peçanha LMT, August JT, Marques ETDA, de Arruda LB. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response. PLoS One 2014; 9:e99887. [PMID: 24932692 PMCID: PMC4059647 DOI: 10.1371/journal.pone.0099887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Collapse
Affiliation(s)
- Rodrigo Maciel da Costa Godinho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paula Ordonhez Rigato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Luiz Santos Gonçalves
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Notomi Sato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Maciel
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ligia Maria Torres Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ernesto Torres de Azevedo Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America; Departamento de Virologia, Fiocruz - Pernambuco, Recife, Brazil
| | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Chen Y, Wang S, Lu S. DNA Immunization for HIV Vaccine Development. Vaccines (Basel) 2014; 2:138-159. [PMID: 26344472 PMCID: PMC4494200 DOI: 10.3390/vaccines2010138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination has been studied in the last 20 years for HIV vaccine research. Significant experience has been accumulated in vector design, antigen optimization, delivery approaches and the use of DNA immunization as part of a prime-boost HIV vaccination strategy. Key historical data and future outlook are presented. With better understanding on the potential of DNA immunization and recent progress in HIV vaccine research, it is anticipated that DNA immunization will play a more significant role in the future of HIV vaccine development.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging. J Virol 2014; 88:4040-6. [PMID: 24453371 DOI: 10.1128/jvi.03745-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. IMPORTANCE To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts.
Collapse
|