1
|
UBE1a Suppresses Herpes Simplex Virus-1 Replication. Viruses 2020; 12:v12121391. [PMID: 33291814 PMCID: PMC7762088 DOI: 10.3390/v12121391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the causative agent of cold sores, keratitis, meningitis, and encephalitis. HSV-1-encoded ICP5, the major capsid protein, is essential for capsid assembly during viral replication. Ubiquitination is a post-translational modification that plays a critical role in the regulation of cellular events such as proteasomal degradation, protein trafficking, and the antiviral response and viral events such as the establishment of infection and viral replication. Ub-activating enzyme (E1, also named UBE1) is involved in the first step in the ubiquitination. However, it is still unknown whether UBE1 contributes to viral infection or the cellular antiviral response. Here, we found that UBE1a suppressed HSV-1 replication and contributed to the antiviral response. The UBE1a inhibitor PYR-41 increased HSV-1 production. Immunofluorescence analysis revealed that UBE1a highly expressing cells presented low ICP5 expression, and vice versa. UBE1a inhibition by PYR-41 and shRNA increased ICP5 expression in HSV-1-infected cells. UBE1a reduced and retarded ICP5 protein expression, without affecting transcription of ICP5 mRNA or degradation of ICP5 protein. Additionally, UBE1a interacted with ICP27, and both partially co-localized at the Hsc70 foci/virus-induced chaperone-enriched (VICE) domains. PYR-41 reduced the co-localization of UBE1a and ICP27. Thus, our findings provide insights into the mechanism of UBE1a in the cellular response to viral infection.
Collapse
|
2
|
Heterologous viral promoters incorporated into the human cytomegalovirus genome are silenced during experimental latency. J Virol 2013; 87:9886-94. [PMID: 23824803 DOI: 10.1128/jvi.01726-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) lytic phase gene expression is repressed upon entry into myeloid lineage cells where the virus establishes latency. Lytic infection is not initiated because the tegument-delivered transactivator protein pp71 fails to enter the nucleus and inactivate the Daxx-mediated cellular intrinsic defense that silences the viral genome. When pp71 is expressed de novo in THP-1 monocytes, it localizes to the nucleus, inactivates the Daxx defense, and initiates lytic infection. We speculated that replacing the native viral promoter that drives pp71 expression with one that is highly and constitutively active in myeloid cells would permit pp71 de novo expression upon infection and that this newly expressed pp71 would accumulate in the nucleus, inactivate the intrinsic defense, and initiate the cascade of lytic gene expression. Surprisingly, we found that this promoter was still subject to normal silencing mechanisms in THP-1 monocytes and primary CD34(+) cells, two independent myeloid lineage cells. A second constitutively active heterologous viral promoter located in a different region of the HCMV genome was also silenced in THP-1 and CD34(+) cells. Furthermore, these two independent heterologous viral promoters inserted into three different regions of the HCMV genome in three different viral strains all required prior expression of the viral immediate early proteins for activation in fibroblasts. From this, we conclude that incorporation within the HCMV genome impacts the proclivity of heterologous viral promoters to initiate transcription. These observations have mechanistic implications for the expression of viral genes and transgenes during both lytic infection and latency.
Collapse
|
3
|
Thompson RL, Preston CM, Sawtell NM. De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog 2009; 5:e1000352. [PMID: 19325890 PMCID: PMC2654966 DOI: 10.1371/journal.ppat.1000352] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/26/2009] [Indexed: 12/26/2022] Open
Abstract
The mechanism controlling the exit from herpes simplex virus latency (HSV) is of central importance to recurrent disease and transmission of infection, yet interactions between host and viral functions that govern this process remain unclear. The cascade of HSV gene transcription is initiated by the multifunctional virion protein VP16, which is expressed late in the viral replication cycle. Currently, it is widely accepted that VP16 transactivating function is not involved in the exit from latency. Utilizing the mouse ocular model of HSV pathogenesis together with genetically engineered viral mutants and assays to quantify latency and the exit from latency at the single neuron level, we show that in vivo (i) the VP16 promoter confers distinct regulation critical for viral replication in the trigeminal ganglion (TG) during the acute phase of infection and (ii) the transactivation function of VP16 (VP16TF) is uniquely required for the exit from latency. TG neurons latently infected with the VP16TF mutant in1814 do not express detectable viral proteins following stress, whereas viruses with mutations in the other major viral transcription regulators ICP0 and ICP4 do exit the latent state. Analysis of a VP16 promoter/reporter mutant in the background of in1814 demonstrates that the VP16 promoter is activated in latently infected neurons following stress in the absence of other viral proteins. These findings support the novel hypothesis that de novo expression of VP16 regulates entry into the lytic program in neurons at all phases of the viral life cycle. HSV reactivation from latency conforms to a model in which stochastic derepression of the VP16 promoter and expression of VP16 initiates entry into the lytic cycle.
