1
|
Smertina E, Hall RN, Urakova N, Strive T, Frese M. Calicivirus Non-structural Proteins: Potential Functions in Replication and Host Cell Manipulation. Front Microbiol 2021; 12:712710. [PMID: 34335548 PMCID: PMC8318036 DOI: 10.3389/fmicb.2021.712710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA genome of positive polarity. The ongoing discovery of caliciviruses has increased the number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land mammals. All caliciviruses have a genome that encodes a major and a minor capsid protein, a genome-linked viral protein, and several non-structural proteins. Of these non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase share clear sequence and structural similarities with proteins from other virus families. In addition, all caliciviruses express two or three non-structural proteins for which functions have not been clearly defined. The sequence diversity of these non-structural proteins and a multitude of processing strategies suggest that at least some have evolved independently, possibly to counteract innate and adaptive immune responses in a host-specific manner. Studying these proteins is often difficult as many caliciviruses cannot be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed many of their properties, such as intracellular localization, capacity to oligomerize, and ability to interact with viral and/or cellular proteins; the release of non-structural proteins from transfected cells has also been investigated. Here, we will summarize these findings and discuss recent in silico studies that identified previously overlooked putative functional domains and structural features, including transmembrane domains that suggest the presence of viroporins.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Michael Frese
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
2
|
Meade N, DiGiuseppe S, Walsh D. Translational control during poxvirus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1515. [PMID: 30381906 DOI: 10.1002/wrna.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Poxviruses are an unusual family of large double-stranded (ds) DNA viruses that exhibit an incredible degree of self-sufficiency and complexity in their replication and immune evasion strategies. Indeed, amongst their approximately 200 open reading frames (ORFs), poxviruses encode approximately 100 immunomodulatory proteins to counter host responses along with complete DNA synthesis, transcription, mRNA processing and cytoplasmic redox systems that enable them to replicate exclusively in the cytoplasm of infected cells. However, like all other viruses poxviruses do not encode ribosomes and therefore remain completely dependent on gaining access to the host translational machinery in order to synthesize viral proteins. Early studies of these intriguing viruses helped discover the mRNA cap and polyadenylated (polyA) tail that we now know to be present on most eukaryotic messages and which play fundamental roles in mRNA translation, while more recent studies have begun to reveal the remarkable lengths poxviruses go to in order to control both host and viral protein synthesis. Here, we discuss some of the central strategies used by poxviruses and the broader battle that ensues with the host cell to control the translation system, the outcome of which ultimately dictates the fate of infection. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
3
|
|
4
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
5
|
Deng H, Fung G, Qiu Y, Wang C, Zhang J, Jin ZG, Luo H. Cleavage of Grb2-Associated Binding Protein 2 by Viral Proteinase 2A during Coxsackievirus Infection. Front Cell Infect Microbiol 2017; 7:85. [PMID: 28361043 PMCID: PMC5352685 DOI: 10.3389/fcimb.2017.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus type B3 (CV-B3), an enterovirus associated with the pathogenesis of several human diseases, subverts, or employs the host intracellular signaling pathways to support effective viral infection. We have previously demonstrated that Grb2-associated binding protein 1 (GAB1), a signaling adaptor protein that serves as a platform for intracellular signaling assembly and transduction, is cleaved upon CV-B3 infection, resulting in a gain-of-pro-viral-function via the modification of GAB1-mediated ERK1/2 pathway. GAB2 is a mammalian homolog of GAB1. In this study, we aim to address whether GAB2 plays a synergistic role with GAB1 in the regulation of CV-B3 replication. Here, we reported that GAB2 is also a target of CV-B3-encoded viral proteinase. We showed that GAB2 is cleaved at G238 during CV-B3 infection by viral proteinase 2A, generating two cleaved fragments of GAB2-N1−237 and GAB2-C238−676. Moreover, knockdown of GAB2 significantly inhibits the synthesis of viral protein and subsequent viral progeny production, accompanied by reduced levels of phosphorylated p38, suggesting a pro-viral function for GAB2 linked to p38 activation. Finally, we examined whether the cleavage of GAB2 can promote viral replication as observed for GAB1 cleavage. We showed that expression of neither GAB2-N1−237 nor GAB2-C238−676 results in enhanced viral infectivity, indicating a loss-of-function, rather than a gain-of-function of GAB2 cleavage in mediating virus replication. Taken together, our findings in this study suggest a novel host defense machinery through which CV-B3 infection is limited by the cleavage of a pro-viral protein.
Collapse
Affiliation(s)
- Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Gabriel Fung
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Ye Qiu
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical ScienceBeijing, China
| | - Jingchun Zhang
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY, USA
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
6
|
Amorim R, Costa SM, Cavaleiro NP, da Silva EE, da Costa LJ. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease. PLoS One 2014; 9:e88619. [PMID: 24520405 PMCID: PMC3919812 DOI: 10.1371/journal.pone.0088619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.
