1
|
Krammer F, Fouchier RAM, Eichelberger MC, Webby RJ, Shaw-Saliba K, Wan H, Wilson PC, Compans RW, Skountzou I, Monto AS. NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? mBio 2018; 9:e02332-17. [PMID: 29615508 PMCID: PMC5885027 DOI: 10.1128/mbio.02332-17] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuraminidase is one of the two surface glycoproteins of influenza A and B viruses. It has enzymatic activity that cleaves terminal sialic acid from glycans, and that activity is essential at several points in the virus life cycle. While neuraminidase is a major target for influenza antivirals, it is largely ignored in vaccine development. Current inactivated influenza virus vaccines might contain neuraminidase, but the antigen quantity and quality are varied and not standardized. While there are data that show a protective role of anti-neuraminidase immunity, many questions remain unanswered. These questions, among others, concern the targeted epitopes or antigenic sites, the potential for antigenic drift, and, connected to that, the breadth of protection, differences in induction of immune responses by vaccination versus infection, mechanisms of protection, the role of mucosal antineuraminidase antibodies, stability, and the immunogenicity of neuraminidase in vaccine formulations. Reagents for analysis of neuraminidase-based immunity are scarce, and assays are not widely used for clinical studies evaluating vaccines. However, efforts to better understand neuraminidase-based immunity have been made recently. A neuraminidase focus group, NAction!, was formed at a Centers of Excellence for Influenza Research and Surveillance meeting at the National Institutes of Health in Bethesda, MD, to promote research that helps to understand neuraminidase-based immunity and how it can contribute to the design of better and broadly protective influenza virus vaccines. Here, we review open questions and knowledge gaps that have been identified by this group and discuss how the gaps can be addressed, with the ultimate goal of designing better influenza virus vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
| | - Ron A M Fouchier
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard J Webby
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- St. Jude Center of Excellence for Influenza Research and Surveillance, Memphis, Tennessee, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kathryn Shaw-Saliba
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Johns Hopkins Center of Excellence for Influenza Research and Surveillance, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hongquan Wan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick C Wilson
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- New York Influenza Center of Excellence (NYICE), New York, New York, USA
- Department of Medicine, the Knapp Center for Lupus and Immunology Research, Section of Rheumatology, the University of Chicago, Chicago, Illinois, USA
| | - Richard W Compans
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ioanna Skountzou
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arnold S Monto
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- New York Influenza Center of Excellence (NYICE), New York, New York, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Miyauchi K. Helper T Cell Responses to Respiratory Viruses in the Lung: Development, Virus Suppression, and Pathogenesis. Viral Immunol 2017. [DOI: 10.1089/vim.2017.0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kosuke Miyauchi
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| |
Collapse
|
3
|
Differential mucosal IL-10-induced immunoregulation of innate immune responses occurs in influenza infected infants/toddlers and adults. Immunol Cell Biol 2016; 95:252-260. [PMID: 27629065 DOI: 10.1038/icb.2016.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023]
Abstract
Young children (<5 years of age but especially those <2-year old) exhibit high rates of morbidity and frequently require hospitalizations due to complications from respiratory viral infections. This is also a population for which we understand less about how their unique level of immunological maturation affects their antiviral immune responses. However, we do know from prior studies that their T cells appear to apoptose in the lungs owing to limited interferon (IFN)γ autocrine signaling during infection. To begin to further understand additional limits, we utilized an infant/toddler murine model infected with influenza virus with an adult comparator. In our model, young mice exhibited lower interleukin (IL)-10+IFNγ+ co-producing CD4 T cells infiltrating the lungs that paralleled with a failed switch from an innate to adaptive immune response at the mid infection stage. Specifically, limited co-IL-10 production correlated with a lack of influenza-specific antibodies and subsequent complement receptor signaling (complement receptor type-1 related gene Y (CCRY)/p65) to the lung infiltrating CD4 T cells therefore limiting their IKAROs upregulation. Thus, limited IL-10 production appeared to diminish signaling to lung macrophages to stop accumulating late into infection. Taken together, our results suggest a novel role for complement mediated signaling in CD4 T cells with respect to IL-10 co-production. Furthermore, a subsequent failure to shift from the unfocused innate immune response to the specific adaptive responses may be a principle cause in the enhanced morbidity common in respiratory viral infection of young children.
