1
|
Wildi N, Seuberlich T. The Roles of the 5' and 3' Untranslated Regions in Human Astrovirus Replication. Viruses 2023; 15:1402. [PMID: 37376701 DOI: 10.3390/v15061402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Astroviruses are small nonenveloped single-stranded RNA viruses with a positive sense genome. They are known to cause gastrointestinal disease in a broad spectrum of species. Although astroviruses are distributed worldwide, a gap in knowledge of their biology and disease pathogenesis persists. Many positive-sense single-stranded RNA viruses show conserved and functionally important structures in their 5' and 3' untranslated regions (UTRs). However, not much is known about the role of the 5' and 3' UTRs in the viral replication of HAstV-1. We analyzed the UTRs of HAstV-1 for secondary RNA structures and mutated them, resulting in partial or total UTR deletion. We used a reverse genetic system to study the production of infectious viral particles and to quantify protein expression in the 5' and 3' UTR mutants, and we established an HAstV-1 replicon system containing two reporter cassettes in open reading frames 1a and 2, respectively. Our data show that 3' UTR deletions almost completely abolished viral protein expression and that 5' UTR deletions led to a reduction in infectious virus particles in infection experiments. This indicates that the presence of the UTRs is essential for the life cycle of HAstV-1 and opens avenues for further research.
Collapse
Affiliation(s)
- Nicole Wildi
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Zhang Q, Zhu S, Zhang X, Su L, Ni J, Zhang Y, Fang L. Recent insights into reverse genetics of norovirus. Virus Res 2023; 325:199046. [PMID: 36657615 DOI: 10.1016/j.virusres.2023.199046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/23/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Norovirus is the leading cause of viral gastroenteritis globally, and poses substantial threats to public health. Despite substantial progress made in preventing norovirus diseases, the lack of a robust virus culture system has hampered biological research and effective strategies to combat this pathogen. Reverse genetic system is the technique to generate infectious viruses from cloned genetic constructs, which is a powerful tool for the investigation of viral pathogenesis and for the development of novel drugs and vaccines. The strategies of reverse genetics include bacterial artificial chromosomes, vaccinia virus vectors, and entirely plasmid-based systems. Since each strategy has its pros and cons, choosing appropriate approaches will greatly improve the efficiency of virus rescue. Reverse genetic systems that have been employed for norovirus greatly extend its life cycle and facilitate the development of medical countermeasures. In this review, we summarize the current knowledge on the structure, transmission, genetic evolution and clinical manifestations of norovirus, and describe recent advances in the studies of norovirus reverse genetics as well as its future prospects for therapeutics and vaccine development.
Collapse
Affiliation(s)
- Qinyi Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shuirong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Santos-Valencia JC, Cancio-Lonches C, Trujillo-Uscanga A, Alvarado-Hernández B, Lagunes-Guillén A, Gutiérrez-Escolano AL. Annexin A2 associates to feline calicivirus RNA in the replication complexes from infected cells and participates in an efficient viral replication. Virus Res 2018; 261:1-8. [PMID: 30543874 DOI: 10.1016/j.virusres.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023]
Abstract
Cellular proteins have been identified to participate in calicivirus replication in association with viral proteins and/or viral RNAs. By mass spectrometry from pull-down assays, we identified several cellular proteins bound to the feline calicivirus (FCV) genomic RNA; among them the lipid raft-associated scaffold protein Annexin (Anx) A2. AnxA2 colocalizes with FCV NS6/7 protein and with the dsRNA in infected cells; moreover, it was found associated with the viral RNA in the membrane fraction corresponding to the replication complexes (RCs), suggesting its role during FCV replication. AnxA2-knockdown from CrFK cells prior to infection with FCV caused a delay in the cytopathic effect, a strong reduction of viral non-structural proteins and dsRNA production, and a decrease of FCV yield in both cell-associated and supernatant fractions. Taken together, these results indicate that AnxA2 associates to the genomic RNA of FCV and is required for an efficient FCV replication.
Collapse
Affiliation(s)
- Juan Carlos Santos-Valencia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Beatriz Alvarado-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.
| |
Collapse
|
4
|
De Nova-Ocampo M, Soliman MC, Espinosa-Hernández W, Velez-Del Valle C, Salas-Benito J, Valdés-Flores J, García-Morales L. Human astroviruses: in silico analysis of the untranslated region and putative binding sites of cellular proteins. Mol Biol Rep 2018; 46:1413-1424. [PMID: 30448895 PMCID: PMC7089336 DOI: 10.1007/s11033-018-4498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Human astrovirus (HAstV) constitutes a major cause of acute gastroenteritis in children. The viral 5' and 3' untranslated regions (UTR) have been involved in the regulation of several molecular mechanisms. However, in astrovirues have been less characterized. Here, we analyzed the secondary structures of the 5' and 3' UTR of HAstV, as well as their putative target sites that might be recognized by cellular factors. To our knowledge, this is the first bioinformatic analysis that predicts the HAstV 5' UTR secondary structure. The analysis showed that both the UTR sequence and secondary structure are highly conserved in all HAstVs analyzed, suggesting their regulatory role of viral activities. Notably, the UTRs of HAstVs contain putative binding sites for the serine/arginine-rich factors SRSF2, SRSF5, SRSF6, SRSF3, and the multifunctional hnRNPE2 protein. More importantly, putative binding sites for PTB were localized in single-stranded RNA sequences, while hnRNPE2 sites were localized in double-stranded sequence of the HAstV 5' and 3' UTR structures. These analyses suggest that the combination of SRSF proteins, hnRNPE2 and PTB described here could be involved in the maintenance of the secondary structure of the HAstVs, possibly allowing the recruitment of the replication complex that selects and recruits viral RNA replication templates.