Collapse
Affiliation(s)
- Raquel Amorim
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Mesquita Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pereira Cavaleiro
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Elias da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Shubin AV, Lunina NA, Shedova EN, Roshina MP, Demidyuk IV, Vinogradova TV, Kopantsev EP, Chernov IP, Kostrov SV. Evaluation of the toxic effects evoked by the transient expression of protease genes from human pathogens in HEK293 cells. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813090044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Marcet-Palacios M, Duggan BL, Shostak I, Barry M, Geskes T, Wilkins JA, Yanagiya A, Sonenberg N, Bleackley RC. Granzyme B inhibits vaccinia virus production through proteolytic cleavage of eukaryotic initiation factor 4 gamma 3. PLoS Pathog 2011; 7:e1002447. [PMID: 22194691 PMCID: PMC3240606 DOI: 10.1371/journal.ppat.1002447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 11/04/2011] [Indexed: 01/28/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are the major killer of virus-infected cells. Granzyme B (GrB) from CTLs induces apoptosis in target cells by cleavage and activation of substrates like caspase-3 and Bid. However, while undergoing apoptosis, cells are still capable of producing infectious viruses unless a mechanism exists to specifically inhibit viral production. Using proteomic approaches, we identified a novel GrB target that plays a major role in protein synthesis: eukaryotic initiation factor 4 gamma 3 (eIF4G3). We hypothesized a novel role for GrB in translation of viral proteins by targeting eIF4G3, and showed that GrB cleaves eIF4G3 specifically at the IESD1408S sequence. Both GrB and human CTL treatment resulted in degradation of eIF4G3 and reduced rates of translation. When Jurkat cells infected with vaccinia virus were treated with GrB, there was a halt in viral protein synthesis and a decrease in production of infectious new virions. The GrB-induced inhibition of viral translation was independent of the activation of caspases, as inhibition of protein synthesis still occurred with addition of the pan-caspase inhibitor zVAD-fmk. This demonstrated for the first time that GrB prevents the production of infectious vaccinia virus by targeting the host translational machinery. Lymphocytes, a type of white blood cell, are the major killer of virus-infected cells. Lymphocytes secrete proteins like granzyme B that are responsible for the destruction of the virus-infected host cell. However, killing an infected cell through this pathway may take several hours, thus allowing viral replication to occur while the cell is in the process of dying. In this study, we identified a new role of granzyme B in preventing viral replication during the killing process. We found that granzyme B disables the ability of the host cell to make new proteins, including viral proteins of infected cells. Thus, granzyme B is able to halt the production of new viruses by inhibiting protein production.
Collapse
Affiliation(s)
| | - Brenda Lee Duggan
- University of Alberta, Department of Biochemistry, Edmonton, Alberta, Canada
| | - Irene Shostak
- University of Alberta, Department of Biochemistry, Edmonton, Alberta, Canada
| | - Michele Barry
- University of Alberta, Department of Medical Microbiology and Immunology, Edmonton, Alberta, Canada
| | - Tracy Geskes
- University of Alberta, Department of Biochemistry, Edmonton, Alberta, Canada
| | - John A. Wilkins
- University of Manitoba, Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
| | - Akiko Yanagiya
- McGill University, Department of Biochemistry, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- McGill University, Department of Biochemistry, Montreal, Quebec, Canada
| | - R. Chris Bleackley
- University of Alberta, Department of Biochemistry, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
10
|
Tian W, Cui Z, Zhang Z, Wei H, Zhang X. Poliovirus 2A(pro) induces the nucleic translocation of poliovirus 3CD and 3C' proteins. Acta Biochim Biophys Sin (Shanghai) 2011; 43:38-44. [PMID: 21173057 DOI: 10.1093/abbs/gmq112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poliovirus genomic RNA replication, protein translation, and virion assembly are performed in the cytoplasm of host cells. However, this does not mean that there is no relationship between poliovirus infection and the cellular nucleus. In this study, recombinant fluorescence-tagged poliovirus 3CD and 3C' proteins were shown to be expressed mainly in the cytoplasm of Vero cells in the absence of other viral proteins. However, upon poliovirus infection, many of these proteins redistributed to the nucleus, as well as to the cytoplasm. A series of transfection experiments revealed that the poliovirus 2A(pro) was responsible for the same redistribution of 3CD and 3C' proteins to the nucleus. Furthermore, a mutant 2A(pro) protein lacking protease activity abrogated this effect. The poliovirus 2A(pro) protein was also found to co-localize with the Nup153 protein, a component of the nuclear pore complexes on the nuclear envelope. These data provide further evidence that there are intrinsic interactions between poliovirus proteins and the cell nucleus, despite that many processes in the poliovirus replication cycle occur in the cytoplasm.
