1
|
Pillaiyar T, Laufer S. A patent review of CXCR7 modulators (2019-present). Expert Opin Ther Pat 2025:1-27. [PMID: 40122070 DOI: 10.1080/13543776.2025.2477475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment. AREAS COVERED This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages. EXPERT OPINION ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Nosik M, Berezhnya E, Bystritskaya E, Kiseleva I, Lobach O, Kireev D, Svitich O. Female Sex Hormones Upregulate the Replication Activity of HIV-1 Sub-Subtype A6 and CRF02_AG but Not HIV-1 Subtype B. Pathogens 2023; 12:880. [PMID: 37513727 PMCID: PMC10383583 DOI: 10.3390/pathogens12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
More than 50% of all people living with HIV worldwide are women. Globally, HIV/AIDS is the leading cause of death among women aged 15 to 44. The safe and effective methods of hormonal contraception are an essential component of preventive medical care in order to reduce maternal and infant mortality. However, there is limited knowledge regarding the effect of hormones on the rate of viral replication in HIV infection, especially non-B subtypes. The goal of the present work was to study in vitro how the female hormones β-estradiol and progesterone affect the replication of the HIV-1 subtypes A6, CRF02_AG, and B. The findings show that high doses of hormones enhanced the replication of HIV-1 sub-subtype A6 by an average of 1.75 times and the recombinant variant CRF02_AG by 1.4 times but did not affect the replication of HIV-1 subtype B. No difference was detected in the expression of CCR5 and CXCR4 co-receptors on the cell surface, either in the presence or absence of hormones. However, one of the reasons for the increased viral replication could be the modulated TLRs secretion, as it was found that high doses of estradiol and progesterone upregulated, to varying degrees, the expression of TLR2 and TLR9 genes in the PBMCs of female donors infected with HIV-1 sub-subtype A6.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Elena Berezhnya
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Irina Kiseleva
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Olga Lobach
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| |
Collapse
|
3
|
Islam S, Moni MA, Urmi UL, Tanaka A, Hoshino H. C-C Chemokine receptor-like 2 (CCRL2) acts as coreceptor for human immunodeficiency virus-2. Brief Bioinform 2020; 22:6012867. [PMID: 33253374 DOI: 10.1093/bib/bbaa333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Most of the typical chemokine receptors (CKRs) have been identified as coreceptors for a variety of human and simian immunodeficiency viruses (HIVs and SIVs). This study evaluated CCRL2 to examine if it was an HIV/SIV coreceptor. METHODS The Human glioma cell line, NP-2, is normally resistant to infection by HIV and SIV. The cell was transduced with amplified cluster of differentiation 4 (CD4) as a receptor and CCR5, CXCR4 and CCRL2 as coreceptor candidates to produce NP-2/CD4/coreceptor cells (). The cells were infected with multiplicity of infection (MOI) 1.0. Infected cells were detected by indirect immunofluorescence assay (IFA). Multinucleated giant cells (MGC) in syncytia were quantified by Giemsa staining. Proviral DNA was detected by polymerase chain reaction (PCR), and reverse transcriptase (RT) activity was measured. RESULTS IFA detected viral antigens of the primary isolates, HIV-1HAN2 and HIV-2MIR in infected NP-2/CD4/CCRL2 cells, indicated CCRL2 as a functional coreceptor. IFA results were confirmed by the detection of proviral DNA and measurement of RT-activity in the spent cell supernatants. Additionally, MGC was detected in HIV-2MIR-infected NP-2/CD4/CCCRL2 cells. HIV-2MIR were found more potent users of CCRL2 than HIV-1HAN2. Moreover, GWAS studies, gene ontology and cell signaling pathways of the HIV-associated genes show interaction of CCRL2 with HIV/SIV envelope protein. CONCLUSIONS In vitro experiments showed CCRL2 to function as a newly identified coreceptor for primary HIV-2 isolates conveniently. The findings contribute additional insights into HIV/SIV transmission and pathogenesis. However, its in vivo relevance still needs to be evaluated. Confirming in vivo relevance, ligands of CCRL2 can be investigated as potential targets for HIV entry-inhibitor drugs.
Collapse
Affiliation(s)
- Salequl Islam
- Department of Microbiology, Jahangirnagar University (JU), Bangladesh
| | | | | | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | |
Collapse
|
4
|
Nguyen HT, Reyes-Alcaraz A, Yong HJ, Nguyen LP, Park HK, Inoue A, Lee CS, Seong JY, Hwang JI. CXCR7: a β-arrestin-biased receptor that potentiates cell migration and recruits β-arrestin2 exclusively through Gβγ subunits and GRK2. Cell Biosci 2020; 10:134. [PMID: 33292475 PMCID: PMC7686738 DOI: 10.1186/s13578-020-00497-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Some chemokine receptors referred to as atypical chemokine receptors (ACKRs) are thought to non-signaling decoys because of their inability to activate typical G-protein signaling pathways. CXCR7, also known as ACKR3, binds to only two chemokines, SDF-1α and I-TAC, and recruits β-arrestins. SDF-1α also binds to its own conventional receptor, CXCR4, involving in homeostatic modulation such as development and immune surveillance as well as pathological conditions such as inflammation, ischemia, and cancers. Recently, CXCR7 is suggested as a key therapeutic target together with CXCR4 in such conditions. However, the molecular mechanisms underlying cellular responses and functional relation with CXCR7 and CXCR4 have not been elucidated, despite massive studies. Therefore, we aimed to reveal the molecular networks of CXCR7 and CXCR4 and compare their effects on cell migration. METHODS Base on structural complementation assay using NanoBiT technology, we characterized the distinct mechanisms underlying β-arrestin2 recruitment by both CXCR4 and CXCR7. Crosslinking and immunoprecipitation were conducted to analyze complex formation of the receptors. Gene deletion using CRISPR and reconstitution of the receptors were applied to analysis of ligand-dependent ERK phosphorylation and cell migration. All experiments were performed in triplicate and repeated more than three times. Unpaired Student's t-tests or ANOVA using PRISM5 software were employed for statistical analyses. RESULTS Ligand binding to CXCR7 does not result in activation of typical signaling pathways via Gα subunits but activation of GRK2 via βγ subunits and receptor phosphorylation with subsequent β-arrestin2 recruitment. In contrast, CXCR4 induced Gαi activation and recruited β-arrestin2 through C-terminal phosphorylation by both GRK2 and GRK5. SDF-1α-stimulated ERK phosphorylation was facilitated by CXCR4, but not CXCR7. Heterodimerization of CXCR4 and CXCR7 was not confirmed in this study, while homodimerization of them was verified by crosslinking experiment and NanoBiT assay. Regarding chemotaxis, SDF-1α-stimulated cell migration was mediated by both CXCR4 and CXCR7. CONCLUSION This study demonstrates that SDF-1α-stimulated CXCR7 mediates β-arrestin2 recruitment via different molecular networking from that of CXCR4. CXCR7 may be neither a simple scavenger nor auxiliary receptor but plays an essential role in cell migration through cooperation with CXCR4.
Collapse
Affiliation(s)
- Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | - Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Samri A, Charpentier C, Cheynier R, Matheron S, Brun-Vézinet F, Autran B. [Viral reservoir in HIV-2 infection: a model for attenuated retroviral infection]. Med Sci (Paris) 2020; 36:336-339. [PMID: 32356709 DOI: 10.1051/medsci/2020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Assia Samri
- Sorbonne Université, Inserm U1135, Centre d'immunologie et des maladies infectieuses, Cimi-Paris, F-75013 Paris, France
| | - Charlotte Charpentier
- Inserm, IAME, UMR 1137, Universités Paris Diderot et Paris Nord, Sorbonne Paris Cité ; Laboratoire de virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Rémi Cheynier
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR8104, F-75014 Paris, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, Universités Paris Diderot et Paris Nord, Sorbonne Paris Cité, Service des maladies infectieuses et tropicales, Hôpital Bichat, AP-HP, Paris, France
| | | | - Brigitte Autran
- Sorbonne Université, Inserm U1135, Centre d'immunologie et des maladies infectieuses, Cimi-Paris, AP-HP, Hôpital universitaire Pitié-Salpêtrière, F-75013 Paris, France
| | | |
Collapse
|
6
|
Fan X, He L, Dai Q, He J, Chen X, Dai X, Zhang C, Sun D, Meng X, Sun S, Huang J, Chen J, Lin L, Chen L, Tan Y, Yan X. Interleukin-1β augments the angiogenesis of endothelial progenitor cells in an NF-κB/CXCR7-dependent manner. J Cell Mol Med 2020; 24:5605-5614. [PMID: 32239650 PMCID: PMC7214148 DOI: 10.1111/jcmm.15220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are able to trigger angiogenesis, and pro‐inflammatory cytokines have beneficial effects on angiogenesis under physiological and pathological conditions. C‐X‐C chemokine receptor type 7 (CXCR‐7), receptor for stromal cell‐derived factor‐1, plays a critical role in enhancing EPC angiogenic function. Here, we examined whether CXCR7 mediates the pro‐angiogenic effects of the inflammatory cytokine interleukin‐1β (IL‐1β) in EPCs. EPCs were isolated by density gradient centrifugation and angiogenic capability was evaluated in vitro by Matrigel capillary formation assay and fibrin gel bead assay. IL‐1β elevated CXCR7 expression at both the transcriptional and translational levels in a dose‐ and time‐dependent manner, and blockade of the nuclear translocation of NF‐κB dramatically attenuated the IL‐1β‐mediated up‐regulation of CXCR7 expression. IL‐1β stimulation significantly promoted EPCs tube formation and this effect was largely impaired by CXCR7‐siRNA transfection. IL‐1β treatment stimulated extracellular signal‐regulated kinase 1/2 (Erk1/2) phosphorylation, and inhibition of Erk1/2 phosphorylation partially impaired IL‐1β‐induced tube formation of EPCs but without significant effects on CXCR7 expression. Moreover, blocking NF‐κB had no significant effects on IL‐1β‐stimulated Erk1/2 phosphorylation. These findings indicate that CXCR7 plays an important role in the IL‐1β‐enhanced angiogenic capability of EPCs and antagonizing CXCR7 is a potential strategy for inhibiting angiogenesis under inflammatory conditions.