Collapse
Affiliation(s)
- Mónica De Nova-Ocampo
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico.
| | - Mayra Cristina Soliman
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Wendy Espinosa-Hernández
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Cristina Velez-Del Valle
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN 2508 Col. San Pedro Zacatenco, 07360, Ciudad de Mexico, Mexico
| | - Juan Salas-Benito
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Jesús Valdés-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN 2508 Col. San Pedro Zacatenco, 07360, Ciudad de Mexico, Mexico
| | - Lorena García-Morales
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| |
Collapse
|
5
|
Hernández BA, Sandoval-Jaime C, Sosnovtsev SV, Green KY, Gutiérrez-Escolano AL. Nucleolin promotes in vitro translation of feline calicivirus genomic RNA. Virology 2016; 489:51-62. [PMID: 26707270 PMCID: PMC4761316 DOI: 10.1016/j.virol.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Feline calicivirus depends on host-cell proteins for its replication. We previously showed that knockdown of nucleolin (NCL), a phosphoprotein involved in ribosome biogenesis, resulted in the reduction of FCV protein synthesis and virus yield. Here, we found that NCL may not be involved in FCV binding and entry into cells, but it binds to both ends of the FCV genomic RNA, and stimulates its translation in vitro. AGRO100, an aptamer that specifically binds and inactivates NCL, caused a strong reduction in FCV protein synthesis. This effect could be reversed by the addition of full-length NCL but not by a ΔrNCL, lacking the N-terminal domain. Consistent with this, FCV infection of CrFK cells stably expressing ΔrNCL led to a reduction in virus protein translation. These results suggest that NCL is part of the FCV RNA translational complex, and that the N-terminal part of the protein is required for efficient FCV replication.
Collapse
Affiliation(s)
- Beatriz Alvarado Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carlos Sandoval-Jaime
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos, Mexico
| | | | - Kim Y Green
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.
| |
Collapse
|
6
|
Sarvestani ST, Cotton B, Fritzlar S, O'Donnell TB, Mackenzie JM. Norovirus Infection: Replication, Manipulation of Host, and Interaction with the Host Immune Response. J Interferon Cytokine Res 2016; 36:215-25. [PMID: 27046239 DOI: 10.1089/jir.2015.0124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Noroviruses (NoVs) belong to the Caliciviridae family of viruses and are responsible for causing the majority of gastroenteritis outbreaks worldwide. In the past decade, research on NoV biology has intensified because of the discovery of murine NoV and subsequently the first cell culture system and small animal model for NoV replication and pathogenesis. In this review, we discuss the current literature on NoV biology, focusing particularly on NoV replication and the interaction between NoV and the host immune response. Understanding the NoV replication cycle and its interaction with cellular processes and innate immune immunity will help develop molecular targets to control human NoV infection and prevent outbreaks. In addition to the innate immune response, we have documented the current efforts to develop NoV vaccines to control outbreaks.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| | - Ben Cotton
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia .,2 Department of Microbiology, La Trobe University , Melbourne, Australia
| | - Svenja Fritzlar
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| | - Tanya B O'Donnell
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| | - Jason M Mackenzie
- 1 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, Australia
| |
Collapse
|
7
|
Alhatlani B, Vashist S, Goodfellow I. Functions of the 5' and 3' ends of calicivirus genomes. Virus Res 2015; 206:134-43. [PMID: 25678268 PMCID: PMC4509552 DOI: 10.1016/j.virusres.2015.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Noroviruses are now recognized as the most common cause of viral gastroenteritis. The 5′ and 3′ ends of caliciviruses genome fold into characteristic structures conserved within the family. The tirmini of calicivirus genome is involved in recruiting host factors to the replication complex. The 5′ and 3′ ends of the MNV genome have been shown to interact with host proteins and further stabilize this interaction.
The Caliciviridae family of small positive sense RNA viruses contains a diverse range of pathogens of both man and animals. The molecular mechanisms of calicivirus genome replication and translation have not been as widely studied as many other RNA viruses. With the relatively recent development of robust cell culture and reverse genetics systems for several members of the Caliciviridae family, a more in-depth analysis of the finer detail of the viral life cycle has now been obtained. As a result, the identification and characterization of the role of RNA structures in the calicivirus life cycle has also been possible. This review aims to summarize the current state of knowledge with respect to the role of RNA structures at the termini of calicivirus genomes.
Collapse
Affiliation(s)
- Bader Alhatlani
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK.
| | - Surender Vashist
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK.
| |
Collapse
|
8
|
Espinosa-Hernández W, Velez-Uriza D, Valdés J, Vélez-Del Valle C, Salas-Benito J, Martínez-Contreras R, García-Espítia M, Salas-Benito M, Vega-Almeida T, De Nova-Ocampo M. PTB binds to the 3' untranslated region of the human astrovirus type 8: a possible role in viral replication. PLoS One 2014; 9:e113113. [PMID: 25406089 PMCID: PMC4236132 DOI: 10.1371/journal.pone.0113113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The 3′ untranslated region (3′UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3′UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3′UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3′UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3′UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3′UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3′UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3′UTR HAstV-8 and is required or participates in viral replication.