Collapse
Affiliation(s)
- Wenwu Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
11
|
Hsu YY, Liu YN, Lu WW, Kung SH. Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnol Bioeng 2009; 104:1142-52. [PMID: 19655339 DOI: 10.1002/bit.22495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2A(pro)). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET-based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP(2)) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real-time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2A(pro) catalytic activity, irrespective of other viral-encoded protease, the activated caspases or general inhibition of protein synthesis in the EV-infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease-substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus-induced host translation inhibition.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Department of Biotechnology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | | | | | | |
Collapse
|
12
|
Castelló A, Franco D, Moral-López P, Berlanga JJ, Álvarez E, Wimmer E, Carrasco L. HIV- 1 protease inhibits Cap- and poly(A)-dependent translation upon eIF4GI and PABP cleavage. PLoS One 2009; 4:e7997. [PMID: 19956697 PMCID: PMC2776998 DOI: 10.1371/journal.pone.0007997] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022] Open
Abstract
A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation. This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems. HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A) tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving rise to the production of Gag polyprotein.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - David Franco
- State University of New York at Stony Brook, Long Island, New York, United States of America
| | - Pablo Moral-López
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Juan J. Berlanga
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Enrique Álvarez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Eckard Wimmer
- State University of New York at Stony Brook, Long Island, New York, United States of America
| | - Luis Carrasco
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
- * E-mail:
| |
Collapse
|
13
|
Translation of mRNAs from vesicular stomatitis virus and vaccinia virus is differentially blocked in cells with depletion of eIF4GI and/or eIF4GII. J Mol Biol 2009; 394:506-21. [PMID: 19769989 DOI: 10.1016/j.jmb.2009.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/02/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022]
Abstract
Cytolytic viruses abrogate host protein synthesis to maximize the translation of their own mRNAs. In this study, we analyzed the eukaryotic initiation factor (eIF) 4G requirement for translation of vesicular stomatitis virus (VSV) and vaccinia virus (VV) mRNAs in HeLa cells using two different strategies: eIF4G depletion by small interfering RNAs or cleavage of eIF4G by expression of poliovirus 2A protease. Depletion of eIF4GI or eIF4GII moderately inhibits cellular protein synthesis, whereas silencing of both factors has only a slightly higher effect. Under these conditions, the extent of VSV protein synthesis is similar to that of nondepleted control cells, whereas VV expression is substantially reduced. Similar results were obtained when eIF4E was depleted. On the other hand, eIF4G cleavage by poliovirus 2A protease strongly inhibits translation of VV protein expression, whereas translation directed by VSV mRNAs is not abrogated, even though VSV mRNAs are capped. Therefore, the requirement for eIF4F activity is different for VV and VSV, suggesting that the molecular mechanism by which their mRNAs initiate their translation is also different. Consistent with these findings, eIF4GI does not colocalize with ribosomes in VSV-infected cells, while eIF2alpha locates at perinuclear sites coincident with ribosomes.
Collapse
|
14
|
Bypass suppression of small-plaque phenotypes by a mutation in poliovirus 2A that enhances apoptosis. J Virol 2009; 83:10129-39. [PMID: 19625405 DOI: 10.1128/jvi.00642-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of protein secretion in host cells is inhibited during infection with several different picornaviruses, with consequences likely to have significant effects on viral growth, spread, and pathogenesis. This Sin(+) (secretion inhibition) phenotype has been documented for poliovirus, foot-and-mouth disease virus, and coxsackievirus B3 and can lead to reduced cell surface expression of major histocompatibility complex class I and tumor necrosis factor receptor as well as reduced extracellular secretion of induced cytokines such as interleukin-6 (IL-6), IL-8, and beta interferon. The inhibition of protein secretion is global, affecting the movement of all tested cargo proteins through the cellular secretion apparatus. To test the physiological significance of the Sin(-) and Sin(+) phenotypes in animal models, Sin(-) mutant viruses are needed that fail to inhibit host protein secretion and also exhibit robust growth properties. To identify such Sin(-) mutant polioviruses, we devised a fluorescence-activated cell sorter-based screen to select virus-infected cells that nevertheless expressed newly synthesized surface proteins. After multiple rounds of selection, candidate Sin(-) mutant viruses were screened for genetic stability, increased secretion of cargo molecules and wild-type translation and growth properties. A newly identified Sin(-) mutant poliovirus that contained coding changes in nonstructural proteins 2A (N32D) and 2C (E253G) was characterized. In this virus, the 2C mutation is responsible for the Sin(-) phenotype and the 2A mutation suppresses a resulting growth defect by increasing the rate of cell death and therefore the rate of viral spread. The 2A-N32D suppressor mutation was not allele specific and, by increasing the rate of cellular apoptosis, affected a completely different pathway than the 2C-E253G Sin(-) mutation. Therefore, the 2A mutation suppresses the 2C-E253G mutant phenotype by a bypass suppression mechanism.