Collapse
|
4
|
Abstract
Neuraminidase (NA) is the second most abundant influenza surface glycoprotein and contributes to virus replication in several ways, most notably by removing sialic acids from the host and viral glycoproteins, releasing newly formed virus particles from infected cells. Antibodies that block this enzyme activity restrict virus replication in vitro. This chapter describes foundational epidemiologic and human influenza challenge studies that provide evidence of an association between NA inhibiting antibodies and resistance to disease. Mouse challenge studies show that while NA immunity is infection-permissive, NA-specific antibodies attenuate infection and prevent severe disease. NA immunity is most effective against homologous viruses but there is substantial protection against viruses with a heterologous NA (different lineage within a NA subtype). Monoclonal antibodies specific for conserved antigenic domains of subtype N1 protect against seasonal and pandemic H1N1 as well as H5N1 virus challenge. Clinical studies demonstrate that licensed seasonal vaccines contain immunogenic amounts of NA, but the contribution of this immunity to vaccine efficacy is currently not known. New types of influenza vaccines could be designed to elicit NA immunity. Because NA induces heterologous immunity, it could be an important constituent of universal influenza vaccines that aim to protect against unexpected emerging viruses.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Research and Regulation, US Food and Drug Administration, HFM445, Silver Spring, MD, 20892, USA,
| | | |
Collapse
|
5
|
Emma P, Kamen A. Real-time monitoring of influenza virus production kinetics in HEK293 cell cultures. Biotechnol Prog 2012; 29:275-84. [PMID: 22848016 DOI: 10.1002/btpr.1601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/16/2012] [Indexed: 12/22/2022]
Abstract
There is an increased interest from the vaccine industry to use mammalian cell cultures for influenza vaccine manufacturing. Therefore, it became important to study the influenza infection mechanism, the viral-host interaction, and the replication kinetics from a bioprocessing stand point to maximize the influenza viral production yield in cell culture. In the present work, influenza replication kinetics was studied in HEK293 cells. Two infection conditions were evaluated, a low (0.01) and a high multiplicity of infection (1.0). Critical time points of the viral production cycle (infection, protein synthesis, viral assembly and budding, viral release, and host-cell death) were identified in small-scale cell cultures. Additionally, cell growth, viability, and viral titers were monitored in the viral production process. The infection state of the cultivated cell population was assessed by influenza immunolabeling throughout the culture period. Influenza virus production kinetics were also on-line monitored by dielectric spectroscopy and successfully correlated to real-time capacitance measures. Overall, this work provided insights into the mechanisms associated with the infection of human HEK293 cell line by the influenza virus and demonstrated, once again, the usefulness of multifrequency scanning permittivity for in-line monitoring and supervision of cell-based viral production processes.
Collapse
Affiliation(s)
- Petiot Emma
- National Research Council, Bioprocessing and Manufacturing, Vaccine Program, Montreal, QC, Canada
| | | |
Collapse
|
6
|
Quantification of the frequency and multiplicity of infection of respiratory- and lymph node-resident dendritic cells during influenza virus infection. PLoS One 2010; 5:e12902. [PMID: 20886117 PMCID: PMC2944834 DOI: 10.1371/journal.pone.0012902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/30/2010] [Indexed: 11/19/2022] Open
Abstract
Background Previous studies have demonstrated that DC differentially regulate influenza A virus (IAV)–specific CD8 T cell responses in vivo during high and low dose IAV infections. Furthermore, in vitro infection of DC with IAV at low versus high multiplicities of infection (MOI) results in altered cytokine production and a reduced ability to prime naïve CD8 T cell responses. Flow cytometric detection of IAV proteins within DC, a commonly used method for detection of cellular IAV infection, does not distinguish between the direct infection of these cells or their uptake of viral proteins from dying epithelial cells. Methods/Principal Findings We have developed a novel, sensitive, single-cell RT-PCR–based approach to assess the infection of respiratory DC (rDC) and lymph node (LN)-resident DC (LNDC) following high and low dose IAV infections. Our results show that, while a fraction of both rDC and LNDC contain viral mRNA following IAV infection, there is little correlation between the percentage of rDC containing viral mRNA and the initial IAV inoculum dose. Instead, increasing IAV inoculums correlate with augmented rDC MOI. Conclusion/Significance Together, our results demonstrate a novel and sensitive method for the detection of direct IAV infection at the single-cell level and suggest that the previously described ability of DC to differentially regulate IAV-specific T cell responses during high and low dose IAV infections could relate to the MOI of rDC within the LN rather than the percentage of rDC infected.