Collapse
Affiliation(s)
- Xia Fan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxia Dai
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xue Meng
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jiameng Huang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Lin Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Lounsbury N. Advances in CXCR7 Modulators. Pharmaceuticals (Basel) 2020; 13:ph13020033. [PMID: 32098047 PMCID: PMC7169404 DOI: 10.3390/ph13020033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
CXC chemokine receptor 7 (CXCR7) is a G-protein-coupled receptor that signals through the β-arrestin pathway. Its ligands include interferon-inducible T cell α chemoattractant (CXCL11) and stromal cell-derived factor-1 (CXCL12). It interacts with CXCR4, and the two are associated with various cancers, as well as other disease states such as coronary artery disease, stroke, inflammation and human immunodeficiency virus (HIV). Antibodies and small interfering RNA (siRNA) have shown the utility of antagonists of CXCR7 in these disease states. Although some small molecules were initially reported as antagonists due to their displayed activity, many function as agonists while still producing the desired pharmacologic effects. A potential reason for this contradiction is that effects may be due to elevated extracellular CXCL12 levels.
Collapse
Affiliation(s)
- Nicole Lounsbury
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL 33169, USA
| |
Collapse
|
8
|
Neves M, Fumagalli A, van den Bor J, Marin P, Smit MJ, Mayor F. The Role of ACKR3 in Breast, Lung, and Brain Cancer. Mol Pharmacol 2019; 96:819-825. [PMID: 30745320 DOI: 10.1124/mol.118.115279] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Recent reports regarding the significance of chemokine receptors in disease have put a spotlight on atypical chemokine receptor 3 (ACKR3). This atypical chemokine receptor is overexpressed in numerous cancer types and has been involved in the modulation of tumor cell proliferation and migration, tumor angiogenesis, or resistance to drugs, thus contributing to cancer progression and metastasis occurrence. Here, we focus on the clinical significance and potential mechanisms underlying the pathologic role of ACKR3 in breast, lung, and brain cancer and discuss its possible relevance as a prognostic factor and potential therapeutic target in these contexts.
Collapse
Affiliation(s)
- Maria Neves
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Amos Fumagalli
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Jelle van den Bor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Philippe Marin
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Martine J Smit
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| |
Collapse
|
9
|
Samri A, Charpentier C, Diallo MS, Bertine M, Even S, Morin V, Oudin A, Parizot C, Collin G, Hosmalin A, Cheynier R, Thiébaut R, Matheron S, Collin F, Zoorob R, Brun-Vézinet F, Autran B, the ANRS CO5 IMMUNOVIR-2 Study Group. Limited HIV-2 reservoirs in central-memory CD4 T-cells associated to CXCR6 co-receptor expression in attenuated HIV-2 infection. PLoS Pathog 2019; 15:e1007758. [PMID: 31095640 PMCID: PMC6541300 DOI: 10.1371/journal.ppat.1007758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/29/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
The low pathogenicity and replicative potential of HIV-2 are still poorly understood. We investigated whether HIV-2 reservoirs might follow the peculiar distribution reported in models of attenuated HIV-1/SIV infections, i.e. limited infection of central-memory CD4 T lymphocytes (TCM). Antiretroviral-naive HIV-2 infected individuals from the ANRS-CO5 (12 non-progressors, 2 progressors) were prospectively included. Peripheral blood mononuclear cells (PBMCs) were sorted into monocytes and resting CD4 T-cell subsets (naive [TN], central- [TCM], transitional- [TTM] and effector-memory [TEM]). Reactivation of HIV-2 was tested in 30-day cultures of CD8-depleted PBMCs. HIV-2 DNA was quantified by real-time PCR. Cell surface markers, co-receptors and restriction factors were analyzed by flow-cytometry and multiplex transcriptomic study. HIV-2 DNA was undetectable in monocytes from all individuals and was quantifiable in TTM from 4 individuals (median: 2.25 log10 copies/106 cells [IQR: 1.99–2.94]) but in TCM from only 1 individual (1.75 log10 copies/106 cells). HIV-2 DNA levels in PBMCs (median: 1.94 log10 copies/106 PBMC [IQR = 1.53–2.13]) positively correlated with those in TTM (r = 0.66, p = 0.01) but not TCM. HIV-2 reactivation was observed in the cells from only 3 individuals. The CCR5 co-receptor was distributed similarly in cell populations from individuals and donors. TCM had a lower expression of CXCR6 transcripts (p = 0.002) than TTM confirmed by FACS analysis, and a higher expression of TRIM5 transcripts (p = 0.004). Thus the low HIV-2 reservoirs differ from HIV-1 reservoirs by the lack of monocytic infection and a limited infection of TCM associated to a lower expression of a potential alternative HIV-2 co-receptor, CXCR6 and a higher expression of a restriction factor, TRIM5. These findings shed new light on the low pathogenicity of HIV-2 infection suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models. HIV-2 induces a still poorly understood attenuated infection compared to HIV-1. We investigated whether this infection might follow peculiarities associated with other models of attenuated HIV-1/SIV infection, i.e. a limited infection of a key subset of memory CD4 T lymphocytes, the central-memory ones (TCM). Thus we studied the infection rates in peripheral blood cells from 14 untreated HIV-2 infected individuals from the ANRS-CO5 HIV-2 cohort, and found; 1) a lack of infection of monocytes, 2) extremely low infection in central-memory CD4+ T lymphocytes while HIV-2 predominated in the transitional-memory cells, 3) a poor replicative capacity of HIV-2 in individuals cells. We then investigated the cellular expression of a hundred-host genes potentially involved in HIV-2 control. We found in individuals’ TCM cells, compared to TTM ones, a lower expression of CXCR6, a potentially alternative co-receptor of HIV-2 but not of HIV-1, and a higher expression of TRIM5α, a restriction factor to which HIV-2 is more sensitive than HIV-1. Altogether our findings shed new light on the low pathogenicity of HIV-2 suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models.
Collapse
Affiliation(s)
- Assia Samri
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mariama Sadjo Diallo
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Mélanie Bertine
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Even
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Véronique Morin
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Anne Oudin
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Christophe Parizot
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Gilles Collin
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Hosmalin
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Thiébaut
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, Univ. Bordeaux, Bordeaux, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Fideline Collin
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, Univ. Bordeaux, Bordeaux, France
| | - Rima Zoorob
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | | | - Brigitte Autran
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, AP-HP, Hôpital universitaire Pitié-Salpêtrière, Paris, France
- * E-mail: (FBV); (BA)
| | | |
Collapse
|
10
|
CXCR7/ACKR3-targeting ligands interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 2018; 4:e00557. [PMID: 29560468 PMCID: PMC5857896 DOI: 10.1016/j.heliyon.2018.e00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells. Furthermore, we uncovered anti-CXCR7 monoclonal antibodies, small molecule CXCR7 inhibitors and the natural CXCR7 chemokine ligands as potent inhibitors of CXCR7 receptor-mediated HIV entry and replication. Even though the clinical relevance of CXCR7-mediated HIV infection remains poorly understood, our data suggest that divergent HIV-1 and HIV-2 strains can quickly adapt their coreceptor usage depending on the cellular environment, which warrants further investigation.