Collapse
|
15
|
Morrison JM, Racaniello VR. Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 2009; 83:4412-22. [PMID: 19211759 PMCID: PMC2668472 DOI: 10.1128/jvi.02177-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/03/2009] [Indexed: 12/24/2022] Open
Abstract
The Picornaviridae family comprises a diverse group of small RNA viruses that cause a variety of human and animal diseases. Some of these viruses are known to induce cleavage of components of the innate immune system and to inhibit steps in the interferon pathway that lead to the production of type I interferon. There has been no study of the effect of picornaviral infection on the events that occur after interferons have been produced. To determine whether members of the Enterovirus genus can antagonize the antiviral activity of interferon-stimulated genes (ISGs), we pretreated cells with alpha interferon (IFN-alpha) and then infected the cells with poliovirus type 1, 2, or 3; enterovirus type 70; or human rhinovirus type 16. We found that these viruses were able to replicate in IFN-alpha-pretreated cells but that replication of vesicular stomatitis virus, a Rhabdovirus, and encephalomyocarditis virus (EMCV), a picornavirus of the Cardiovirus genus, was completely inhibited. Although EMCV is sensitive to IFN-alpha, coinfection of cells with poliovirus and EMCV leads to EMCV replication in IFN-alpha-pretreated cells. The enteroviral 2A proteinase (2A(pro)) is essential for replication in cells pretreated with interferon, because amino acid changes in this protein render poliovirus sensitive to IFN-alpha. The addition of the poliovirus 2A(pro) gene to the EMCV genome allowed EMCV to replicate in IFN-alpha-pretreated cells. These results support an inhibitory role for 2A(pro) in the most downstream event in interferon signaling, the antiviral activities of ISGs.
Collapse
Affiliation(s)
- Juliet M Morrison
- Department of Microbiology, Columbia University College of Physicians, New York, NY 10032, USA.
| | | |
Collapse
|
16
|
Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus-infected cells. Mol Cell Biol 2008; 28:2648-58. [PMID: 18250159 DOI: 10.1128/mcb.01631-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite their self-sufficient ability to generate capped mRNAs from cytosolic DNA genomes, poxviruses must commandeer the critical eukaryotic translation initiation factor 4F (eIF4F) to recruit ribosomes. While eIF4F integrates signals to control translation, precisely how poxviruses manipulate the multisubunit eIF4F, composed of the cap-binding eIF4E and the RNA helicase eIF4A assembled onto an eIF4G platform, remains obscure. Here, we establish that the poxvirus infection of normal, primary human cells destroys the translational repressor eIF4E binding protein (4E-BP) and promotes eIF4E assembly into an active eIF4F complex bound to the cellular polyadenylate-binding protein (PABP). Stimulation of the eIF4G-associated kinase Mnk1 promotes eIF4E phosphorylation and enhances viral replication and protein synthesis. Remarkably, these eIF4F architectural alterations are accompanied by the concentration of eIF4E and eIF4G within cytosolic viral replication compartments surrounded by PABP. This demonstrates that poxvirus infection redistributes, assembles, and modifies core and associated components of eIF4F and concentrates them within discrete subcellular compartments. Furthermore, it suggests that the subcellular distribution of eIF4F components may potentiate the complex assembly.
Collapse
|
17
|
Racine T, Barry C, Roy K, Dawe SJ, Shmulevitz M, Duncan R. Leaky scanning and scanning-independent ribosome migration on the tricistronic S1 mRNA of avian reovirus. J Biol Chem 2007; 282:25613-22. [PMID: 17604272 DOI: 10.1074/jbc.m703708200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The S1 genome segments of avian and Nelson Bay reovirus encode tricistronic mRNAs containing three sequential partially overlapping open reading frames (ORFs). The translation start site of the 3'-proximal ORF encoding the sigmaC protein lies downstream of two ORFs encoding the unrelated p10 and p17 proteins and more than 600 nucleotides distal from the 5'-end of the mRNA. It is unclear how translation of this remarkable tricistronic mRNA is regulated. We now show that the p10 and p17 ORFs are coordinately expressed by leaky scanning. Translation initiation events at these 5'-proximal ORFs, however, have little to no effect on translation of the 3'-proximal sigmaC ORF. Northern blotting, insertion of upstream stop codons or optimized translation start sites, 5'-truncation analysis, and poliovirus 2A protease-mediated cleavage of eIF4G indicated sigmaC translation derives from a full-length tricistronic mRNA using a mechanism that is eIF4G-dependent but leaky scanning- and translation reinitiation-independent. Further analysis of artificial bicistronic mRNAs failed to provide any evidence that sigmaC translation derives from an internal ribosome entry site. Additional features of the S1 mRNA and the mechanism of sigmaC translation also differ from current models of ribosomal shunting. Translation of the tricistronic reovirus S1 mRNA, therefore, is dependent both on leaky scanning and on a novel scanning-independent mechanism that allows translation initiation complexes to efficiently bypass two functional upstream ORFs.