Collapse
|
7
|
Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta Gen Subj 2009; 1790:1599-610. [DOI: 10.1016/j.bbagen.2009.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
8
|
Toapanta FR, Ross TM. Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 2009; 10:112. [PMID: 19922665 PMCID: PMC2785782 DOI: 10.1186/1465-9921-10-112] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 11/18/2009] [Indexed: 12/20/2022] Open
Abstract
Background Each year, influenza virus infection causes severe morbidity and mortality, particularly in the most susceptible groups including children, the elderly (>65 years-old) and people with chronic respiratory diseases. Among the several factors that contribute to the increased susceptibility in elderly populations are the higher prevalence of chronic diseases (e.g. diabetes) and the senescence of the immune system. Methods In this study, aged and adult mice were infected with sublethal doses of influenza virus (A/Puerto Rico/8/1934). Differences in weight loss, morbidity, virus titer and the kinetics of lung infiltration with cells of the innate and adaptive immune responses were analyzed. Additionally, the main cytokines and chemokines produced by these cells were also assayed. Results Compared to adult mice, aged mice had higher morbidity, lost weight more rapidly, and recovered more slowly from infection. There was a delay in the accumulation of granulocytic cells and conventional dendritic cells (cDCs), but not macrophages in the lungs of aged mice compared to adult animals. The delayed infiltration kinetics of APCs in aged animals correlated with alteration in their activation (CD40 expression), which also correlated with a delayed detection of cytokines and chemokines in lung homogenates. This was associated with retarded lung infiltration by natural killer (NK), CD4+ and CD8+ T-cells. Furthermore, the percentage of activated (CD69+) influenza-specific and IL-2 producer CD8+ T-cells was higher in adult mice compared to aged ones. Additionally, activation (CD69+) of adult B-cells was earlier and correlated with a quicker development of neutralizing antibodies in adult animals. Conclusion Overall, alterations in APC priming and activation lead to delayed production of cytokines and chemokines in the lungs that ultimately affected the infiltration of immune cells following influenza infection. This resulted in delayed activation of the adaptive immune response and subsequent delay in clearance of virus and prolonged illness in aged animals. Since the elderly are the fastest growing segment of the population in developed countries, a better understanding of the changes that occur in the immune system during the aging process is a priority for the development of new vaccines and adjuvants to improve the immune responses in this population.
Collapse
|
9
|
Ho LJ, Shaio MF, Chang DM, Liao CL, Lai JH. Infection of Human Dendritic Cells by Dengue Virus Activates and Primes T Cells Towards Th0‐Like Phenotype Producing Both Th1 and Th2 Cytokines. Immunol Invest 2009; 33:423-37. [PMID: 15624700 DOI: 10.1081/imm-200038680] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dengue viruses (DV) infection is an important public health issue all over the world. Although the pathogenesis remains unclear, the overwhelmingly triggered immune responses have been consistently observed. Recently, we and other researchers demonstrated that the natural hosts for DV are dendritic cells (DC), the primary sentinels of immune system. In light of the significance of T cells in dengue virus pathogenesis, here, we examine the possible consequences of DC-T cell interaction that is supposed to be happening in lymphoid tissues after infection. We showed that DV-infected DC induced the interacting T cells to proliferate, to produce interleukin-2 as well as to express activation markers on cell surface. Compared to mock-infected DC, the infection of DC by DV also induced T cells to produce interleukin-4, interleukin-10 and interferon-gamma, a cytokine pattern suggesting Th0 phenotype. Such an effect was either totally abolished or greatly reduced when DV were pre-inactivated with heat or ultraviolet before infection. In addition, we demonstrated that such a Th0 phenotype shift of T cells was affected neither by different dosages of viruses that infected DC nor by different durations of DC-T cell interaction. Our results provide a basic support for clinical observations and may be of help in understanding the pathogenesis of DV infection.
Collapse
Affiliation(s)
- Ling-Jun Ho
- Division of Gerontology Research, National Health Research Institute, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
10
|
McGill J, Heusel JW, Legge KL. Innate immune control and regulation of influenza virus infections. J Leukoc Biol 2009; 86:803-12. [PMID: 19643736 DOI: 10.1189/jlb.0509368] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adaptive immune responses are critical for the control and clearance of influenza A virus (IAV) infection. However, in recent years, it has become increasingly apparent that innate immune cells, including natural killer cells, alveolar macrophages (aMphi), and dendritic cells (DC) are essential following IAV infection in the direct control of viral replication or in the induction and regulation of virus-specific adaptive immune responses. This review will discuss the role of these innate immune cells following IAV infection, with a particular focus on DC and their ability to induce and regulate the adaptive IAV-specific immune response.