Collapse
Affiliation(s)
- Wendy Espinosa-Hernández
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Col. Fracc. La Escalera-Ticomán, México D.F., México
| | - Dora Velez-Uriza
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Col. Fracc. La Escalera-Ticomán, México D.F., México
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Col. San Pedro Zacatenco, México D.F., México
| | - Cristina Vélez-Del Valle
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Col. San Pedro Zacatenco, México D.F., México
| | - Juan Salas-Benito
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Col. Fracc. La Escalera-Ticomán, México D.F., México
| | - Rebeca Martínez-Contreras
- Centro de Investigaciones en Ciencias Microbiológicas, Edificio 103, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Col. San Manuel, Puebla, México
| | - Matilde García-Espítia
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Col. Fracc. La Escalera-Ticomán, México D.F., México
| | - Mariana Salas-Benito
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Col. Fracc. La Escalera-Ticomán, México D.F., México
| | - Tania Vega-Almeida
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Circuito interior, Ciudad Universitaria, México D.F., México
| | - Mónica De Nova-Ocampo
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Col. Fracc. La Escalera-Ticomán, México D.F., México
- * E-mail:
| |
Collapse
|
9
|
Abstract
ABSTRACT: The Caliciviridae includes small positive-sense, ssRNA viruses, which infect both animals and humans and cause a wide range of diseases. Human caliciviruses are considered the leading cause of outbreaks and sporadic cases of viral gastroenteritis worldwide. Caliciviruses are nonenveloped with a positive-sense, ssRNA genome. As with other positive-sense, ssRNA viruses, they require interactions between viral components and host-cellular factors at different steps along the viral life cycle. Although knowledge about the role of host-cell proteins in the Caliciviridae life cycle remains modest, evidence on this topic is rapidly emerging. This article compiles and discusses the information regarding the involvement of host-cellular factors in the various stages of the calicivirus replication process, emphasizing factors that might be involved in viral translation and/or RNA replication.
Collapse
Affiliation(s)
- Ana Lorena Gutiérrez-Escolano
- *Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
10
|
Abstract
Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
11
|
Norovirus genome circularization and efficient replication are facilitated by binding of PCBP2 and hnRNP A1. J Virol 2013; 87:11371-87. [PMID: 23946460 DOI: 10.1128/jvi.03433-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5'-3' interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5'-3' interactions and formed ribonucleoprotein complexes with the 5' and 3' ends of the MNV-1 genomic RNA. Mutations within the 3' complementary sequences (CS) that disrupt the 5'-3'-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3'-end sequence and/or the lack of complementarity with the 5' end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5' and 3' ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.
Collapse
|
12
|
Identification of RNA-protein interaction networks involved in the norovirus life cycle. J Virol 2012; 86:11977-90. [PMID: 22933270 DOI: 10.1128/jvi.00432-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human noroviruses are one of the major causes of acute gastroenteritis in the developed world, yet our understanding of their molecular mechanisms of genome translation and replication lags behind that for many RNA viruses. Due to the nonculturable nature of human noroviruses, many related members of the Caliciviridae family of small RNA viruses are often used as model systems to dissect the finer details of the norovirus life cycle. Murine norovirus (MNV) has provided one such system with which to study the basic mechanisms of norovirus translation and replication in cell culture. In this report we describe the use of riboproteomics to identify host factors that interact with the extremities of the MNV genome. This network of RNA-protein interactions contains many well-characterized host factors, including PTB, La, and DDX3, which have been shown to play a role in the life cycle of other RNA viruses. By using RNA coimmunoprecipitation, we confirmed that a number of the factors identified using riboproteomics are associated with the viral RNA during virus replication in cell culture. We further demonstrated that RNA inhibition-mediated knockdown of the intracellular levels of a number of these factors inhibits or slows norovirus replication in cell culture, allowing identification of new intracellular targets for this important group of pathogens.
Collapse
|
13
|
Cancio-Lonches C, Yocupicio-Monroy M, Sandoval-Jaime C, Galvan-Mendoza I, Ureña L, Vashist S, Goodfellow I, Salas-Benito J, Gutiérrez-Escolano AL. Nucleolin interacts with the feline calicivirus 3' untranslated region and the protease-polymerase NS6 and NS7 proteins, playing a role in virus replication. J Virol 2011; 85:8056-68. [PMID: 21680514 PMCID: PMC3147956 DOI: 10.1128/jvi.01878-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/29/2011] [Indexed: 12/19/2022] Open
Abstract
Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication.