Collapse
Affiliation(s)
- Trina Racine
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Chau DHW, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 2007; 12:513-24. [PMID: 17195095 DOI: 10.1007/s10495-006-0013-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/09/2006] [Indexed: 02/08/2023]
Abstract
By transfection of Coxsackievirus B3 (CVB3) individual protease gene into HeLa cells, we demonstrated that 2A(pro) and 3C(pro) induced apoptosis through multiple converging pathways. Firstly, both 2A(pro) and 3C(pro) induced caspase-8-mediated activation of caspase-3 and dramatically reduced cell viability. Secondly, they both activated the intrinsic mitochondria-mediated apoptosis pathway leading to cytochrome c release from mitochondria and activation of caspase-9. However, 3C(pro) induced these events via both up-regulation of Bax and cleavage of Bid, and 2A(pro) induced these events via cleavage of Bid only. Nevertheless, neither altered Bcl-2 expression. Thirdly, both proteases induced cell death through cleavage or down regulation of cellular factors for translation and transcription: both 2A(pro) and 3C(pro) cleaved eukaryotic translation initiation factor 4GI but their cleavage products are different, indicating different cleavage sites; further, both 2A(pro) and 3C(pro) down-regulated cyclic AMP responsive element binding protein, a transcription factor, with 2A(pro) exhibiting a stronger effect than 3C(pro). Surprisingly, neither could cleave DAP5/p97/NAT1, a translation regulator, although this cleavage was observed during CVB3 infection and could not be blocked by caspase inhibitor z-VAD-fmk. Taken together, these data suggest that 2A(pro) and 3C(pro) induce apoptosis through both activation of proapoptotic mediators and suppression of translation and transcription.
Collapse
Affiliation(s)
- David H W Chau
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre, University of British Columbia, St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hsu YY, Liu YN, Wang W, Kao FJ, Kung SH. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 2007; 353:939-45. [PMID: 17207462 DOI: 10.1016/j.bbrc.2006.12.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Faculty of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
20
|
Castelló A, Alvarez E, Carrasco L. Differential cleavage of eIF4GI and eIF4GII in mammalian cells. Effects on translation. J Biol Chem 2006; 281:33206-16. [PMID: 16959778 DOI: 10.1074/jbc.m604340200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two isoforms of the translation initiation factor eIF4G, eIF4GI and eIF4GII, have been described in eukaryotic cells. The exact function of each isoform during the initiation of protein synthesis is still under investigation. We have developed an efficient and reliable method of expressing poliovirus 2Apro, which differentially proteolyzes eIF4GI and eIF4GII in a time- and dose-dependent manner. This system is based on the electroporation of an in vitro transcribed mRNA that contains the encephalomyocarditis virus internal ribosome entry site followed by the sequence of poliovirus 2Apro. In contrast to HeLa cells, expression of this protease in BHK-21 cells induces delayed hydrolysis kinetics of eIF4GI with respect to eIF4GII. Moreover, under these conditions the polyadenylate binding protein is not cleaved. Interestingly, translation of de novo synthesized luciferase mRNA is highly dependent on eIF4GI integrity, whereas ongoing translation is inhibited at the same time as eIF4GII cleavage. Moreover, reinitiation of a preexisting mRNA translation after polysome run-off is dependent on the integrity of eIF4GII. Notably, de novo translation of heat shock protein 70 mRNA depends little on eIF4GI integrity but is more susceptible to eIF4GII hydrolysis. Finally, translation of an mRNA containing encephalomyocarditis virus internal ribosome entry site when the two isoforms of eIF4G are differentially hydrolyzed has been examined.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias and Centro Nacional de Biotecnología Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
21
|
Castelló A, Sanz MA, Molina S, Carrasco L. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G. J Mol Biol 2005; 355:942-56. [PMID: 16343528 DOI: 10.1016/j.jmb.2005.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 11/15/2022]
Abstract
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Abstract
Most RNA viruses have evolved strategies to regulate cellular translation in order to promote preferential expression of the viral genome. Positive strand RNA viruses express large portions, or all of their proteome via translation of large polyproteins that are processed by embedded viral proteinases or host proteinases. Several of these viral proteinases are known to interact with host proteins, particularly with the host translation machinery, and thus, encompass the dual functions of processing of viral polyproteins and exerting translation control. Picornaviruses are perhaps the best characterized in regards to interaction of their proteinases with the host translation machinery and will be emphasized here. However, new findings have shown that similar paradigms exist in other viral systems which will be discussed.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Zhang Y, James M, Middleton FA, Davis RL. Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 2005; 137B:5-16. [PMID: 15965975 DOI: 10.1002/ajmg.b.30195] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In both genetic and idiopathic forms of Parkinson's disease (PD), considerable evidence supports the involvement of alpha-synuclein, electron transport chain complex I, protein aggregation, and the ubiquitin-proteasome system. To investigate alterations in the transcription of genes that comprise these pathways, we performed gene expression profiling and functional gene group analysis of three brain regions (the substantia nigra, putamen, and area 9) in postmortem tissue from matched groups of PD or control subjects (n = 15/group). Verification of selected changes was performed using RT-PCR, and visualization of selected changes in expression was accomplished using in situ hybridization (ISH). Our results provide strong support for the impairment of multiple electron transport chain complexes and the ubiquitin-proteasomal system in PD, along with a robust induction of heat shock proteins and some anti-apoptotic gene groups. Several novel gene and gene group findings were also obtained that offer new insight into the pathogenesis and potential treatment of PD.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
24
|
Dong Z, Liu Y, Zhang JT. Regulation of ribonucleotide reductase M2 expression by the upstream AUGs. Nucleic Acids Res 2005; 33:2715-25. [PMID: 15888728 PMCID: PMC1097769 DOI: 10.1093/nar/gki569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ribonucleotide reductase catalyzes a rate-limiting reaction in DNA synthesis by converting ribonucleotides to deoxyribonucleotides. It consists of two subunits and the small one, M2 (or R2), plays an essential role in regulating the enzyme activity and its expression is finely controlled. Changes in the M2 level influence the dNTP pool and, thus, DNA synthesis and cell proliferation. M2 gene has two promoters which produce two major mRNAs with 5′-untranslated regions (5′-UTRs) of different lengths. In this study, we found that the M2 mRNAs with the short (63 nt) 5′-UTR can be translated with high efficiency whereas the mRNAs with the long (222 nt) one cannot. Examination of the long 5′-UTR revealed four upstream AUGs, which are in the same reading frame as the unique physiological translation initiation codon. Further analysis demonstrated that these upstream AUGs act as negative cis elements for initiation at the downstream translation initiation codon and their inhibitory effect on M2 translation is eIF4G dependent. Based on the findings of this study, we conclude that the expression of M2 is likely regulated by fine tuning the translation from the mRNA with a long 5′-UTR during viral infection and during the DNA replication phase of cell proliferation.