Collapse
|
11
|
Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 2017; 147:128-140. [PMID: 29175422 DOI: 10.1016/j.bcp.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7) has been established to be involved in breast cancer (BCa) progression. However, the role of CXCR7 in different subtype of BCa still remains unclear. Here we note that CXCR7 expression is significantly amplified in Luminal type BCa tissues as compared with Her2 and TNBC types through data-mining in TCGA datasets, and its protein level positively correlates with ERα expression by staining of human BCa tissue. Interestingly, alteration of CXCR7 expression in Luminal type BCa cells is able to modulate the expression of ERα through ubiquitination at post-translational level. Additionally, overexpression of CXCR7 in these cells greatly induces 4-OHT insensitivity in vitro and is associated with earlier recurrence in patients with tamoxifen therapy. Notably, silencing ERα expression potentially rescues the sensitivity of the above cells to 4-OHT, suggesting that elevated level of ERα is responsible for CXCR7-induced 4-OHT insensitivity in Luminal type BCa. Finally, mechanistic analyses show that the reduced BRCA1 (ubiquitin E3 ligase) and elevated OTUB1 (deubiquitinase) expression, which are regulated by CXCR7/ERK1/2 signaling pathway, are responsible for stabilizing ERα protein. In conclusion, our results suggest that targeting CXCR7 may serve as a potential therapeutic strategy for improving the efficacy of BCa patients with tamoxifen therapy.
Collapse
|
12
|
The unique structural and functional features of CXCL12. Cell Mol Immunol 2017; 15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Collapse
|
13
|
Wang L, Mei M, Qin A, Ye J, Qian K, Shao H. Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells. Vet Res 2016; 47:92. [PMID: 27599847 PMCID: PMC5011807 DOI: 10.1186/s13567-016-0373-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
We previously identified chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus avian leucosis virus subgroup J (ALV-J), using a DF1 cell line expressing the viral envelope (env) protein. To further probe whether other proteins participate in virus infection, we investigated several host proteins from co-immunoprecipitation with the DF1 cell line expressing viral env. Mass spectrometry analysis indicates that the chicken glucose-regulation protein 78 (chGRP78) of the DF1 membrane interacted with the ALV-J env protein. The results revealed that antibodies or siRNA to chGRP78 significantly inhibited ALV-J infection and replication, and over-expression of chGRP78 enabled the entry of ALV-J into non-susceptible cells. Taken together, these results are the first to report that chGRP78 functions to help ALV-J enter cells.
Collapse
Affiliation(s)
- Lin Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Mei Mei
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Key Lab of Zoonosis, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| |
Collapse
|
14
|
Asri A, Sabour J, Atashi A, Soleimani M. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis. EXCLI JOURNAL 2016; 15:134-43. [PMID: 27092040 PMCID: PMC4827072 DOI: 10.17179/excli2014-585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Amir Asri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sabour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|
16
|
Banisadr G, Podojil JR, Miller SD, Miller RJ. Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions. J Neuroimmune Pharmacol 2015; 11:26-35. [PMID: 25997895 DOI: 10.1007/s11481-015-9616-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 acting via its G-protein coupled receptor (GPCR) CXCR4 has been implicated in neurogenesis, neuromodulation, brain inflammation, HIV-1 encephalopathy and tumor growth. CXCR7 was identified as an alternate receptor for SDF-1/CXCL12. Characterization of CXCR7-deficient mice demonstrated a role for CXCR7 in fetal endothelial biology, cardiac development, and B-cell localization. Despite its ligand binding properties, CXCR7 does not seem to signal like a conventional GPCR. It has been suggested that CXCR7 may not function alone but in combination with CXCR4. Here, we investigated the regional localization of CXCR7 receptors in adult mouse brain using CXCR7-EGFP transgenic mice. We found that the receptors were expressed in various brain regions including olfactory bulb, cerebral cortex, hippocampus, subventricular zone (SVZ), hypothalamus and cerebellum. Extensive CXCR7 expression was associated with cerebral blood vessels. Using cell type specific markers, CXCR7 expression was found in neurons, astrocytes and oligodendrocyte progenitors. GAD-expressing neurons exhibited CXCR7 expression in the hippocampus. Expression of CXCR7 in the dentate gyrus included cells that expressed nestin, GFAP and cells that appeared to be immature granule cells. In mice with Experimental Autoimmune Encephalomyelitis (EAE), CXCR7 was expressed by migrating oligodendrocyte progenitors in the SVZ. We then compared the distribution of SDF-1/CXCL12 and CXCR7 using bitransgenic mice expressing both CXCR7-EGFP and SDF-1-mRFP. Enhanced expression of SDF-1/CXCL12 and CXCR7 was observed in the corpus callosum, SVZ and cerebellum. Overall, the expression of CXCR7 in normal and pathological nervous system suggests CXCR4-independent functions of SDF-1/CXCL12 mediated through its interaction with CXCR7.
Collapse
Affiliation(s)
- Ghazal Banisadr
- Department of Pharmacology, Northwestern University Medical School, 303 E Superior Ave, Chicago, IL, 60611, USA.
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Medical School, 303 E Superior Ave, Chicago, IL, 60611, USA
| |
Collapse
|
17
|
Tripathi V, Kumar R, Dinda AK, Kaur J, Luthra K. CXCL12-CXCR7 signaling activates ERK and Akt pathways in human choriocarcinoma cells. ACTA ACUST UNITED AC 2014; 21:221-8. [PMID: 24450273 DOI: 10.3109/15419061.2013.876013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract CXCL12 acts as a physiological ligand for the chemokine receptor CXCR7. Chemokine receptor expression by human trophoblast and other placental cells have important implications for understanding the regulation of placental growth and development. We had previously reported the differential expression of CXCR7 in different stages of the human placenta suggesting its possible role in regulation of placental growth and development. In this study, we determined the expression of CXCR7 in human choriocarcinoma JAR cells at the mRNA level and protein level and the downstream signaling pathway mediated by CXCL12-CXCR7 interaction. We observed that binding of CXCL12 to CXCR7 activates the ERK and Akt cell-survival pathways in JAR cells. Inhibition of the ERK and Akt pathways using specific inhibitors (Wortmanin & PD98509) led to the activation of the p38 pathway. Our findings suggest a possible role of CXCR7 in activating the cell survival pathways ERK and Akt in human choriocarcinoma JAR cells.
Collapse
Affiliation(s)
- Vishwas Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences , New Delhi , India
| | | | | | | | | |
Collapse
|
18
|
Abstract
Chemokines have fundamental roles in regulating immune and inflammatory responses, primarily through their control of leukocyte migration and localization. The biological functions of chemokines are typically mediated by signalling through G protein-coupled chemokine receptors, but chemokines are also bound by a small family of atypical chemokine receptors (ACKRs), the members of which are unified by their inability to initiate classical signalling pathways after ligand binding. These ACKRs are emerging as crucial regulatory components of chemokine networks in a wide range of developmental, physiological and pathological contexts. In this Review, we discuss the biochemical and immunological properties of ACKRs and the potential unifying themes in this family, and we highlight recent studies that identify novel roles for these molecules in development , homeostasis, inflammatory disease, infection and cancer.
Collapse
|
19
|
Ehrlich A, Ray P, Luker KE, Lolis EJ, Luker GD. Allosteric peptide regulators of chemokine receptors CXCR4 and CXCR7. Biochem Pharmacol 2013; 86:1263-71. [PMID: 23973527 DOI: 10.1016/j.bcp.2013.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/19/2022]
Abstract
The chemokine CXCL12 and its shared seven-transmembrane receptors CXCR4 and CXCR7 regulate diseases including cancer, atherosclerosis, autoimmunity, and HIV infection, making these molecules promising drug targets. These molecules also control key processes in normal development and physiology, suggesting the need to selectively modulate CXCR4 and/or CXCR7 functions and signaling to reduce potential complications of long-term therapy. We previously identified two peptides that functioned as allosteric agonists driving CXCR4-dependent chemotaxis, providing key structural information to design a small number of additional peptides to investigate determinants of CXCL12 interactions and signaling through CXCR4 and CXCR7. In the current study, we show that the previously identified peptides only minimally activated CXCR4 signaling through the cytosolic adapter protein β-arrestin 2 and do not initiate signaling to ERK1/2. By comparison, peptides with diverse N-terminal amino acid sequences effectively activated CXCR7 signaling to β-arrestin 2. One peptide, designated as GSLW based on its N-terminal amino acids, activated CXCR7 signaling and potentiated CXCL12-CXCR7 signaling without blocking the scavenger function of CXCR7 to internalize CXCL12. These results advance our understanding of CXCR7 ligand recognition and signaling, and provide structural information to target allosteric binding sites on this receptor as chemical probes and potential therapeutic agents.
Collapse
Affiliation(s)
- Anna Ehrlich
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
20
|
Esencay M, Sarfraz Y, Zagzag D. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α. BMC Cancer 2013; 13:347. [PMID: 23865743 PMCID: PMC3728118 DOI: 10.1186/1471-2407-13-347] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 07/05/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. METHODS In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. RESULTS In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. CONCLUSIONS Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors.