Collapse
Affiliation(s)
- Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
- Departamento de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Distrito Federal, México
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Distrito Federal, México
| | - Carlos Sandoval-Jaime
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
| | - Iván Galvan-Mendoza
- Laboratorios Centrales, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
| | - Luis Ureña
- Section of Virology, Faculty of Medicine, Imperial College of London, St. Mary's Campus, Norkfolk Place, London W2 1PG, United Kingdom
| | - Surender Vashist
- Section of Virology, Faculty of Medicine, Imperial College of London, St. Mary's Campus, Norkfolk Place, London W2 1PG, United Kingdom
| | - Ian Goodfellow
- Section of Virology, Faculty of Medicine, Imperial College of London, St. Mary's Campus, Norkfolk Place, London W2 1PG, United Kingdom
| | - Juan Salas-Benito
- Departamento de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Distrito Federal, México
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
| |
Collapse
|
14
|
Karakasiliotis I, Vashist S, Bailey D, Abente EJ, Green KY, Roberts LO, Sosnovtsev SV, Goodfellow IG. Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One 2010; 5:e9562. [PMID: 20224775 PMCID: PMC2835748 DOI: 10.1371/journal.pone.0009562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Positive strand RNA viruses rely heavily on host cell RNA binding proteins for various aspects of their life cycle. Such proteins interact with sequences usually present at the 5' or 3' extremities of the viral RNA genome, to regulate viral translation and/or replication. We have previously reported that the well characterized host RNA binding protein polypyrimidine tract binding protein (PTB) interacts with the 5'end of the feline calicivirus (FCV) genomic and subgenomic RNAs, playing a role in the FCV life cycle. PRINCIPAL FINDINGS We have demonstrated that PTB interacts with at least two binding sites within the 5'end of the FCV genome. In vitro translation indicated that PTB may function as a negative regulator of FCV translation and this was subsequently confirmed as the translation of the viral subgenomic RNA in PTB siRNA treated cells was stimulated under conditions in which RNA replication could not occur. We also observed that PTB redistributes from the nucleus to the cytoplasm during FCV infection, partially localizing to viral replication complexes, suggesting that PTB binding may be involved in the switch from translation to replication. Reverse genetics studies demonstrated that synonymous mutations in the PTB binding sites result in a cell-type specific defect in FCV replication. CONCLUSIONS Our data indicates that PTB may function to negatively regulate FCV translation initiation. To reconcile this with efficient virus replication in cells, we propose a putative model for the function of PTB in the FCV life cycle. It is possible that during the early stages of infection, viral RNA is translated in the absence of PTB, however, as the levels of viral proteins increase, the nuclear-cytoplasmic shuttling of PTB is altered, increasing the cytoplasmic levels of PTB, inhibiting viral translation. Whether PTB acts directly to repress translation initiation or via the recruitment of other factors remains to be determined but this may contribute to the stimulation of viral RNA replication via clearance of ribosomes from viral RNA.
Collapse
Affiliation(s)
| | - Surender Vashist
- Department of Virology, Imperial College London, London, United Kingdom
| | - Dalan Bailey
- Department of Virology, Imperial College London, London, United Kingdom
| | - Eugenio J. Abente
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Kim Y. Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa O. Roberts
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Stanislav V. Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian G. Goodfellow
- Department of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Functional analysis of RNA structures present at the 3' extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J Virol 2010; 84:2859-70. [PMID: 20053745 DOI: 10.1128/jvi.02053-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions of host cell factors with RNA sequences and structures in the genomes of positive-strand RNA viruses play various roles in the life cycles of these viruses. Our understanding of the functional RNA elements present in norovirus genomes to date has been limited largely to in vitro analysis. However, we recently used reverse genetics to identify evolutionarily conserved RNA structures and sequences required for norovirus replication. We have now undertaken a more detailed analysis of RNA structures present at the 3' extremity of the murine norovirus (MNV) genome. Biochemical data indicate the presence of three stable stem-loops, including two in the untranslated region, and a single-stranded polypyrimidine tract [p(Y)] of variable length between MNV isolates, within the terminal stem-loop structure. The well-characterized host cell pyrimidine binding proteins PTB and PCBP bound the 3'-untranslated region via an interaction with this variable sequence. Viruses lacking the p(Y) tract were viable both in cell culture and upon mouse infection, demonstrating that this interaction was not essential for virus replication. However, competition analysis with wild-type MNV in cell culture indicated that the loss of the p(Y) tract was associated with a fitness cost. Furthermore, a p(Y)-deleted mutant showed a reduction in virulence in the STAT1(-/-) mouse model, highlighting the role of RNA structures in norovirus pathogenesis. This work highlights how, like with other positive-strand RNA viruses, RNA structures present at the termini of the norovirus genome play important roles in virus replication and virulence.
Collapse
|
16
|
Vashist S, Bailey D, Putics A, Goodfellow I. Model systems for the study of human norovirus Biology. Future Virol 2009; 4:353-367. [PMID: 21516251 PMCID: PMC3079900 DOI: 10.2217/fvl.09.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relative contribution of norovirus to disease burden on society has only recently been established and they are now established as a major cause of gastroenteritis in the developed world. However, despite the medical relevance of these viruses, an efficient in vitro cell culture system for human noroviruses has yet to be developed. As a result, much of our knowledge on the basic mechanisms of norovirus biology has come from studies using other members of the Caliciviridae family of small positive stranded RNA viruses. Here we aim to summarise the recent advances in the field, highlighting how model systems have played a key role in increasing our knowledge of this prevalent pathogen.
Collapse
|
17
|
Vashist S, Anantpadma M, Sharma H, Vrati S. La protein binds the predicted loop structures in the 3' non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 2009; 90:1343-1352. [PMID: 19264640 DOI: 10.1099/vir.0.010850-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with non-coding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may bind to viral or host proteins important for viral replication. It has been shown previously that three proteins of 32, 35 and 50 kDa bind the 3' stem-loop (SL) structure of the JEV 3' NCR, and one of these was identified as 36 kDa Mov34 protein. Using electrophoretic mobility-shift and UV cross-linking assays, as well as a yeast three-hybrid system, it was shown here that La protein binds to the 3' SL of JEV. The binding was stable under high-salt conditions (300 mM KCl) and the affinity of the RNA-protein interaction was high; the dissociation constant (Kd) for binding of La protein to the 3' SL was 12 nM, indicating that this RNA-protein interaction is physiologically plausible. Only the N-terminal half of La protein containing RNA recognition motifs 1 and 2 interacted with JEV RNA. An RNA toe-printing assay followed by deletion mutagenesis showed that La protein bound to predicted loop structures in the 3' SL RNA. Furthermore, it was shown that small interfering RNA-mediated downregulation of La protein resulted in repression of JEV replication in cultured cells.