Collapse
Affiliation(s)
- Jodi McGill
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
11
|
Influenza a virus induces an immediate cytotoxic activity in all major subsets of peripheral blood mononuclear cells. PLoS One 2009; 4:e4122. [PMID: 19125202 PMCID: PMC2610492 DOI: 10.1371/journal.pone.0004122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/03/2008] [Indexed: 01/01/2023] Open
Abstract
Background A replication defective influenza A vaccine virus (delNS1 virus) was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells. Methodology/Principal Findings Peripheral blood mononuclear cells (PBMCs), isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt) virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN) interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood. Conclusions/Significance Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.
Collapse
|
12
|
Newton KR, Sala-Soriano E, Varsani H, Stephenson JR, Goldblatt D, Wedderburn LR. Human dendritic cells infected with an adenoviral vector suppress proliferation of autologous and allogeneic T cells. Immunology 2008; 125:469-79. [PMID: 18510572 DOI: 10.1111/j.1365-2567.2008.02860.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dendritic cells (DCs) play a key role in the type and course of an immune response. The manipulation of human DCs to produce therapeutic agents by transduction with viral vectors is a growing area of research. We present an investigation into the effects of adenoviral vector infection on human DCs and other cell types, and on their subsequent ability to induce T-cell proliferation. We show that infection with replication-deficient adenovirus results in impaired proliferation of T cells in a mixed lymphocyte reaction (MLR). We show this to be an active suppression rather than a defect in the DCs as T cells also fail to proliferate in response to phytohaemagglutinin in the presence of adenoviral vector-infected DCs. This suppression is not attributable to phenotypic changes, death or inability of the DCs to produce cytokines on stimulation. By separation of DCs from T cells, and addition of conditioned supernatants, we show that suppression is mediated by a soluble factor. Blocking of interleukin (IL)-10 but not transforming growth factor (TGF)-beta could overcome the suppressive effect in some donors, and the source of the suppressive IL-10 was lymphocytes exposed to conditioned supernatant. Together our data suggest that infection of DCs by adenoviral vectors leads to suppression of the resulting immune response.
Collapse
Affiliation(s)
- Katy R Newton
- Rheumatology Unit, Institute of Child Health, UCL, London, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Langlois RA, Legge KL. Respiratory dendritic cells: mediators of tolerance and immunity. Immunol Res 2008; 39:128-45. [PMID: 17917061 DOI: 10.1007/s12026-007-0077-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/26/2022]
Abstract
The respiratory tract is under constant bombardment from both innocuous and pathogenic material. The decision of how to respond to these challenges is mediated by a specialized set of antigen presenting cells within the lungs called dendritic cells (DC). Proper respiratory homeostasis requires that these respiratory DC (rDC) utilize both the local lung inflammatory environment as well as recognition of pathogen-specific patterns to determine whether to maintain homeostasis by either driving tolerance or immunity to the inhaled material. This review will focus on rDC and highlight how rDC regulate tolerance and immunity.
Collapse
Affiliation(s)
- Ryan A Langlois
- Department of Pathology, Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
14
|
Humphreys IR, Edwards L, Snelgrove RJ, Rae AJ, Coyle AJ, Hussell T. A critical role for ICOS co-stimulation in immune containment of pulmonary influenza virus infection. Eur J Immunol 2007; 36:2928-38. [PMID: 17039567 DOI: 10.1002/eji.200636155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lung pathology observed during influenza infection is due to direct damage resulting from viral replication and bystander damage caused by overly exuberant antiviral immune mechanisms. In the absence of universally effective vaccines and antiviral therapies, knowledge of the cellular components required for immune containment of influenza is essential. ICOS is a late co-stimulatory molecule expressed by T cells 12-24 h after activation. We show for the first time that inhibition of ICOS with a monoclonal antibody reduces pulmonary T cell inflammation and associated cytokine expression. Surprisingly however, this reduction in T cells was not accompanied by an alleviation of weight loss and illness. Furthermore, lung viral titres were elevated following anti-ICOS treatment, suggesting that the beneficial outcome of reducing T cell pathology was masked by enhanced virus-induced damage and innate inflammation. This study demonstrates the delicate balance that exists between pathogen burden and pulmonary T cell inflammation during influenza infection and highlights the critical role of ICOS in this response.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, Differentiation, T-Lymphocyte/analysis