Collapse
Affiliation(s)
| | | | - Jian-Ting Zhang
- To whom correspondence should be addressed. Tel: +1 317 278 4503; Fax: +1 317 274 8046;
| |
Collapse
|
25
|
Yanagiya A, Jia Q, Ohka S, Horie H, Nomoto A. Blockade of the poliovirus-induced cytopathic effect in neural cells by monoclonal antibody against poliovirus or the human poliovirus receptor. J Virol 2005; 79:1523-32. [PMID: 15650178 PMCID: PMC544096 DOI: 10.1128/jvi.79.3.1523-1532.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The poliovirus (PV)-induced cytopathic effect (CPE) was blocked in neural cells but not in HeLa cells by the addition of monoclonal antibody (MAb) against PV or the human PV receptor (CD155) 2 h postinfection (hpi). Since each MAb has the ability to block viral infection, no CPE in PV-infected neural cells appeared to result from the blockade of multiple rounds of viral replication. Pulse-labeling experiments revealed that virus-specific protein synthesis proceeded 5 hpi with or without MAbs. However, in contrast to the results obtained without MAbs, virus-specific protein synthesis with MAbs was not detected 7 hpi. Shutoff of host translation was also not observed in the presence of MAbs. Western blot analysis showed that 2Apro, the viral protein which mediates the cleavage of eukaryotic translation initiation factor eIF4G, was still present 11 hpi. However, intact eIF4G appeared 11 hpi. An immunocytochemical study indicated that 2Apro was detected only in the nucleus 11 hpi. These results suggest that neural cells possess protective response mechanisms against PV infection as follows: (i) upon PV infection, neural cells produce a factor(s) to suppress PV internal ribosome entry site activity by 7 hpi, (ii) a factor which supports cap-dependent translation for eIF4G may exist in infected cells when no intact eIF4G is detected, and (iii) the remaining 2Apro is not effective in cleaving eIF4G because it is imported into the nucleus by 11 hpi.
Collapse
Affiliation(s)
- Akiko Yanagiya
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
26
|
Calandria C, Irurzun A, Barco A, Carrasco L. Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Res 2004; 104:39-49. [PMID: 15177891 DOI: 10.1016/j.virusres.2004.02.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/27/2004] [Accepted: 02/27/2004] [Indexed: 11/24/2022]
Abstract
The expression of individual viral genes enables the study of their effects on cellular functions. Our group previously generated stable HeLa cell lines that efficiently express poliovirus proteases 2A (clone 2A7d) and 3C (clone 3C7) under the control of tetracycline [Virology 266 (2000a) 352; J. Virol. 74 (2000b) 2383]. Upon induction of these proteases, the cells undergo drastic morphological alterations and eventually die. The present paper characterizes, in detail, the cellular and molecular events that lead to cell death in these lines. Several signs of apoptosis were observed in both 2A7d- and 3C7-induced cells, such as nuclear fragmentation, DNA breakdown (as determined by TUNEL), and phosphatidylserine translocation. Protease 2A induces the cleavage of poly-ADP-ribose-polymerase (PARP). This is blocked by the caspase-3 inhibitor DEVD in both 2A7d-On and 3C7-On cells suggesting that this enzyme might account for PARP cleavage in both cell lines. The results indicate that both poliovirus proteases induce apoptosis by mechanisms involving caspase activation, although the kinetics of apoptosis differs.