Collapse
Affiliation(s)
| | | | - Himani Sharma
- National Institute of Immunology, New Delhi 110067, India
| | | |
Collapse
|
18
|
Waggoner SA, Johannes GJ, Liebhaber SA. Depletion of the poly(C)-binding proteins alphaCP1 and alphaCP2 from K562 cells leads to p53-independent induction of cyclin-dependent kinase inhibitor (CDKN1A) and G1 arrest. J Biol Chem 2009; 284:9039-49. [PMID: 19211566 PMCID: PMC2666552 DOI: 10.1074/jbc.m806986200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/03/2009] [Indexed: 12/23/2022] Open
Abstract
The alpha-globin poly(C)-binding proteins (alphaCPs) comprise an abundant and widely expressed set of K-homolog domain RNA-binding proteins. alphaCPs regulate the expression of a number of cellular and viral mRNAs at the levels of splicing, stability, and translation. Previous surveys have identified 160 mRNAs that are bound by alphaCP in the human hematopoietic cell line, K562. To explore the functions of these alphaCP/mRNA interactions, we identified mRNAs whose levels are altered in K562 cells acutely depleted of the two major alphaCP proteins, alphaCP1 and alphaCP2. Microarray analysis identified 27 mRNAs that are down-regulated and 14 mRNAs that are up-regulated in the alphaCP1/2-co-depleted cells. This alphaCP1/2 co-depletion was also noted to inhibit cell proliferation and trigger a G(1) cell cycle arrest. Targeted analysis of genes involved in cell cycle control revealed a marked increase in p21(WAF) mRNA and protein. Analysis of mRNP complexes in K562 cells demonstrates in vivo association of p21(WAF) mRNA with alphaCP1 and alphaCP2. In vitro binding assays indicate that a 127-nucleotide region of the 3'-untranslated region of p21(WAF) interacts with both alphaCP1 and alphaCP2, and co-depletion of alphaCP1/2 results in a marked increase in p21(WAF) mRNA half-life. p21(WAF) induction and G(1) arrest in the alphaCP1/2-co-depleted cells occur in the absence of p53 and are not observed in cells depleted of the individual alphaCP isoforms. The apparent redundancy in the actions of alphaCP1 and alphaCP2 upon p21(WAF) expression correlates with a parallel redundancy in their effects on cell cycle control. These data reveal a pivotal role for alphaCP1 and alphaCP2 in a p53-independent pathway of p21(WAF) control and cell cycle progression.
Collapse
Affiliation(s)
- Shelly A Waggoner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
19
|
Cellular proteins mediate 5'-3' end contacts of Norwalk virus genomic RNA. Virology 2009; 387:322-30. [PMID: 19324388 DOI: 10.1016/j.virol.2009.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/30/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022]
Abstract
Long-range RNA-RNA interactions between the 5' and 3' ends are a common feature involved in the regulation of both the initiation of translation and the synthesis of the viral genomic RNAs. These interactions either take place by direct RNA-RNA contacts or can be mediated by proteins. By in silico analysis, we found three possible complementary sequences (CS) between the 5' and the 3' ends of the Norwalk virus genomic RNA. Co-precipitation assays demonstrated that physical contacts between the 5' and the 3' ends of the NV genomic RNA were stabilized by cellular proteins. Mutations and deletions within these regions, that altered the formation of the CS-1 motif disrupted the 5'-3' end contacts, while mutations that restore complementarity of the CS-1 motif, recover the ability to form these contacts. These results suggest that the NV genomic 5'-3' end contacts initially occur by RNA-RNA interactions but are further stabilized by cellular proteins.
Collapse
|
20
|
Murine norovirus, a recently discovered and highly prevalent viral agent of mice. Lab Anim (NY) 2008; 37:314-20. [PMID: 18568010 DOI: 10.1038/laban0708-314] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/30/2008] [Indexed: 11/08/2022]
Abstract
Murine norovirus (MNV), a recently discovered viral agent of laboratory mice, is closely related to human norovirus, a contagious pathogen known to cause gastroenteritis. The prototype strain of MNV (MNV-1) was first isolated and characterized in 2003 as a sporadic, lethal pathogen in certain strains of immunocompromised knockout mice. Serological surveillance data from mouse colonies throughout the US and Canada have since shown that MNV is highly prevalent. Because MNV is unique among norovirus strains in its ability to replicate in cell culture, it serves as the most accessible model to elucidate the mechanisms of infection and replication of human norovirus. The author discusses the genetic diversity of MNV, its prevalence, pathology and potential research implications, as well as techniques for detection and eradication of this virus.