- Antigens, Differentiation, T-Lymphocyte/drug effects
- Antigens, Differentiation, T-Lymphocyte/physiology
- Cytokines/metabolism
- Female
- Inducible T-Cell Co-Stimulator Protein
- Influenza A virus/drug effects
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- T-Lymphocytes/immunology
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Ian R Humphreys
- Centre for Molecular Microbiology and Infection, Department of Biochemistry, Imperial College, London, UK
| | | | | | | | | | | |
Collapse
|
15
|
Nan X, Carubelli I, Stamatos NM. Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J Leukoc Biol 2006; 81:284-96. [PMID: 17028199 DOI: 10.1189/jlb.1105692] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sialidases influence cellular activity by removing terminal sialic acid from glycoproteins and glycolipids. Four genetically distinct sialidases (Neu1-4) have been identified in mammalian cells. In this study, we demonstrate that only lysosomal Neu1 and plasma membrane-associated Neu3 are detected in freshly isolated and activated human T lymphocytes. Activation of lymphocytes by exposure to anti-CD3 and anti-CD28 IgG resulted in a ninefold increase in Neu1-specific activity after growth of cells in culture for 5 days. In contrast, the activity of Neu3 changed minimally in activated lymphocytes. The increase in Neu1 enzyme activity correlated with increased synthesis of Neu1-specific mRNA. Neu1 was present on the surface of freshly isolated and activated CD4 and CD8 T lymphocytes, as determined by staining intact cells with anti-Neu1 IgG and analysis by flow cytometry and by Western blot analysis of biotin-labeled cell surface proteins. Cell surface Neu1 was found tightly associated with a subunit of protective protein/cathepsin A (PPCA). Compared with freshly isolated lymphocytes, activated cells expressed more surface binding sites for galactose-recognizing lectins Erythrina cristagalli (ECA) and Arachis hypogaea. Growth of cells in the presence of sialidase inhibitors 2,3-dehydro-2-deoxy-N-acetylneuraminic acid or 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid resulted in a smaller increase in number of ECA-binding sites and a greater amount of cell surface sialic acid in activated cells. Inhibition of sialidase activity also resulted in reduced expression of IFN-gamma in activated cells. The down-regulation of IFN-gamma occurred at the transcriptional level. Thus, sialidase activity in activated T lymphocytes contributes to the hyposialylation of specific cell surface glycoconjugates and to the production of IFN-gamma.
Collapse
Affiliation(s)
- Xinli Nan
- Institute of Human Biology, and Department of Medicine, University of Maryland Medical Center, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
16
|
Hammerbeck DM, Burleson GR, Schuller CJ, Vasilakos JP, Tomai M, Egging E, Cochran FR, Woulfe S, Miller RL. Administration of a dual toll-like receptor 7 and toll-like receptor 8 agonist protects against influenza in rats. Antiviral Res 2006; 73:1-11. [PMID: 16959331 DOI: 10.1016/j.antiviral.2006.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/14/2006] [Accepted: 07/25/2006] [Indexed: 01/08/2023]
Abstract
Toll-like receptors (TLR) detect conserved molecular patterns expressed by pathogens. Detection of the "molecular signature" for RNA viruses including influenza has been attributed to TLR3, TLR7, and TLR8. In the present study, compound 3M-011 was shown to be a synthetic human TLR7/8 agonist and cytokine inducer. 3M-011 was investigated as a stand-alone immune response modifier in a rat model of human influenza. Intranasal (IN) administration of 3M-011 significantly inhibited H3N2 influenza viral replication in the nasal cavity when administered from 72 h before IN viral inoculation to 6h after inoculation. Viral inhibition correlated with the ability of the TLR7/8 agonist to stimulate type I interferon (IFN) and other cytokines such as tumor necrosis factor-alpha, interleukin-12, and IFN-gamma from rat peripheral blood mononuclear cells. Prophylactic administration of TLR7/8 agonist also suppressed influenza viral titers in the lung, which corresponded with local IFN production. The activity of the TLR7/8 agonist resulted in greater inhibition of viral titers compared to rat recombinant IFN-alpha administered in a comparable dosing regimen. These studies indicate that TLR7/8 agonists may have prophylactic and therapeutic benefits in the treatment of respiratory viral infections, such as influenza, when administered prior to or shortly after viral inoculation.