Collapse
Affiliation(s)
- Mine Esencay
- Microvascular and Molecular Neuro-oncology Laboratory, New York University Langone Medical Center, New York, NY, USA
| | | | | |
Collapse
|
21
|
Sánchez-Martín L, Sánchez-Mateos P, Cabañas C. CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 2012; 19:12-22. [PMID: 23153575 DOI: 10.1016/j.molmed.2012.10.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
It is known that the chemokine receptor CXCR7 (RDC1) can be engaged by both chemokines CXCL12 (SDF-1) and CXCL11 (I-TAC), but the exact expression pattern and function of CXCR7 is controversial. CXCR7 expression seems to be enhanced during pathological inflammation and tumor development, and emerging data suggest this receptor is an attractive therapeutic target for autoimmune diseases and cancer. CXCR7/CXCR4 heterodimerization, β-arrestin-mediated signaling, and modulation of CXCL12 responsiveness by CXCR7 suggest that the monogamous CXCR4/CXCL12 signaling axis is an oversimplified model that needs to be revisited. Consequently, research into CXCR7 biology is of great interest and further studies are warranted. This review summarizes recent findings about the CXCR7 receptor and analyses its impact on understanding the roles of CXCL12 biology in health and disease.
Collapse
Affiliation(s)
- Lorena Sánchez-Martín
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain.
| | | | | |
Collapse
|
22
|
Graham GJ, Locati M, Mantovani A, Rot A, Thelen M. The biochemistry and biology of the atypical chemokine receptors. Immunol Lett 2012; 145:30-8. [PMID: 22698181 DOI: 10.1016/j.imlet.2012.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/13/2012] [Indexed: 01/13/2023]
Abstract
A subset of chemokine receptors, initially called "silent" on the basis of their apparent failure to activate conventional signalling events, has recently attracted growing interest due to their ability to internalize, degrade, or transport ligands and thus modify gradients and create functional chemokine patterns in tissues. These receptors recognize distinct and complementary sets of ligands with high affinity, are strategically expressed in different cellular contexts, and lack structural determinants supporting Gα(i) activation, a key signalling event in cell migration. This is in keeping with the hypothesis that they have evolved to fulfil fundamentally different functions to the classical signalling chemokine receptors. Based on these considerations, these receptors (D6, Duffy antigen receptor for chemokines (DARC), CCX-CKR1 and CXCR7) are now collectively considered as an emerging class of 'atypical' chemokine receptors. In this article, we review the biochemistry and biology of this emerging chemokine receptor subfamily.
Collapse
Affiliation(s)
- G J Graham
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
23
|
Yan X, Cai S, Xiong X, Sun W, Dai X, Chen S, Ye Q, Song Z, Jiang Q, Xu Z. Chemokine receptor CXCR7 mediates human endothelial progenitor cells survival, angiogenesis, but not proliferation. J Cell Biochem 2012; 113:1437-46. [PMID: 22173725 DOI: 10.1002/jcb.24015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stromal cell-derived factor 1 (SDF-1) is a critical regulator of endothelial progenitor cells (EPCs) mediated physiological and pathologic angiogenesis. It was considered to act via its unique receptor CXCR4 for a long time. CXCR7 is a second, recently identified receptor for SDF-1, and its role in human EPCs is unclear. In present study, CXCR7 was found to be scarcely expressed on the surface of human EPCs derived from cord blood, but considerable intracellular CXCR7 was detected, which differs from that on EPCs derived from rat bone marrow. CXCR7 failed to support SDF-1 induced human EPCs migration, proliferation, or nitric oxide (NO) production, but mediated human EPCs survival exclusively. Besides that, CXCR7 mediated EPCs tube formation along with CXCR4. Blocking CXCR7 with its antagonist CCX733 impaired SDF-1/CXCR4 induced EPCs adhesion to active HUVECs and trans-endothelial migration. Those results suggested that CXCR7 plays an important role in human cord blood derived EPCs in response to SDF-1.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Humpert ML, Tzouros M, Thelen S, Bignon A, Levoye A, Arenzana-Seisdedos F, Balabanian K, Bachelerie F, Langen H, Thelen M. Complementary methods provide evidence for the expression of CXCR7 on human B cells. Proteomics 2012; 12:1938-48. [DOI: 10.1002/pmic.201100581] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Manuel Tzouros
- F. Hoffmann-La Roche Ltd,; TRS - CCC Proteins and Metabolites,; Functional and Pathway Proteomics; Basel Switzerland
| | - Sylvia Thelen
- Insitute for Research in Biomedicine; Bellinzona Switzerland
| | - Alexandre Bignon
- Laboratoire Cytokines,; Chemokines and Immunopathology,; Univ. Paris-Sud; Clamart France
- INSERM,; Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LERMIT); Clamart France
| | - Angélique Levoye
- Department of Virology, INSERM U819 & Laboratory of Viral Pathogenesis,; Institut Pasteur; Paris France
| | | | - Karl Balabanian
- Laboratoire Cytokines,; Chemokines and Immunopathology,; Univ. Paris-Sud; Clamart France
- INSERM,; Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LERMIT); Clamart France
| | - Françoise Bachelerie
- Department of Virology, INSERM U819 & Laboratory of Viral Pathogenesis,; Institut Pasteur; Paris France
| | - Hanno Langen
- F. Hoffmann-La Roche Ltd,; TRS - CCC Proteins and Metabolites,; Functional and Pathway Proteomics; Basel Switzerland
| | - Marcus Thelen
- Insitute for Research in Biomedicine; Bellinzona Switzerland
| |
Collapse
|
26
|
Abstract
Background: SDF-1/CXCR4 signaling plays key roles in directed cell migration under physiological and pathological conditions. To develop agonist-based CXCR4 probes for detection of CXCR4 expression on cell lines and metastatic tumors, SAR analyses of fluorescent SDF-1 derivatives were carried out. Results: Several SDF-1 derivatives with a single fluorescent label were designed and synthesized. Modification of the SDF-1 C-terminus with AlexaFluor® 488 or tetramethylrhodamine provided potent CXCR4 probes. Using a potent probe, a novel binding inhibition assay was established for biological evaluation of potential CXCR4 ligands. Conclusion: SDF-1 derivatives with C-terminal modification exhibit equipotent binding with CXCR4 and an alternative SDF-1 receptor CXCR7 to unlabeled SDF-1. The SDF-1 derivatives are applicable to flow cytometry to detect the receptor expression and identify binding compounds for CXCR4.
Collapse
|
27
|
Hao M, Zheng J, Hou K, Wang J, Chen X, Lu X, Bo J, Xu C, Shen K, Wang J. Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem Pharmacol 2012; 84:204-14. [PMID: 22525723 DOI: 10.1016/j.bcp.2012.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 12/26/2022]
Abstract
Bladder cancer is one of the most common tumors of the genitourinary tract; however, the molecular events underlying growth and invasion of the tumor remain unclear. Here, role of the CXCR7 receptor in bladder cancer was further explored. CXCR7 protein expression was examined using high-density tissue microarrays. Expression of CXCR7 showed strong epithelial staining that correlated with bladder cancer progression. In vitro and in vivo studies in bladder cancer cell lines suggested that alterations in CXCR7 expression were associated with the activities of proliferation, apoptosis, migration, invasion, angiogenesis and tumor growth. Moreover, CXCR7 expression was able to regulate expression of the proangiogenic factors IL-8 or VEGF, which may involve in the regulation of tumor angiogenesis. Finally, we found that signaling by the CXCR7 in bladder cancer cells activates AKT, ERK and STAT3 pathways. The AKT and ERK pathways may reciprocally regulate, which are responsible for in vitro and in vivo epithelial to mesenchymal transition (EMT) process of bladder cancer. Simultaneously targeting the two pathways by using U0126 and LY294002 inhibitors or using CCX733, a selective CXCR7 antagonist drastically reduced CXCR7-induced EMT process. Taken together, our data show for the first time that CXCR7 plays a role in the development of bladder cancer. Targeting CXCR7 or its downstream-activated AKT and ERK pathways may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pope GR, Roberts EM, Lolait SJ, O’Carroll AM. Central and peripheral apelin receptor distribution in the mouse: species differences with rat. Peptides 2012; 33:139-48. [PMID: 22197493 PMCID: PMC3314948 DOI: 10.1016/j.peptides.2011.12.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 01/02/2023]
Abstract
The G protein-coupled apelin receptor (APJ) binds the endogenous peptide apelin and has been shown to have roles in many physiological systems. Thus far, distribution studies have predominantly been conducted in the rat and there is limited knowledge of the cellular distribution of APJ in mouse or human tissues. As recent functional studies have been conducted in APJ knock-out mice (APJ KO), in this study we undertook to characterize APJ mRNA and I(125)[Pyr(1)]apelin-13 binding site distribution in mouse tissues to enable correlation of distribution with function. We have utilized in situ hybridization histochemistry (ISHH) using APJ riboprobes, which revealed strong hybridization specifically in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus and in the anterior pituitary, with marginally lower levels in the posterior pituitary. In the periphery, strong hybridization was observed in the lung, heart, adrenal cortex, renal medulla, ovary and uterus. Autoradiographic binding to APJ with I(125)[Pyr(1)]apelin-13 exhibited significant binding in the anterior pituitary, while lower levels were observed in the posterior pituitary and PVN and SON. In the periphery, strong receptor binding was observed in tissues exhibiting intense riboprobe hybridization, indicating a good correlation between receptor transcription and translation. While the distribution of APJ mRNA and functional protein in the mouse shows similarities to that of the rat, we report a species difference in central APJ distribution and in the pituitary gland.