Collapse
|
21
|
Salim O, Clarke IN, Lambden PR. Functional analysis of the 5' genomic sequence of a bovine norovirus. PLoS One 2008; 3:e2169. [PMID: 18478070 PMCID: PMC2364642 DOI: 10.1371/journal.pone.0002169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/04/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Jena Virus (JV), a bovine Norovirus, causes enteric disease in cattle and represents a potential model for the study of enteric norovirus infection and pathogenesis. The positive sense RNA genome of JV is organised into ORF1 (non-structural proteins), ORF2 (major capsid protein) and ORF3 (minor capsid protein). The lack of a cell culture system for studying JV replication has meant that work to date has relied upon in vitro systems to study non-structural protein synthesis and processing. PRINCIPAL FINDINGS Only two of the three major ORF1 proteins were identified (p110 and 2C) following in vitro translation of JV RNA, the N-term protein was not detected. The N-term encoding genomic sequence (5'GS) was tested for IRES-like function in a bi-cistronic system and displayed no evidence of IRES-like activity. The site of translation initiation in JV was determined to be at the predicted nucleotide 22. Following the insertion of an epitope within the 5'GS the JV N-term protein was identified in vitro and within RNA transfected cells. CONCLUSIONS The in vitro transcription/translation system is currently the best system for analysing protein synthesis and processing in JV. Unlike similarly studied human noroviruses JV initially did not appear to express the N-terminal protein, presenting the possibility that the encoding RNA sequence had a regulatory function, most likely involved in translation initiation in an IRES-like manner. This was not the case and, following determination of the site of translation initiation the N-term protein was detected using an epitope tag, both in vitro and in vivo. Although slightly larger than predicted the N-term protein was detected in a processed form in vivo, thus not only demonstrating initial translation of the ORF1 polyprotein but also activity of the viral protease. These findings indicate that the block to noroviral replication in cultured cells lies elsewhere.
Collapse
Affiliation(s)
- Omar Salim
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom.
| | | | | |
Collapse
|
22
|
Thackray LB, Wobus CE, Chachu KA, Liu B, Alegre ER, Henderson KS, Kelley ST, Virgin HW. Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 2007; 81:10460-73. [PMID: 17652401 PMCID: PMC2045448 DOI: 10.1128/jvi.00783-07] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Viruses within the genus Norovirus of the family Caliciviridae are the major cause of acute, nonbacterial gastroenteritis worldwide. Human noroviruses are genetically diverse, with up to 57% divergence in capsid protein sequences, and comprise three genogroups. The significance of such genetic diversity is not yet understood. The discovery of murine norovirus (MNV) and its ability to productively infect cultured murine macrophages and dendritic cells has provided an opportunity to determine the functional consequences of norovirus diversity in vitro and in vivo. Therefore, we compared the full-length genomes of 21 new MNV isolates with five previously sequenced MNV genomes and demonstrated a conserved genomic organization consisting of four open reading frames (ORFs) and a previously unknown region of nucleotide conservation in ORF2. A phylogenetic analysis of all 26 MNV genomes revealed 15 distinct MNV strains, with up to 13% divergence at the nucleotide level, that comprise a single genotype and genogroup. Evidence for recombination within ORF2 in several MNV genomes was detected by multiple methods. Serological analyses comparing neutralizing antibody responses between highly divergent strains suggested that the MNV genogroup comprises a single serotype. Within this single genogroup, MNV strains exhibited considerable biological diversity in their ability to grow in culture and to infect and/or persist in wild-type mice. The isolation and characterization of multiple MNV strains illustrate how genetic analysis may underestimate the biological diversity of noroviruses and provide a molecular map for future studies of MNV biology.
Collapse
Affiliation(s)
- Larissa B Thackray
- Department of Pathology and Immunology, Box 8118, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Karakasiliotis I, Chaudhry Y, Roberts LO, Goodfellow IG. Feline calicivirus replication: requirement for polypyrimidine tract-binding protein is temperature-dependent. J Gen Virol 2006; 87:3339-3347. [PMID: 17030868 DOI: 10.1099/vir.0.82153-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The interaction of host-cell nucleic acid-binding proteins with the genomes of positive-stranded RNA viruses is known to play a role in the translation and replication of many viruses. To date, however, the characterization of similar interactions with the genomes of members of the family Caliciviridae has been limited to in vitro binding analysis. In this study, Feline calicivirus (FCV) has been used as a model system to identify and characterize the role of host-cell factors that interact with the viral RNA. It was demonstrated that polypyrimidine tract-binding protein (PTB) interacts specifically with the 5' sequences of the FCV genomic and subgenomic RNAs. Using RNA interference it was shown that PTB is required for efficient FCV replication in a temperature-dependent manner. siRNA-mediated knockdown of PTB resulted in a 15- to 100-fold reduction in virus titre, as well as a concomitant reduction in viral RNA and protein synthesis at 32 degrees C. In addition, virus-induced cytopathic effect was significantly delayed as a result of an siRNA-mediated reduction in PTB levels. A role for PTB in the calicivirus life cycle was more apparent at temperatures above and below 37 degrees C, fitting with the hypothesis that PTB functions as an RNA chaperone, potentially aiding the folding of RNA into functional structures. This is the first functional demonstration of a host-cell protein interacting with a calicivirus RNA.
Collapse
Affiliation(s)
- Ioannis Karakasiliotis
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Yasmin Chaudhry
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Lisa O Roberts
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ian G Goodfellow
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
24
|
Escobar-Herrera J, Cancio C, Guzmán GI, Villegas-Sepulveda N, Estrada-García T, García-Lozano H, Gómez-Santiago F, Gutiérrez-Escolano AL. Construction of an internal RT-PCR standard control for the detection of human caliciviruses in stool. J Virol Methods 2006; 137:334-8. [PMID: 16857274 DOI: 10.1016/j.jviromet.2006.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 11/27/2022]
Abstract
RT-PCR is the most sensitive assay for the detection of human caliciviruses (HuCV) in stool and environmental samples. However, false negative results are commonly obtained due to the presence of RT-PCR inhibitors. In order to exclude such false negative results, an internal control (IC) was developed for the assay by cloning a 319 nt sequence of the Norwalk virus (NV) polymerase containing a 156 nt cDNA insert. The RT-PCR assay was carried out using RNA derived from the constructed plasmid and a primer set previously described for calicivirus detection, resulting in a 475 nt product. Distinct bands of the internal control and the viral specific RT-PCR products (319 nt) were obtained when the internal control was added to the samples. Similar results were also obtained when both the control RNA and viral RNA were seeded into stool samples from asymptomatic volunteers, or when the internal control was included into positive samples. Since the primer set used in the assays can detect a wide range of strains in both norovirus and sapovirus genera, this internal control should have a broad application for the diagnosis of human caliciviruses diagnosis in both clinical and environmental samples.