Collapse
Affiliation(s)
- David M Hammerbeck
- Department of Pharmacology, 3M Pharmaceuticals, 3M Center, Building 270-3A-10, St. Paul, MN 55144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Legge KL, Braciale TJ. Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression. Immunity 2006; 23:649-59. [PMID: 16356862 DOI: 10.1016/j.immuni.2005.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 09/14/2005] [Accepted: 11/16/2005] [Indexed: 11/15/2022]
Abstract
The lethal outcome of high-dose pulmonary virus infection is thought to reflect high-level, sustained virus replication and associated lung inflammation prior to development of an adaptive immune response. Herein, we demonstrate that the outcome of lethal/sublethal influenza infection instead correlates with the initial virus replication tempo. Furthermore, the magnitude of early lung antiviral CD8+ T cell responses varies inversely with inoculum dose and is controlled by lymph-node-resident dendritic cells (LNDC) through IL-12p40-regulated FasL-dependent T cell apoptosis. These results suggest that the inoculum dose and replication rate of a pathogen entering the respiratory tract may regulate the strength of the adaptive immune response, and the subsequent outcome of infection and that LNDC may serve as regulators (gatekeepers) in the development of CD8+ T cell responses.
Collapse
Affiliation(s)
- Kevin L Legge
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
18
|
Wang P, Zhang J, Bian H, Wu P, Kuvelkar R, Kung TT, Crawley Y, Egan RW, Billah MM. Induction of lysosomal and plasma membrane-bound sialidases in human T-cells via T-cell receptor. Biochem J 2004; 380:425-33. [PMID: 14992689 PMCID: PMC1224187 DOI: 10.1042/bj20031896] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/18/2004] [Accepted: 03/01/2004] [Indexed: 11/17/2022]
Abstract
Among the three isoenzymes of neuraminidase (Neu) or sialidase, Neu-1 has been suggested to be induced by cell activation and to be involved in IL (interleukin)-4 biosynthesis in murine T-cells. In the present study, we found that antigen-induced airway eosinophilia, a typical response dependent on Th2 (T-helper cell type 2) cytokines, as well as mRNA expression of Th2 cytokines, including IL-4, are suppressed in Neu-1-deficient mice, thereby demonstrating the in vivo role of murine Neu-1 in regulation of Th2 cytokines. To elucidate the roles of various sialidases in human T-cell activation, we investigated their tissue distribution, gene induction and function. Neu-1 is the predominant isoenzyme at the mRNA level in most tissues and cells in both mice and humans, including T-cells. T-cells also have significant levels of Neu-3 mRNAs, albeit much lower than those of Neu-1, whereas the levels of Neu-2 mRNAs are minimal. In human T-cells, both Neu-1 and Neu-3 mRNAs are significantly induced by T-cell-receptor stimulation, as is sialidase activity against 4-methylumbelliferyl- N -acetylneuramic acid (a substrate for both Neu-1 and Neu-3) and the ganglioside G(D1a) [NeuAcalpha2-3Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4Glcbeta1-cer] (a substrate for Neu-3, but not for Neu-1). The expression of the two sialidase genes may be under differential regulation. Western blot analysis and enzymic comparison with recombinant sialidases have revealed that Neu-3 is induced as a major isoform in activated cells. The induction of Neu-1 and Neu-3 in T-cells is unique. In human monocytes and neutrophils stimulated with various agents, the only observation of sialidase induction has been by IL-1 in neutrophils. Functionally, a major difference has been observed in Jurkat T-cell lines over-expressing Neu-1- and Neu-3. Upon T-cell receptor stimulation, IL-2, interferon-gamma, IL-4 and IL-13 are induced in the Neu-1 line, whereas in the Neu-3 line the same cytokines are induced, with the exception of IL-4. Taken together, these results suggest an important immunoregulatory role for both Neu-1 and Neu-3 in humans.