Collapse
|
29
|
Synthesis, structure–activity relationships, and mechanism of action of anti-HIV-1 lamellarin α 20-sulfate analogues. Bioorg Med Chem 2011; 19:7541-50. [DOI: 10.1016/j.bmc.2011.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
|
30
|
Palma J, Cowan A, Geller EB, Adler MW, Benamar K. Differential antinociceptive effects of buprenorphine and methadone in the presence of HIV-gp120. Drug Alcohol Depend 2011; 118:497-9. [PMID: 21600706 PMCID: PMC3925649 DOI: 10.1016/j.drugalcdep.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND We showed recently that elevated brain levels of the chemokine stromal cell-derived growth factor-1α (SDF-1α/CXCL12, a ligand for the human immunodeficiency virus [HIV] co-receptor CXCR4) diminish the antinociceptive effect of morphine, but failed to influence buprenorphine-induced antinociception. AIMS Because the HIV-1 coat protein, glycoprotein 120 (gp120) T-tropic strain, binds to the same receptor as SDF-1α/CXCL12, the present experiments were designed to investigate the consequence of administering gp120 to rat brain on buprenorphine-induced antinociception in the 54°C hot plate test. For comparative purposes, the effect of gp120 on an equi-antinociceptive dose of methadone was also examined. METHODS A sterilized stainless-steel C313G guide cannula was implanted into the periaqueductal grey (PAG), a brain region critical for the processing of pain signals, and a primary site of action of many analgesics. Rats were pretreated with gp120, administered into the PAG. RESULTS The subsequent antinociception associated with methadone was diminished whereas buprenorphine-induced antinociception was unaffected. Buprenorphine thus appears to be a more effective analgesic than methadone in the presence of gp120 in the brain, a condition that is associated with HIV-related pain and infection.
Collapse
Affiliation(s)
- Jonathan Palma
- Center for Substance Abuse Research, Temple University School of Medicine, 3400N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
31
|
CXCR7 mediated Giα independent activation of ERK and Akt promotes cell survival and chemotaxis in T cells. Cell Immunol 2011; 272:230-41. [PMID: 22070874 DOI: 10.1016/j.cellimm.2011.09.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 11/21/2022]
Abstract
Chemokine receptors CXCR7 and CXCR4 bind to the same ligand stromal cell derived factor-1alpha (SDF-1α/CXCL12). We assessed the downstream signaling pathways mediated by CXCL12-CXCR7 interaction in Jurkat T cells. All experiments were carried out after functionally blocking the CXCR4 receptor. CXCL12, on binding CXCR7, induced phosphorylation of extra cellular regulated protein kinases (ERK 1/2) and Akt. Selective inhibition of each signal demonstrated that phosphorylated ERK 1/2 is essential for chemotaxis and survival of T cells whereas activation of Akt promotes only cell survival. Another interesting finding of this study is that CXCL12-CXCR7 interaction under normal physiological conditions does not activate the p38 pathway. Furthermore, we observed that the CXCL12 signaling via CXCR7 is Giα independent. Our findings suggest that CXCR7 promotes cell survival and does not induce cell death in T cells. The CXCL12 signaling via CXCR7 may be crucial in determining the fate of the activated T cells.
Collapse
|
32
|
Chen X, Kirby LG, Palma J, Benamar K, Geller EB, Eisenstein TK, Adler MW. The effect of gp120 on morphine's antinociceptive and neurophysiological actions. Brain Behav Immun 2011; 25:1434-43. [PMID: 21569838 PMCID: PMC3998826 DOI: 10.1016/j.bbi.2011.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/12/2011] [Accepted: 04/21/2011] [Indexed: 11/30/2022] Open
Abstract
Recently, we have shown that morphine's analgesic activity can be attenuated by chemokines, specifically CCL5 and CXCL12. Because the HIV-1 coat protein, glycoprotein 120 (gp120), binds to the same receptors as do CCL5 and CXCL12, experiments were designed to investigate the effect of gp120 in the brain on antinociception induced by morphine in the cold-water (-3°C) tail-flick (CWT) and hot-plate (+54°C) tests. In addition, mu-opioid-receptor-mediated effects in brain periaqueductal grey (PAG) slices were examined with whole-cell patch-clamp recordings. The results showed that (1) pretreatment with gp120 itself (10, 25, 50, 100 or 133 ng, PAG) had no nociceptive effect in the CWT; (2) pretreatment with gp120 (25 or 100 ng) dose-dependently reduced antinociception induced by subcutaneous (sc) injection of morphine (3 or 6 mg/kg) or PAG injection of morphine (100 ng) in the CWT; (3) a PAG injection of gp120 (133 ng), given 30 min before sc injection of morphine (6 mg/kg), similarly reduced morphine antinociception in the hot-plate test; (4) the inhibitory effect of gp120 on morphine-induced antinociception in the CWT was reversed by AMD3100, an antagonist of CXCR4; (5) pretreatment of slices with gp120 (200 pM) prevented morphine (10 μM)-induced hyperpolarization and reduction of input resistance in PAG neurons. Electrophysiology studies paralleled gp120-induced desensitization of a mu-opioid-receptor-mediated response in PAG neurons at the single-cell level. These studies are the first to demonstrate that the analgesic activity of morphine can be reduced by the presence of gp120 in the PAG and that pretreatment with AMD3100 is able to restore the analgesic effects of morphine.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Shimizu S, Brown M, Sengupta R, Penfold ME, Meucci O. CXCR7 protein expression in human adult brain and differentiated neurons. PLoS One 2011; 6:e20680. [PMID: 21655198 PMCID: PMC3105114 DOI: 10.1371/journal.pone.0020680] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/07/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND CXCR7 and CXCR4 are receptors for the chemokine CXCL12, which is involved in essential functions of the immune and nervous systems. Although CXCR7 transcripts are widely expressed throughout the central nervous system, little is known about its protein distribution and function in the adult brain. To evaluate its potential involvement in CXCL12/CXCR4 signaling in differentiated neurons, we studied CXCR7 protein expression in human brain and cultured neurons. METHODOLOGY/PRINCIPAL FINDINGS Immunohistochemistry and RT-PCR analyses of cortex and hippocampus from control and HIV-positive subjects provided the first evidence of CXCR7 protein expression in human adult neurons, under normal and pathological conditions. Furthermore, confocal microscopy and binding assays in cultured neurons show that CXCR7 protein is mainly located into cytoplasm, while little to no protein expression is found on neuronal plasma membrane. Interestingly, specific CXCR7 ligands that inhibit CXCL12 binding to CXCR7 do not alter CXCR4-activated survival signaling (pERK/pAkt) in rat cortical neurons. Neuronal CXCR7 co-localizes to some extent with the endoplasmic reticulum marker ERp29, but not with early/late endosome markers. Additionally, large areas of overlap are detected in the intracellular pattern of CXCR7 and CXCR4 expression. CONCLUSIONS/SIGNIFICANCE Overall, these results implicate CXCR4 as the main CXCL12 signaling receptor on the surface of differentiated neurons and suggest that CXCR7 may interact with CXCR4 at the intracellular level, possibly affecting CXCR4 trafficking and/or coupling to other proteins.
Collapse
Affiliation(s)
- Saori Shimizu
- Department of Pharmacology and Physiology, Drexel University College of
Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael Brown
- Department of Pharmacology and Physiology, Drexel University College of
Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rajarshi Sengupta
- Department of Pharmacology and Physiology, Drexel University College of
Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark E. Penfold
- ChemoCentryx, Mountain View, California, United States of
America
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of
Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of
Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
34
|
Yoshii H, Kamiyama H, Goto K, Oishi K, Katunuma N, Tanaka Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N, Kubo Y. CD4-independent human immunodeficiency virus infection involves participation of endocytosis and cathepsin B. PLoS One 2011; 6:e19352. [PMID: 21541353 PMCID: PMC3081840 DOI: 10.1371/journal.pone.0019352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/04/2011] [Indexed: 01/03/2023] Open
Abstract
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kensuke Goto
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kazunori Oishi
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironori Sato
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Yamamoto
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
35
|
Edo-Matas D, van Dort KA, Setiawan LC, Schuitemaker H, Kootstra NA. Comparison of in vivo and in vitro evolution of CCR5 to CXCR4 coreceptor use of primary human immunodeficiency virus type 1 variants. Virology 2011; 412:269-77. [PMID: 21295814 DOI: 10.1016/j.virol.2011.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/29/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
During the course of at least 50% of HIV-1 subtype B infections, CCR5-using (R5) viruses evolve towards a CXCR4-using phenotype. To gain insight in the transition from CCR5 to CXCR4 coreceptor use, we investigated whether acquisition of CXCR4 use in vitro of R5 viruses from four patients resembled this process in vivo. R5 variants from only one patient acquired CXCR4 use in vitro. These variants had envelopes with higher V3 charge and higher number of potential N-linked glycosylation sites when compared to R5 variants that failed to gain CXCR4 use in vitro. In this patient, acquisition of CXCR4 use in vitro and in vivo was associated with multiple mutational patterns not necessarily involving the V3 region. However, changes at specific V3 positions were prerequisite for persistence of CXCR4-using variants in vivo, suggesting that positive selection targeting the V3 loop is required for emergence of CXCR4-using variants during natural disease course.