Collapse
Affiliation(s)
- Jaime Escobar-Herrera
- Department of Experimental Pathology, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, México, D.F. C.P. 07360, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Snippe M, Goldbach R, Kormelink R. Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 2006; 65:63-120. [PMID: 16387194 DOI: 10.1016/s0065-3527(05)65003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjolein Snippe
- Department of Asthma, Allergy, and Respiratory Diseases, King's College, London, WC2R 2LS United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
This chapter provides an updated view of the host factors that are, at present, believed to participate in replication/transcription of RNA viruses. One of the major hurdles faced when attempting to identify host factors specifically involved in viral RNA replication/transcription is how to discriminate these factors from those involved in translation. Several of the host factors shown to affect viral RNA synthesis are factors known to be involved in protein synthesis, for example, translation factors. In addition, some of the factors identified to date appear to influence viral RNA amplification as well as viral protein synthesis, and translation and replication are frequently tightly associated. Several specific host factors actively participating in viral RNA transcription/replication have been identified and the regions of host protein/replicase or host protein/viral RNA interaction have been determined. The chapter centers exclusively on those factors that appear functionally important for viral amplification. It presents a list of the viruses for which a specific host factor associates with the polymerase, affecting viral genome amplification. It also indicates the usually accepted cell function of the factor and the viral polymerase or polymerase subunit to which the host factor binds.
Collapse
|
27
|
Kim SM, Jeong YS. Polypyrimidine tract-binding protein interacts with the 3' stem-loop region of Japanese encephalitis virus negative-strand RNA. Virus Res 2005; 115:131-40. [PMID: 16181699 DOI: 10.1016/j.virusres.2005.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
The 3' stem-loop (SL) region of positive- and negative-strand RNA of Japanese encephalitis virus (JEV), like that of other flaviviruses, may function as cis-acting signals during RNA replication. In order to demonstrate the specific interaction between JEV 3' SL regions and BHK-21 cellular proteins, we performed gel mobility shift assay and UV-induced cross-linking assay. We identified seven cellular proteins of 110, 87, 67, 45, 38, 34, and 30 kDa that bound to the (+)3' SL RNA, and eight cellular proteins of 138, 110, 87, 67, 55, 52, 38, and 34 kDa that bound to the (-)3' SL RNA. The 55 kDa protein was identified as the polypyrimidine tract-binding (PTB) protein by immunoprecipitation assay. These data suggest that the 3' SL regions of JEV-RNA of both polarities may act as recruiting signals for the components of viral replication complexes including host cell-derived PTB protein.
Collapse
Affiliation(s)
- Seong Man Kim
- Department of Biology, College of Sciences, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, South Korea
| | | |
Collapse
|
28
|
Abstract
As the largest RNA virus, coronavirus replication employs complex mechanisms and involves various viral and cellular proteins. The first open reading frame of the coronavirus genome encodes a large polyprotein, which is processed into a number of viral proteins required for viral replication directly or indirectly. These proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, proteases, metal-binding proteins, and a number of other proteins of unknown function. Genetic studies suggest that most of these proteins are involved in viral RNA replication. In addition to viral proteins, several cellular proteins, such as heterogeneous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB) protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconitase), have been identified to interact with the critical cis-acting elements of coronavirus replication. Like many other RNA viruses, coronavirus may subvert these cellular proteins from cellular RNA processing or translation machineries to play a role in viral replication.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049 Madrid, Spain
| |
Collapse
|
29
|
Gutiérrez-Escolano AL, Vázquez-Ochoa M, Escobar-Herrera J, Hernández-Acosta J. La, PTB, and PAB proteins bind to the 3(') untranslated region of Norwalk virus genomic RNA. Biochem Biophys Res Commun 2003; 311:759-66. [PMID: 14623338 PMCID: PMC7111188 DOI: 10.1016/j.bbrc.2003.10.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Indexed: 11/17/2022]
Abstract
Noroviruses are human enteric caliciviruses for which no cell culture is available. Consequently, the mechanisms and factors involved in their replication have been difficult to study. In an attempt to analyze the cis- and trans-acting factors that could have a role in NV replication, the 3(')-untranslated region of the genome was studied. Use of Zuker's mfold-2 software predicted that NV 3(')UTR contains a stem-loop structure of 47 nts. Proteins from HeLa cell extracts, such as La and PTB, form stable complexes with this region. The addition of a poly(A) tail (24 nts) to the 3(')UTR permits the specific binding of the poly(A) binding protein (PABP) present in HeLa cell extracts, as well as the recombinant PABP. Since La, PTB, and PABP are important trans-acting factors required for viral translation and replication, these RNA-protein interactions may play a role in NV replication or translation.