Collapse
MESH Headings
- Animals
- CD28 Antigens/pharmacology
- CD3 Complex/pharmacology
- CD4-Positive T-Lymphocytes/enzymology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/enzymology
- Cells, Cultured
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Enzyme Induction/drug effects
- Enzyme Induction/physiology
- Eosinophilia/etiology
- Eosinophilia/pathology
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Insecta/cytology
- Isoenzymes/biosynthesis
- Isoenzymes/physiology
- Jurkat Cells/enzymology
- Leukocyte Count
- Lung/drug effects
- Lung/pathology
- Lymphocyte Activation/physiology
- Lysosomes/enzymology
- Mice
- Mice, Inbred DBA
- Mice, Inbred Strains
- Neuraminidase/biosynthesis
- Neuraminidase/deficiency
- Neuraminidase/physiology
- Organ Specificity/physiology
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocytes/drug effects
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Peng Wang
- Allergy Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, K-15-1600, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS, Butterfield LH. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother 2004; 27:191-200. [PMID: 15076136 DOI: 10.1097/00002371-200405000-00003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) have been shown to require a degree of maturation to stimulate antigen-specific, type 1 cytotoxic T lymphocytes in numerous murine models. Limited data in humans suggest that immature DCs (DC) can induce tolerance, yet a variety of nonmatured DC used clinically have induced antigen-specific type 1 T cells in vivo to various tumor-associated antigens. Use of adenovirus to engineer DCs is an efficient method for delivery of entire genes to DC, but the data on the biologic effects of viral transduction are contradictory. The authors demonstrate that DCs transduced with adenovirus (AdV) clearly become more mature by the phenotypic criterion of upregulation of CD83 and downregulation of CD14. Transduced DCs also decrease production of IL-10, and a subset of transduced DCs produce increased levels of IL-12 p70. This level of maturation is superior to that achieved by treatment of these cells with tumor necrosis factor-alpha or interferon-alpha but less pronounced than with CD40L trimer or CD40L + interferon-gamma. Maturation by AdV transduction alone leads to efficient stimulation of antigen-specific T cells from both healthy donors and patients with advanced cancer using two defined human tumor-associated antigens, MART-1 and AFP. Given the pivotal role of DCs in immune activation, it is important to understand the direct biologic effects of AdV on DCs, as well as the impact these biologic changes have on the stimulation of antigen-specific T cells. This study has important implications for the design of DC-based clinical trials.
Collapse
Affiliation(s)
- Lana Schumacher
- Division of Surgical Oncology, UCLA Medical Center, University of California Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Stamatos NM, Curreli S, Zella D, Cross AS. Desialylation of glycoconjugates on the surface of monocytes activates the extracellular signal-related kinases ERK 1/2 and results in enhanced production of specific cytokines. J Leukoc Biol 2003; 75:307-13. [PMID: 14634064 DOI: 10.1189/jlb.0503241] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Modulation of the sialic acid content of cell-surface glycoproteins and glycolipids influences the functional capacity of cells of the immune system. The role of sialidase(s) and the consequent desialylation of cell surface glycoconjugates in the activation of monocytes have not been established. In this study, we show that desialylation of glycoconjugates on the surface of purified monocytes using exogenous neuraminidase (NANase) activated extracellular signal-regulated kinase 1/2 (ERK 1/2), an intermediate in intracellular signaling pathways. Elevated levels of phosphorylated ERK 1/2 were detected in desialylated monocytes after 2 h of NANase treatment, and increased amounts persisted for at least 2 additional hours. Desialylation of cell surface glycoconjugates also led to increased production of interleukin (IL)-6, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta by NANase-treated monocytes that were maintained in culture. Neither increased levels of phosphorylated ERK 1/2 nor enhanced production of cytokines were detected when NANase was heat-inactivated before use, demonstrating the specificity of NANase action. Treatment of monocytes with gram-negative bacterial lipopolysaccharide (LPS) also led to enhanced production of IL-6, MIP-1alpha, and MIP-1beta. The amount of each of these cytokines that was produced was markedly increased when monocytes were desialylated with NANase before exposure to LPS. These results suggest that changes in the sialic acid content of surface glycoconjugates influence the activation of monocytes.
Collapse
Affiliation(s)
- Nicholas M Stamatos
- Institute of Human Virology, Department of Medicine, University of Maryland Medical Center, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
21
|
Efferson CL, Schickli J, Ko BK, Kawano K, Mouzi S, Palese P, García-Sastre A, Ioannides CG. Activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs) by human dendritic cells infected with an attenuated influenza A virus expressing a CTL epitope derived from the HER-2/neu proto-oncogene. J Virol 2003; 77:7411-24. [PMID: 12805440 PMCID: PMC164815 DOI: 10.1128/jvi.77.13.7411-7424.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of cancer vaccines requires approaches to induce expansion and functional differentiation of tumor antigen-specific cytotoxic T lymphocyte (CTL) effectors which posses cytolytic capability and produce cytokines. Efficient induction of such cells is hindered by the poor immunogenicity of tumor antigens and by the poor transduction efficiency of dendritic cells (DCs) with current nonreplicating vectors. We have investigated the use of influenza A virus, a potent viral inducer of CTLs, as a vector expressing the immunodominant HER-2 CTL epitope KIF (E75). For this purpose, an attenuated influenza A/PR8/34 virus with a truncated nonstructural (NS1) gene was generated containing the E75 epitope in its neuraminidase protein (KIF-NS virus). Stimulation of peripheral blood mononuclear cells from healthy donors and of tumor-associated lymphocytes from ovarian and breast cancer patients with DCs infected with KIF-NS virus (KIF-NS DC) induced CTLs that specifically recognized the peptide KIF and HER-2-expressing tumors in cytotoxicity assays and secreted gamma interferon (IFN-gamma) and interleukin-2 at recall with peptide. Priming with KIF-NS DCs increased the number of E75(+) CD45RO(+) cells by more than 10-fold compared to nonstimulated cells. In addition, KIF-NS virus induced high levels of IFN-alpha in DCs. This is the first report demonstrating induction of human epitope-specific CTLs against a tumor-associated antigen with a live attenuated recombinant influenza virus vector. Such vectors may provide a novel approach for tumor antigen delivery, lymphocyte activation, and differentiation in human cancer vaccine development.