Collapse
Affiliation(s)
- Diana Edo-Matas
- Dept of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at Academic Medical Center of University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Cavarelli M, Scarlatti G. HIV-1 co-receptor usage: influence on mother-to-child transmission and pediatric infection. J Transl Med 2011; 9 Suppl 1:S10. [PMID: 21284900 PMCID: PMC3105501 DOI: 10.1186/1479-5876-9-s1-s10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Viral CCR5 usage is not a predictive marker of mother to child transmission (MTCT) of HIV-1. CXCR4-using viral variants are little represented in pregnant women, have an increased although not significant risk of transmission and can be eventually also detected in the neonates. Genetic polymorphisms are more frequently of relevance in the child than in the mother. However, specific tissues as the placenta or the intestine, which are involved in the prevalent routes of infection in MTCT, may play an important role of selective barriers. The virus phenotype of the infected children, like that of adults, can evolve from R5 to CXCR4-using phenotype or remain R5 despite clinical progression to overt immune deficiency. The refined classification of R5 viruses into R5(narrow) and R5(broad) resolves the enigma of the R5 phenotype being associated with the state of immune deficiency. Studies are needed to address more in specific the relevance of these factors in HIV-1 MTCT and pediatric infection of non-B subtypes.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Unit of Viral Evolution and Transmission, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | |
Collapse
|
37
|
Berahovich RD, Zabel BA, Penfold MET, Lewén S, Wang Y, Miao Z, Gan L, Pereda J, Dias J, Slukvin II, McGrath KE, Jaen JC, Schall TJ. CXCR7 protein is not expressed on human or mouse leukocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:5130-9. [PMID: 20889540 DOI: 10.4049/jimmunol.1001660] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the discovery that CXCR7 binds to CXCL12/SDF-1α, the role of CXCR7 in CXCL12-mediated biological processes has been under intensive scrutiny. However, there is no consensus in the literature on the expression of CXCR7 protein by peripheral blood cells. In this study we analyzed human and mouse leukocytes and erythrocytes for CXCR7 protein expression, using a competitive CXCL12 binding assay as well as by flow cytometry and immunohistochemistry using multiple CXCR7 Abs. CXCR7(-/-) mice were used as negative controls. Together, these methods indicate that CXCR7 protein is not expressed by human peripheral blood T cells, B cells, NK cells, or monocytes, or by mouse peripheral blood leukocytes. CXCR7 protein is, however, expressed on mouse primitive erythroid cells, which supply oxygen to the embryo during early stages of development. These studies therefore suggest that, whereas CXCR7 protein is expressed by primitive RBCs during murine embryonic development, in adult mammals CXCR7 protein is not expressed by normal peripheral blood cells.
Collapse
|
38
|
Abstract
Bacterial entry is a multistep process triggering a complex network, yet the molecular complexity of this network remains largely unsolved. By employing a systems biology approach, we reveal a systemic bacterial-entry network initiated by Chlamydia pneumoniae, a widespread opportunistic pathogen. The network consists of nine functional modules (i.e., groups of proteins) associated with various cellular functions, including receptor systems, cell adhesion, transcription, and endocytosis. The peak levels of gene expression for these modules change rapidly during C. pneumoniae entry, with cell adhesion occurring at 5 min postinfection, receptor and actin activity at 25 min, and endocytosis at 2 h. A total of six membrane proteins (chemokine C-X-C motif receptor 7 [CXCR7], integrin beta 2 [ITGB2], platelet-derived growth factor beta polypeptide [PDGFB], vascular endothelial growth factor [VEGF], vascular cell adhesion molecule 1 [VCAM1], and GTP binding protein overexpressed in skeletal muscle [GEM]) play a key role during C. pneumoniae entry, but none alone is essential to prevent entry. The combination knockdown of three genes (coding for CXCR7, ITGB2, and PDGFB) significantly inhibits C. pneumoniae entry, but the entire network is resistant to the six-gene depletion, indicating a resilient network. Our results reveal a complex network for C. pneumoniae entry involving at least six key proteins.
Collapse
|
39
|
Shimizu N, Tanaka A, Jinno-Oue A, Mori T, Ohtsuki T, Hoshino H. Short communication: identification of the conformational requirement for the specificities of coreceptors for human and simian immunodeficiency viruses. AIDS Res Hum Retroviruses 2010; 26:321-8. [PMID: 20334567 DOI: 10.1089/aid.2009.0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
More than 10 G protein-coupled receptors (GPCRs) work as coreceptors for human and simian immunodeficiency viruses (HIVs/SIVs); however, structural features critical for coreceptor activity have not been identified. Our objective was to elucidate the structural requirement of coreceptor activities. Amino-terminal regions (NTRs), extracellular loops (ECLs), and the undecapeptidyl arch (UPA) in the second ECL have been shown to be important for coreceptor function. We made chimeric coreceptors for these regions between CCR5 and GPR1, which is genetically distant from CCR5, and analyzed their activities. The coreceptor activity and specificity of CCR5 were maintained when its NTR or UPA was replaced with GPR1. In contrast, the GPR1 chimera with CCR5 NTR was used by HIV-1 strains that can use only CCR5, but not both CCR5 and CXCR4, or GPR1. GPR1 chimera with CCR5 UPA almost lost activity. All ECL chimeras could hardly maintain activity. Thus, CCR5 is more flexibly acceptable to heterologous NTR and UPA than GPR1, suggesting the existence of conformational differences made by the integration of multiple extracellular regions. This conformation may specifically interact with HIV-1 in a strain-dependent manner. Identification of a factor that is critical to make this conformation will contribute to understanding the mechanism of coreceptor function of GPCRs. For this, the coreceptor activity of GPR1, which is genetically distant from CCR5, will be a useful tool.
Collapse
Affiliation(s)
- Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Tanaka
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Jinno-Oue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takahisa Mori
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Ohtsuki
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
40
|
The role of stromal-derived factor-1--CXCR7 axis in development and cancer. Eur J Pharmacol 2009; 625:31-40. [PMID: 19835865 DOI: 10.1016/j.ejphar.2009.04.071] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/24/2009] [Accepted: 04/29/2009] [Indexed: 01/07/2023]
Abstract
Cancer metastasis is a major clinical problem that contributes to unsuccessful therapy. Augmenting evidence indicates that metastasizing cancer cells employ several mechanisms that are involved in developmental trafficking of normal stem cells. Stromal-derived factor-1 (SDF-1) is an important alpha-chemokine that binds to the G-protein-coupled seven-transmembrane span CXCR4. The SDF-1-CXCR4 axis regulates trafficking of normal and malignant cells. SDF-1 is an important chemoattractant for a variety of cells including hematopoietic stem/progenitor cells. For many years, it was believed that CXCR4 was the only receptor for SDF-1. However, several reports recently provided evidence that SDF-1 also binds to another seven-transmembrane span receptor called CXCR7, sharing this receptor with another chemokine family member called Interferon-inducible T-cell chemoattractant (I-TAC). Thus, with CXCR7 identified as a new receptor for SDF-1, the role of the SDF-1-CXCR4 axis in regulating several biological processes becomes more complex. Based on the available literature, this review addresses the biological significance of SDF-1's interaction with CXCR7, which may act as a kind of decoy or signaling receptor depending on cell type. Augmenting evidence suggests that CXCR7 is involved in several aspects of tumorogenesis and could become an important target for new anti-metastatic and anti-cancer drugs.
Collapse
|
41
|
Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. J Virol 2009; 83:8353-63. [PMID: 19553323 DOI: 10.1128/jvi.00780-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.