Collapse
Affiliation(s)
- Ana Lorena Gutiérrez-Escolano
- Departamento de Patologĭa Experimental, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico.
| | | | | | | |
Collapse
|
30
|
Waggoner SA, Liebhaber SA. Identification of mRNAs associated with alphaCP2-containing RNP complexes. Mol Cell Biol 2003; 23:7055-67. [PMID: 12972621 PMCID: PMC193924 DOI: 10.1128/mcb.23.19.7055-7067.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Revised: 06/10/2003] [Accepted: 07/01/2003] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The alpha-globin poly(C) binding proteins (alphaCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. alphaCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of alphaCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major alphaCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of alphaCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for alphaCP2 in this infantile neurodegenerative disease. Surprisingly, alphaCP2 mRNA itself was represented in alphaCP2-RNP complexes, suggesting autoregulatory control of alphaCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of alphaCP2 within their 3' untranslated regions. These data expand the list of mRNAs that associate with alphaCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.
Collapse
Affiliation(s)
- Shelly A Waggoner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
31
|
Cheung P, Zhang M, Yuan J, Chau D, Yanagawa B, McManus B, Yang D. Specific interactions of HeLa cell proteins with Coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5' untranslated region. Virus Res 2002; 90:23-36. [PMID: 12457960 DOI: 10.1016/s0168-1702(02)00138-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Translation initiation of the coxsackievirus B3 (CVB3) RNA occurs by internal ribosomal entry. The internal ribosomal entry site (IRES) of the virus has been mapped to the 5' untranslated region (5' UTR) of the genome. As well, the 5' UTR has been suggested to play roles in determining the tissue tropism and infectivity of the virus. In this study, we investigated interactions between HeLa cell protein extracts and radiolabeled RNA of CVB3 5' UTR by competitive UV cross-linking. We have observed a number of proteins that specifically interact with the three sub-cloned regions of the 5' UTR. In particular, the molecular weights of five of these proteins resemble those of the eukaryotic translation initiation factors 4A, 4B and 4G, as well as the La autoantigen and the polypyrimidine tract binding protein. Based on this data, we focused on the interaction of the 5' UTR with the La autoantigen, which was purified by the glutathione-S-transferase affinity method. We have confirmed the highly specific interaction of the La autoantigen with the 5' UTR sequence nt 210-529. The core IRES (nt 530-630) and nt 1-209 also appear to bind to the La protein at moderate and weak affinities, respectively. A functional role of the La autoantigen in translation initiation is suggested.
Collapse
Affiliation(s)
- Paul Cheung
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Pletneva MA, Sosnovtsev SV, Green KY. The genome of hawaii virus and its relationship with other members of the caliciviridae. Virus Genes 2002; 23:5-16. [PMID: 11556401 DOI: 10.1023/a:1011138125317] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hawaii virus (Hu/NLV/GII/Hawaii virus/1971/US), a member of the genus 'Norwalk-like viruses' (NLVs) in the family Caliciviridae, has served as one of the reference strains for the fastidious caliciviruses associated with epidemic gastroenteritis in humans. The consensus sequence of the RNA genome of Hawaii virus was determined in order to establish its relatedness with other members of the family. The RNA genome is 7,513 nucleotides (nts) in length, excluding the 3'-end poly (A) tract, and is organized into three major open reading frames (ORFI, nts 5-5,104; ORF2, nts 5,085-6,692; and ORF3, nts 6,692-7,471). Phylogenetic analysis showed the closest relatedness of Hawaii virus throughout its genome to Lordsdale virus, a Genogroup II NLV. Analysis of the predicted secondary structure of the RNA from the 5'-end of the genome and the putative beginning of the subgenomic RNA showed the presence of two hairpin structures at both ends that are similar to each other and to those of other NLVs.
Collapse
Affiliation(s)
- M A Pletneva
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
33
|
Miles DH, Johnston KH, Freistadt MS. An improved method for detection and quantification of differential interactions between poliovirus internal ribosome entry site RNA and pyrimidine tract binding protein from primary cells. J Virol Methods 2001; 96:67-84. [PMID: 11516490 DOI: 10.1016/s0166-0934(01)00319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Attenuated and pathogenic viral variants are often extremely similar viruses with drastically different replication potentials. Despite precise knowledge of viral residues responsible for poliovirus attenuation/neurovirulence, molecular mechanisms mediating these effects remain poorly understood. Data from numerous sources suggest that a functional difference in translation initiation is one responsible factor. However, direct evidence, as well as a comprehensive model are lacking. Several difficulties, including lack of an assay system to quantify differential internal ribosome entry site/pyrimidine tract binding protein interaction in relevant systems, have precluded progress. A novel assay system that overcomes some difficulties is presented below. The assay uses streptavidin paramagnetic particles, biotinylated RNA and glutathione-S-transferase/pyrimidine tract binding protein fusion to detect nanogram levels of uncloned cellular pyrimidine tract binding protein species that interact with internal ribosome entry site RNA. Using this assay, it was shown that pyrimidine tract binding protein from primary human monocytes binds to internal ribosome entry site RNA from virulent poliovirus better than to that from attenuated virus, while pyrimidine tract binding protein from HeLa cells does not distinguish between the two internal ribosome entry sites. Since primary human monocytes reflect neurovirulence-related differential poliovirus replication, these results suggest that pyrimidine tract binding protein may contribute to differential poliovirus replication in vivo. This assay also has the potential to be applicable broadly to other nucleic acid/protein interactions.
Collapse
Affiliation(s)
- D H Miles
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|