Collapse
Affiliation(s)
- Clay L Efferson
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Daniels MA, Hogquist KA, Jameson SC. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat Immunol 2002; 3:903-10. [PMID: 12352967 DOI: 10.1038/ni1002-903] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fate and functional activity of T lymphocytes depend largely on the precise timing of gene expression and protein production. However, it is clear that post-translational modification of proteins affects their functional properties. Although modifications such as phosphorylation have been intensely studied by immunologists, less attention has been paid to the impact that changes in glycosylation have on protein function. However, there is considerable evidence that glycosylation plays a key role in immune regulation. We will focus here on examples in which differential glycosylation affects the development, survival or reactivity of T cells.
Collapse
Affiliation(s)
- Mark A Daniels
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
23
|
Palma JP, Yauch RL, Kang HK, Lee HG, Kim BS. Preferential induction of IL-10 in APC correlates with a switch from Th1 to Th2 response following infection with a low pathogenic variant of Theiler's virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4221-30. [PMID: 11937584 DOI: 10.4049/jimmunol.168.8.4221] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theiler's murine encephalomyelitis virus induces immune-mediated demyelination in susceptible mice after intracerebral inoculation. A naturally occurring, low pathogenic Theiler's murine encephalomyelitis virus variant showed a single amino acid change within a predominant Th epitope from lysine to arginine at position 244 of VP1. This substitution is the only one present in the entire viral capsid proteins. In this paper, we demonstrate that the majority of T cells specific for VP1(233-250) and VP2(74-86) from wild-type virus-infected mice are Th1 type and these VP1-specific cells poorly recognize the variant VP1 epitope (VP1(K244R)) containing the substituted arginine. In contrast, the Th2-type T cell population specific for these epitopes predominates in variant virus-infected mice. Immunization with UV-inactivated virus or VP1 epitope peptides could not duplicate the preferential Th1/Th2 responses following viral infection. Interestingly, the major APC populations, such as dendritic cells and macrophages, produce IL-12 on exposure to the pathogenic wild-type virus, whereas they preferentially produce IL-10 in response to the low pathogenic variant virus. Thus, such a spontaneous mutant virus may have a profoundly different capability to induce Th-type responses via selective production of cytokines involved in T cell differentiation and the consequent pathogenicity of virally induced immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- JoAnn P Palma
- Department of Microbiology-Immunology and Pathology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
24
|
Oh S, Belz GT, Eichelberger MC. Viral neuraminidase treatment of dendritic cells enhances antigen-specific CD8(+) T cell proliferation, but does not account for the CD4(+) T cell independence of the CD8(+) T cell response during influenza virus infection. Virology 2001; 286:403-11. [PMID: 11485408 DOI: 10.1006/viro.2001.0992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro studies demonstrate that the increased alloreactive T cell response to dendritic cells (DC) that are treated with either live or inactivated influenza virus A/PR/8/34 is due to viral neuraminidase (NA) activity. Since virus-specific cytotoxic T lymphocytes (CTL) play an important role in immunity to heterologous influenza strains, we compared the activation of CD8(+) T cells by untreated and NA-treated DC. Increased CTL activity was induced by NA-treated DC both in vitro and in vivo. Since the generation of CTL in response to influenza virus infection does not require prior "activation" of DC by CD4(+) T cells (as is the case for many antigens), we asked whether NA activity contributed to this unconditional CD8(+) T cell response. This was not the case. Future studies will determine the factors that are responsible for the CD4(+) T-cell-independent influenza virus-specific CTL response.
Collapse
Affiliation(s)
- SangKon Oh
- Center for Immunization Research, Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|