Collapse
|
42
|
Abstract
OBJECTIVE HIV-1 can use various G protein-coupled receptors (GPCRs) in addition to CCR5 and CXCR4 as coreceptors; however, this type of HIV-1 infection has hardly been detected in vivo. The objective of this study was to elucidate the spectrum of GPCR usage by HIV-1 populations in vivo. DESIGN CD4-expressing glioma cell line, NP-2/CD4, becomes highly susceptible to HIV-1 when the cells express GPCRs with coreceptor activities. This cell system was advantageous for detecting the inefficient use of GPCRs by HIV-1. METHODS We developed NP-2/CD4/GPCR cells that express each of 23 GPCRs: 21 chemokine receptors (CCR1, CCR2b, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9B, CCR10, CCR11, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CX3CR1, XCR1, D6, and DARC) and two other GPCRs (a formylpeptide receptor, FPRL1, and an orphan GPCR, GPR1). NP-2/CD4/GPCR cells were directly cocultured with HIV-1-positive peripheral blood lymphocytes and HIV-1 infection was detected. RESULTS Primary HIV-1 isolates were obtained from NP-2/CD4/GPCR cells expressing CCR5, CXCR4, FPRL1, or GPR1 cocultured with 11 of 17 peripheral blood lymphocytes. Surprisingly, these isolates showed extremely expanded GPCR usage, such as CCR1, CCR3, CCR5, CCR8, CXCR4, D6, FPRL1, and GPR1 as coreceptors. We found that CCR9B, CCR10, and XCR1 also work as novel HIV-1 coreceptors. CONCLUSION FPRL1 and GPR1 have the potential to work as significant HIV-1 coreceptors in vivo next to CCR5 and CXCR4. HIV-1 populations that can use various GPCRs as coreceptors are already circulating in vivo, even in the early stage of HIV-1 infection.
Collapse
|
43
|
Kamiyama H, Yoshii H, Tanaka Y, Sato H, Yamamoto N, Kubo Y. Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection. Virology 2009; 386:23-31. [PMID: 19178925 DOI: 10.1016/j.virol.2008.12.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 11/10/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is initiated by successive interactions of viral envelope glycoprotein gp120 with two cellular surface proteins, CD4 and chemokine receptor. The two most common chemokine receptors that allow HIV-1 entry are the CCR5 and CXCR4. The CD4 and CCR5 are mainly localized to the particular plasma membrane microdomains, termed raft, which is rich in glycolipids and cholesterol. However, the CXCR4 is localized only partially to the raft region. Although the raft domain is suggested to participate in HIV-1 infection, its role in entry of CXCR4-tropic (X4-tropic) virus is still unclear. Here, we used a combination of CD4-independent infection system and cholesterol-depletion-inducing reagent, methyl-beta-cyclodextrin (MbetaCD), to address the requirement of raft domain in the X4-tropic virus infection. Treatment of CD4-negative, CXCR4-positive human cells with MbetaCD inhibited CD4-independent infection of the X4-tropic strains. This inhibitory effect of the cholesterol depletion was observed even when the CXCR4 was over-expressed on the target cells. Soluble CD4-induced infection was also inhibited by MbetaCD. The MbetaCD had no effect on the levels of cell surface expression of CXCR4. In contrast to these infections, MbetaCD treatment did not inhibit CD4-dependent HIV-1 infection in the wild type CD4-expressing cells. This study and previous reports showing that CD4 mutants localized to non-raft domains function as HIV-1 receptor indicate that CXCR4 clustering in the raft microdomains, rather than CD4, is the key step for the HIV-1 entry.
Collapse
Affiliation(s)
- Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Struyf S, Noppen S, Loos T, Mortier A, Gouwy M, Verbeke H, Huskens D, Luangsay S, Parmentier M, Geboes K, Schols D, Van Damme J, Proost P. Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti-HIV-1 activity via CXCR4. THE JOURNAL OF IMMUNOLOGY 2009; 182:666-74. [PMID: 19109200 DOI: 10.4049/jimmunol.182.1.666] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Posttranslational proteolytic processing of chemokines is a natural mechanism to regulate inflammation. In this study, we describe modification of the CXC chemokine stromal cell-derived factor 1alpha/CXCL12 by peptidylarginine deiminase (PAD) that converts arginine residues into citrulline (Cit), thereby reducing the number of positive charges. The three NH(2)-terminal arginines of CXCL12, Arg(8), Arg(12), and Arg(20), were citrullinated upon incubation with PAD. The physiologic relevance of citrullination was demonstrated by showing coexpression of CXCL12 and PAD in Crohn's disease. Three CXCL12 isoforms were synthesized for biologic characterization: CXCL12-1Cit, CXCL12-3Cit, and CXCL12-5Cit, in which Arg(8), Arg(8)/Arg(12)/Arg(20), or all five arginines were citrullinated, respectively. Replacement of only Arg(8) caused already impaired (30-fold reduction) CXCR4 binding and signaling (calcium mobilization, phosphorylation of ERK and protein kinase B) properties. Interaction with CXCR4 was completely abolished for CXCL12-3Cit and CXCL12-5Cit. However, the CXCR7-binding capacities of CXCL12-1Cit and CXCL12-3Cit were, respectively, intact and reduced, whereas CXCL12-5Cit failed to bind CXCR7. In chemotaxis assays with lymphocytes and monocytes, CXCL12-3Cit and CXCL12-5Cit were completely devoid of activity, whereas CXCL12-1Cit, albeit at higher concentrations than CXCL12, induced migration. The antiviral potency of CXCL12-1Cit was reduced compared with CXCL12 and CXCL12-3Cit and CXCL12-5Cit (maximal dose 200 nM) could not inhibit infection of lymphocytic MT-4 cells with the HIV-1 strains NL4.3 and HE. In conclusion, modification of CXCL12 by one Cit severely impaired the CXCR4-mediated biologic effects of this chemokine and maximally citrullinated CXCL12 was inactive. Therefore, PAD is a potent physiologic down-regulator of CXCL12 function.
Collapse
Affiliation(s)
- Sofie Struyf
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shimizu N, Tanaka A, Oue A, Mori T, Apichartpiyakul C, Hoshino H. A short amino acid sequence containing tyrosine in the N-terminal region of G protein-coupled receptors is critical for their potential use as co-receptors for human and simian immunodeficiency viruses. J Gen Virol 2008; 89:3126-3136. [PMID: 19008402 DOI: 10.1099/vir.0.2008/002188-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Various G protein-coupled receptors (GPCRs) have the potential to work as co-receptors for human and simian immunodeficiency virus (HIV/SIV). HIV/SIV co-receptors have several tyrosines in their extracellular N-terminal region (NTR) as a common feature. However, the domain structure of the NTR that is critical for GPCRs to have co-receptor activity has not been identified. Comparative studies of different HIV/SIV co-receptors are an effective way to clarify the domain. These studies have been carried out only for the major co-receptors, CCR5 and CXCR4. A chemokine receptor, D6, has been shown to mediate infection of astrocytes with HIV-1. Recently, it was also found that an orphan GPCR, GPR1, and a formyl peptide receptor, FPRL1, work as potent HIV/SIV co-receptors in addition to CCR5 and CXCR4. To elucidate more about the domain of the NTR critical for HIV/SIV co-receptor activity, this study analysed the effects of mutations in the NTR on the co-receptor activity of D6, FPRL1 and GPR1 in addition to CCR5. The results identified a number of tyrosines that are indispensable for the activity of these co-receptors. The number and positions of those tyrosines varied among co-receptors and among HIV-1 strains. Moreover, it was found that a small domain of a few amino acids containing a tyrosine is critical for the co-receptor activity of GPR1. These findings will be useful in elucidating the mechanism that allows GPCRs to have the potential to act as HIV/SIV co-receptors.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Amino Acid Substitution
- Cell Line
- HIV-1/metabolism
- HIV-2/metabolism
- Molecular Sequence Data
- Mutation
- Receptors, CCR10/chemistry
- Receptors, CCR10/genetics
- Receptors, CCR10/metabolism
- Receptors, CCR5/chemistry
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, Formyl Peptide/chemistry
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, HIV/chemistry
- Receptors, HIV/genetics
- Receptors, HIV/metabolism
- Receptors, Lipoxin/chemistry
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Simian Immunodeficiency Virus/metabolism
- T-Lymphocytes
- Tyrosine/chemistry
- Chemokine Receptor D6
Collapse
Affiliation(s)
- Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Tanaka
- 21st Century COE Program, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Oue
- 21st Century COE Program, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takahisa Mori
- 21st Century COE Program, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | - Hiroo Hoshino
- 21st Century COE Program, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
46
|
Smirnova NP, Ptitsyn AA, Austin KJ, Bielefeldt-Ohmann H, Van Campen H, Han H, van Olphen AL, Hansen TR. Persistent fetal infection with bovine viral diarrhea virus differentially affects maternal blood cell signal transduction pathways. Physiol Genomics 2008; 36:129-39. [PMID: 19018046 DOI: 10.1152/physiolgenomics.90276.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The consequences of viral infection during pregnancy include impact on fetal and maternal immune responses and on fetal development. Transplacental infection in cattle with noncytopathic bovine viral diarrhea virus (ncpBVDV) during early gestation results in persistently infected (PI) fetuses with life-long viremia and susceptibility to infections. Infection of the fetus during the third trimester or after birth leads to a transient infection cleared by a competent immune system. We hypothesized that ncpBVDV infection and presence of an infected fetus would alter immune response and lead to downregulation of proinflammatory processes in pregnant dams. Naïve pregnant heifers were challenged with ncpBVDV2 on day 75 (PI fetus) and day 175 [transiently infected (TI) fetus] or kept uninfected (healthy control fetus). Maternal blood samples were collected up to day 190 of gestation. Genome-wide microarray analysis of gene expression in maternal peripheral white blood cells, performed on days 160 and 190 of gestation, revealed multiple signal transduction pathways affected by ncpBVDV infection. Acute infection and presence of a TI fetus caused upregulation of the type I interferon (IFN) pathway genes, including dsRNA sensors and IFN-stimulated genes. The presence of a PI fetus caused prolonged downregulation of chemokine receptor 4 (CXCR4) and T cell receptor (TCR) signaling in maternal blood cells. We conclude that: 1) infection with ncpBVDV induces a vigorous type I IFN response, and 2) presence of a PI fetus causes downregulation of important signaling pathways in the blood of the dam, which could have deleterious consequences on fetal development and the immune response.