Collapse
Affiliation(s)
- Carlos Calandria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
27
|
Samuilova O, Krogerus C, Pöyry T, Hyypiä T. Specific interaction between human parechovirus nonstructural 2A protein and viral RNA. J Biol Chem 2004; 279:37822-31. [PMID: 15226313 DOI: 10.1074/jbc.m314203200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional properties of the nonstructural 2A protein are variable among different picornaviruses. The 2A protein of the human parechovirus 1 (HPEV1) has been shown to lack the proteolytic activity found in many other picornaviruses, but no particular function has been identified for HPEV1 2A. To obtain information about the role of HPEV1 2A in the viral life cycle, the protein was expressed in Escherichia coli. A polyclonal antibody was then raised against the protein and employed to investigate its subcellular localization in the infected cells by immunofluorescence microscopy. Typically, a diffuse cytoplasmic staining pattern, concentrated to the perinuclear area, was observed in the infected cells. However, at late stages of infection some infected cells also exhibited diffuse nuclear staining. Viral RNA, visualized by fluorescent in situ hybridization, partly colocalized with 2A in the perinuclear region. Three experimental approaches including Northwestern blot, UV cross-linking, and gel retardation demonstrated that 2A possesses RNA binding activity. Competition experiments with various single-stranded RNA molecules addressed the specificity of 2A binding. These studies revealed that the 2A protein bound RNA corresponding to the 3'-untranslated region (UTR) of the viral genome with highest affinity. At the N- and C-terminal ends of the protein, two regions, necessary for RNA binding, were identified by mutagenesis. In addition, we demonstrated that 2A has affinity to double-stranded RNA containing 3'UTR(+)-3'UTR(-). In conclusion, our experiments showed that HPEV1 2A binds to viral 3'UTR RNA, a feature that could be important for the function of the protein during HPEV1 replication.
Collapse
Affiliation(s)
- Olga Samuilova
- Department of Virology, Haartman Institute, University of Helsinki, P. O. Box 21, FIN-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
28
|
Funkhouser AW, Kang JA, Tan A, Li J, Zhou L, Abe MK, Solway J, Hershenson MB. Rhinovirus 16 3C protease induces interleukin-8 and granulocyte-macrophage colony-stimulating factor expression in human bronchial epithelial cells. Pediatr Res 2004; 55:13-8. [PMID: 14605258 DOI: 10.1203/01.pdr.0000099801.06360.ab] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rhinovirus (RV), a member of the Picornaviridae family, accounts for many virus-induced asthma exacerbations. RV induces airway cell chemokine expression both in vivo and in vitro. Because of the known interactions of proteases with cellular functions, we hypothesized that RV 3C protease is sufficient for cytokine up-regulation. A cDNA encoding RV16 3C protease was constructed by PCR amplification and transfected into 16HBE14o- human bronchial epithelial cells. 3C protease induced expression of both IL-8 and GM-CSF, as well as transcription from both the IL-8 and GM-CSF promoters. 3C expression also induced activator protein 1 and NF-kappaB transcriptional activation. Finally, mutation of IL-8 promoter AP-1 and NF-kappaB promoter sequences significantly reduced 3C-induced responses. Together, these data suggest expression of RV16 3C protease is sufficient to induce chemokine expression in human bronchial epithelial cells, and does so in an AP-1- and NF-kappaB-dependent manner.
Collapse
Affiliation(s)
- Ann W Funkhouser
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637-1470, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuo RL, Kung SH, Hsu YY, Liu WT. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 2002; 83:1367-1376. [PMID: 12029152 DOI: 10.1099/0022-1317-83-6-1367] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) is the causative agent of human diseases with distinct severity, from mild hand-foot-and-mouth disease to severe neurological syndromes, such as encephalitis and meningitis. Infection of several different cell lines with EV71 causes extensive cytopathic effect, leading to destruction of the entire monolayer and the death of infected cells. In this study, cell death processes during EV71 infection and the underlying mechanisms of them were investigated. The hallmarks of apoptosis, nuclear condensation and fragmentation, were observed 24 h after infection. Apoptosis in infected cells was also confirmed by detectable cleavage of cellular DNA and degradation of poly(ADP-ribose) polymerase. Transient expression of EV71 2A protease (2A(pro)) alone resulted in the induction of apoptotic change. Infection of EV71 or expression of EV71 2A(pro) leads to cleavage of the eukaryotic initiation factor 4GI, a key factor for host protein synthesis. This study added one more example to the growing list of human viruses that induce apoptosis by a virus-encoded protein.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Republic of China1
| | - Szu-Hao Kung
- Faculty of Medical Technology and Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, 155 Li-Nong St Sec. 2, Shih-Pai, Taipei 112, Taiwan, Republic of China2
| | - Yueh-Ying Hsu
- Faculty of Medical Technology and Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, 155 Li-Nong St Sec. 2, Shih-Pai, Taipei 112, Taiwan, Republic of China2
| | - Wu-Tse Liu
- Division of Clinical Virology, Department of Pathology and Laboratory Medicine, Veterans General Hospital-Taipei, Taipei 112, Taiwan, Republic of China3
- Faculty of Medical Technology and Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, 155 Li-Nong St Sec. 2, Shih-Pai, Taipei 112, Taiwan, Republic of China2
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Republic of China1
| |
Collapse
|
30
|
Kuyumcu-Martinez NM, Joachims M, Lloyd RE. Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J Virol 2002; 76:2062-74. [PMID: 11836384 PMCID: PMC135927 DOI: 10.1128/jvi.76.5.2062-2074.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2A(pro)) or 3C protease (3C(pro)). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3C(pro) is more efficient in cleaving PABP in ribosome-enriched fractions than 2A(pro) in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3C(pro)-mediated cleavage and inhibits 2A(pro)-mediated cleavage. These results suggest that 3C(pro) plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.