Collapse
Affiliation(s)
- Natalia P Smirnova
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1683, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Differential expression of RDC1/CXCR7 in the human placenta. J Clin Immunol 2008; 29:379-86. [PMID: 18956235 DOI: 10.1007/s10875-008-9258-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Chemokine receptor expression by human trophoblast and other placental cells have important implications for understanding the regulation of placental growth, development, and their role in maternofetal HIV transmission. CXCR7, now a deorphanized G protein coupled receptor that has been recently shown to bind to the ligands ITAC and CXCL12 has been proposed to act as a co-receptor for HIV-1, HIV-2, and SIV strains. The differential expression of CXCR7 in the human placenta is not yet reported. METHODS The expression of CXCR7 was studied in 45 different human placental tissues, of which 20 were from early placental tissues (8-10 week old) obtained from medically terminated pregnancies and 25 were placenta from normal term deliveries. RESULTS Immunohistochemistry and RT-PCR analysis revealed a greater expression of CXCR7 in term human placenta as compared to the early stage. This was further confirmed by real-time PCR. CONCLUSION Our study reveals, for the first time, the differential expression of CXCR7 in early (8-10 weeks) and term human placenta. The precise role of CXCR7 in the human placenta needs to be determined. HIV vertical transmission is reported to occur mainly during the end stages of pregnancy. Our finding of increased CXCR7 expression in the term human placenta therefore warrants future studies to assess its role in the vertical transmission of HIV-1.
Collapse
|
48
|
Schönemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R. Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol 2008; 510:207-20. [PMID: 18615560 DOI: 10.1002/cne.21780] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) regulates neuronal development via the chemokine receptor CXCR4. In the adult brain the SDF-1/CXCR4 system was implicated in neurogenesis, neuromodulation, brain inflammation, tumor growth, and HIV encephalopathy. Until the recent identification of RDC1/CXCR7 as the second SDF-1 receptor, CXCR4 was considered to be the only receptor for SDF-1. Here we provide the first map of CXCR7 mRNA expression in the embryonic and adult rat brain. At embryonic stages, CXCR7 and CXCR4 were codistributed in the germinative zone of the ganglionic eminences, caudate putamen, and along the routes of GABAergic precursors migrating toward the cortex. In the cortex, CXCR7 was identified in GABAergic precursors and in some reelin-expressing Cajal-Retzius cells. Unlike CXCR4, CXCR7 was abundant in neurons forming the cortical plate and sparse in the developing dentate gyrus and cerebellar external germinal layer. In the adult brain, CXCR7 was expressed by blood vessels, pyramidal cells in CA3, and mature dentate gyrus granule cells, which is reminiscent of the SDF-1 pattern. CXCR7 and CXCR4 overlapped in the wall of the four ventricles. Further neuronal structures expressing CXCR7 comprised the olfactory bulb, accumbens shell, supraoptic and ventromedial hypothalamic nuclei, medial thalamus, and brain stem motor nuclei. Also, GLAST-expressing astrocytes showed signals for CXCR7. Thus, CXCR4 and CXCR7 may cooperate or act independently in SDF-1-dependent neuronal development. In mature neurons and blood vessels CXCR7 appears to be the preponderant SDF-1-receptor.
Collapse
Affiliation(s)
- Bastian Schönemeier
- Institute of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Hartmann TN, Grabovsky V, Pasvolsky R, Shulman Z, Buss EC, Spiegel A, Nagler A, Lapidot T, Thelen M, Alon R. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol 2008; 84:1130-40. [PMID: 18653785 DOI: 10.1189/jlb.0208088] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12 promotes migration of human leukocytes, hematopoietic progenitors, and tumor cells. The binding of CXCL12 to its receptor CXCR4 triggers Gi protein signals for motility and integrin activation in many cell types. CXCR7 is a second, recently identified receptor for CXCL12, but its role as an intrinsic G-protein-coupled receptor (GPCR) has been debated. We report that CXCR7 fails to support on its own any CXCL12-triggered integrin activation or motility in human T lymphocytes or CD34(+) progenitors. CXCR7 is also scarcely expressed on the surface of both cell types and concentrates right underneath the plasma membrane with partial colocalization in early endosomes. Nevertheless, various specific CXCR7 blockers get access to this pool and attenuate the ability of CXCR4 to properly rearrange by surface-bound CXCL12, a critical step in the ability of the GPCR to trigger optimal CXCL12-mediated stimulation of integrin activation in T lymphocytes as well as in CD34(+) cells. In contrast, CXCL12-triggered CXCR4 signaling to early targets, such as Akt as well as CXCR4-mediated chemotaxis, is insensitive to identical CXCR7 blocking. Our findings suggest that although CXCR7 is not an intrinsic signaling receptor for CXCL12 on lymphocytes or CD34(+) cells, its blocking can be useful for therapeutic interference with CXCR4-mediated activation of integrins.
Collapse
|
50
|
Shimizu N, Tanaka A, Mori T, Ohtsuki T, Hoque A, Jinno-Oue A, Apichartpiyakul C, Kusagawa S, Takebe Y, Hoshino H. A formylpeptide receptor, FPRL1, acts as an efficient coreceptor for primary isolates of human immunodeficiency virus. Retrovirology 2008; 5:52. [PMID: 18577234 PMCID: PMC2453146 DOI: 10.1186/1742-4690-5-52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/25/2008] [Indexed: 12/05/2022] Open
Abstract
Background More than 10 members of seven-transmembrane G protein-coupled receptors (GPCRs) have been shown to work as coreceptors for human immunodeficiency virus type 1 (HIV-1), HIV type 2 (HIV-2), and simian immunodeficiency viruses (SIVs). As a common feature of HIV/SIV coreceptors, tyrosine residues are present with asparagines, aspartic acids or glutamic acids in the amino-terminal extracellular regions (NTRs). We noticed that a receptor for N-formylpeptides, FPRL1, also contains two tyrosine residues accompanied by glutamic acids in its NTR. It was reported that monocytes expressing CCR5 and FPRL1 in addition to CD4 are activated by treatment with ligands or agonists of FPRL1. Activated monocytes down-modulate CCR5 and become resistant to infection by HIV-1 strains. Thus, FPRL1 plays important roles in protection of monocyptes against HIV-1 infection. However, its own coreceptor activity has not been elucidated yet. In this study, we examined coreceptor activities of FPRL1 for HIV/SIV strains including primary HIV-1 isolates. Results A CD4-transduced human glioma cell line, NP-2/CD4, is strictly resistant to HIV/SIV infection. We have reported that when NP-2/CD4 cells are transduced with a GPCR having coreceptor activity, the cells become susceptible to HIV/SIV strains. When NP-2/CD4 cells were transduced with FPRL1, the resultant NP-2/CD4/FPRL1 cells became markedly susceptible to some laboratory-adapted HIV/SIV strains. We found that FPRL1 is also efficiently used as a coreceptor by primary HIV-1 isolates as well as CCR5 or CXCR4. Amino acid sequences linked to the FPRL1 use could not be detected in the V3 loop of the HIV-1 Env protein. Coreceptor activities of FPRL1 were partially blocked by the forymyl-Met-Leu-Phe (fMLF) peptide. Conclusion We conclude that FPRL1 is a novel and efficient coreceptor for HIV/SIV strains. FPRL1 works as a bifunctional factor in HIV-1 infection. Namely, the role of FPRL1 in HIV-1 infection is protective and/or promotive in different conditions. FPRL1 has been reported to be abundantly expressed in the lung, spleen, testis, and neutrophils. We detected mRNA expression of FPRL1 in 293T (embryonal kidney cell line), C8166 (T cell line), HOS (osteosarcoma cell line), Molt4#8 (T cell line), U251MG (astrocytoma cell line), U87/CD4 (CD4-transduced glioma cell line), and peripheral blood lymphocytes. Roles of FPRL1 in HIV-1 infection in vivo should be further investigated.
Collapse
Affiliation(s)
- Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|