Collapse
Affiliation(s)
- N Muge Kuyumcu-Martinez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Back SH, Kim YK, Kim WJ, Cho S, Oh HR, Kim JE, Jang SK. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol 2002; 76:2529-42. [PMID: 11836431 PMCID: PMC135932 DOI: 10.1128/jvi.76.5.2529-2542.2002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 12/04/2001] [Indexed: 12/26/2022] Open
Abstract
The translation of polioviral mRNA occurs through an internal ribosomal entry site (IRES). Several RNA-binding proteins, such as polypyrimidine tract-binding protein (PTB) and poly(rC)-binding protein (PCBP), are required for the poliovirus IRES-dependent translation. Here we report that a poliovirus protein, 3C(pro) (and/or 3CD(pro)), cleaves PTB isoforms (PTB1, PTB2, and PTB4). Three 3C(pro) target sites (one major target site and two minor target sites) exist in PTBs. PTB fragments generated by poliovirus infection are redistributed to the cytoplasm from the nucleus, where most of the intact PTBs are localized. Moreover, these PTB fragments inhibit polioviral IRES-dependent translation in a cell-based assay system. We speculate that the proteolytic cleavage of PTBs may contribute to the molecular switching from translation to replication of polioviral RNA.
Collapse
Affiliation(s)
- Sung Hoon Back
- NRL, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Li X, Lu HH, Mueller S, Wimmer E. The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 2001; 82:397-408. [PMID: 11161279 DOI: 10.1099/0022-1317-82-2-397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus proteinase 2A(pro) is an essential enzyme involved in cleavages of viral and cellular proteins during the infectious cycle. Evidence has been obtained that 2A(pro) is also involved in genome replication. All enteroviruses have a negatively charged cluster of amino acids at their C terminus (E(E)/(D)(E)/(D)AMEQ-NH(2)), a common motif suggesting function. When aligned with enterovirus sequences, the 2A(pro) proteinase of human rhinovirus type 2 (HRV2) has a shorter C terminus (EE.Q:-NH(2)) and, indeed, the HRV2 2A(pro) cannot substitute for poliovirus 2A(pro) to yield a viable chimeric virus. Here evidence is provided that the C-terminal cluster of amino acids plays an unknown role in poliovirus genome replication. Deletion of the EEAME sequence from poliovirus 2A(pro) is lethal without significantly influencing proteinase function. On the other hand, addition of EAME to HRV2 2A(pro), yielding a C terminus of this enzyme of EEEAMEQ:, stimulated RNA replication of a poliovirus/HRV2 chimera 100-fold. The novel role of the C-terminal sequence motif is manifested at the level of protein function, since silent mutations in its coding region had no effect on virus proliferation. Poliovirus type 1 Mahoney 2A(pro) could be provided in trans to rescue the lethal deletion EEAME in the poliovirus variant. Encapsidation studies left open the question of whether the C terminus of poliovirus 2A(pro) is involved in particle formation. It is concluded that the C terminus of poliovirus 2A(pro) is an essential domain for viral RNA replication but is not essential for proteolytic processing.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Hui-Hua Lu
- Biochemistry and Molecular Biology, Chiron Corporation, Emeryville, CA 94608, USA2
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| |
Collapse
|
33
|
Deffaud C, Darlix JL. Rous sarcoma virus translation revisited: characterization of an internal ribosome entry segment in the 5' leader of the genomic RNA. J Virol 2000; 74:11581-8. [PMID: 11090156 PMCID: PMC112439 DOI: 10.1128/jvi.74.24.11581-11588.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' leader of Rous sarcoma virus (RSV) genomic RNA and of retroviruses in general is long and contains stable secondary structures that are critical in the early and late steps of virus replication such as RNA dimerization and packaging and in the process of reverse transcription. The initiation of RSV Gag translation has been reported to be 5' cap dependent and controlled by three short open reading frames located in the 380-nucleotide leader upstream of the Gag start codon. Translation of RSV Gag would thus differ from that prevailing in other retroviruses such as murine leukemia virus, reticuloendotheliosis virus type A, and simian immunodeficiency virus, in which an internal ribosome entry segment (IRES) in the 5' end of the genomic RNA directs efficient Gag expression despite stable 5' secondary structures. This prompted us to investigate whether RSV Gag translation might be controlled by an IRES-dependent mechanism. The results show that the 5' leaders of RSV and v-Src RNA exhibit IRES properties, since these viral elements can promote efficient translation of monocistronic RNAs in conditions inhibiting 5' cap-dependent translation. When inserted between two cistrons in a canonical bicistronic construct, both the RSV and v-Src leaders promote expression of the 3' cistron. A genetic analysis of the RSV leader allowed the identification of two nonoverlapping 5' and 3' leader domains with IRES activity. In addition, the v-Src leader was found to contain unique 3' sequences promoting an efficient reinitiation of translation. Taken together, these data lead us to propose a new model for RSV translation.
Collapse
Affiliation(s)
- C Deffaud
- LaboRétro, Unité de Virologie Humaine, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | |
Collapse
|