Collapse
Affiliation(s)
- Richard L. Thompson
- Department of Molecular Genetics, Microbiology, and Biochemistry,
University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of
America
| | - Chris M. Preston
- Medical Research Council Virology Unit, Glasgow, Scotland, United
Kingdom
| | - Nancy M. Sawtell
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati
Children's Hospital Medical Center, Cincinnati, Ohio, United States of
America
| |
Collapse
|
4
|
Aguilar JS, Devi-Rao GV, Rice MK, Sunabe J, Ghazal P, Wagner EK. Quantitative comparison of the HSV-1 and HSV-2 transcriptomes using DNA microarray analysis. Virology 2006; 348:233-41. [PMID: 16448680 DOI: 10.1016/j.virol.2005.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 11/30/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
The genomes of human herpes virus type-1 and type-2 share a high degree of sequence identity; yet, they exhibit important differences in pathology in their natural human host as well as in animal host and cell cultures. Here, we report the comparative analysis of the time and relative abundance profiles of the transcription of each virus type (their transcriptomes) using parallel infections and microarray analysis using HSV-1 probes which hybridize with high efficiency to orthologous HSV-2 transcripts. We have confirmed that orthologous transcripts belong to the same kinetic class; however, the temporal pattern of accumulation of 4 transcripts (U(L)4, U(L)29, U(L)30, and U(L)31) differs in infections between the two virus types. Interestingly, the protein products of these transcripts are all involved in nuclear organization and viral DNA localization. We discuss the relevance of these findings and whether they may have potential roles in the pathological differences of HSV-1 and HSV-2.
Collapse
Affiliation(s)
- J S Aguilar
- Department of Molecular Biology and Biochemistry and Center for Virus Research, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Sun A, Devi-Rao GV, Rice MK, Gary LW, Bloom DC, Sandri-Goldin RM, Wagner P, Wager EK. The TATGARAT box of the HSV-1 ICP27 gene is essential for immediate early expression but not critical for efficient replication in vitro or in vivo. Virus Genes 2005; 29:335-43. [PMID: 15550774 DOI: 10.1007/s11262-004-7437-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We constructed a recombinant virus containing a promoter mutation altering the immediate-early expression of the HSV-1 ICP27 transcript, ICP27DeltaSma, which contains a deletion of the "TATGARAT" and surrounding sequences, but retains the rest of the ICP27 promoter. This mutant does not exhibit immediate-early expression of ICP27 using criteria of expression in the absence of de novo protein synthesis and earliest expression in the kinetic cascade. While transcript abundance at 1h after infection at 0.1 PFU/cell in mouse embryo fibroblasts was significantly altered compared to infections with wt -rescues, by 4 h after infection these differences were diminished or absent. Consistent with this observation, levels of some critical proteins were reduced in the mutant as compared to rescue infections at the earliest times tested, but were equivalent by 8-12 h pi. Further, both single and multi-step virus replication was equivalent with both mutants and rescues. Thus, altering the immediate early kinetics of ICP27 leads to a sub-optimal quantitative lag-phase in gene expression but without consequence to replication fitness in vitro . Infections in vivo also revealed the ability of mutant and rescue virus to invade the CNS of mice following footpad injections was equivalent. The nature of the role of immediate-early ICP27 expression is discussed in light of these observations.
Collapse
Affiliation(s)
- Aixu Sun
- Department of Molecular Biology and Biochemistry and Center for Virus Research, University of California, California 92717, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sun A, Devi-Rao GV, Rice MK, Gary LW, Bloom DC, Sandri-Goldin RM, Ghazal P, Wagner EK. Immediate-early expression of the herpes simplex virus type 1 ICP27 transcript is not critical for efficient replication in vitro or in vivo. J Virol 2004; 78:10470-8. [PMID: 15367613 PMCID: PMC516393 DOI: 10.1128/jvi.78.19.10470-10478.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022] Open
Abstract
We constructed a promoter mutation altering the immediate-early expression of the herpes simplex virus type 1 (HSV-1) ICP27 transcript and its cognate wild-type rescue viruses in order to assess the role of the ICP27 protein in the earliest stages of viral infection by global transcriptional analysis with a DNA microarray. This mutant, ICP27/VP16, replaces the whole ICP27 promoter/enhancer with the VP16 promoter. It demonstrates loss of immediate-early expression of ICP27 according to the criteria expression in the absence of de novo protein synthesis and earliest expression in the kinetic cascade. Significant differences in relative transcript abundances between the mutant and wild-type rescue viruses were limited at the earliest times measured and not evident at all by 4 h after infection. Consistent with this observation, levels of some critical proteins were reduced in the mutant as compared to rescue virus infections at the earliest times tested, but were equivalent by 8 h postinfection. Further, both single and multistep levels of virus replication were equivalent with both mutant and rescue viruses. Thus, altering the immediate-early kinetics of ICP27 leads to a suboptimal quantitative lag phase in gene expression but without consequence for replication fitness in vitro. Infections in vivo also revealed equivalent ability of mutant and rescue viruses to invade the central nervous system of mice following footpad injections. Limitations to an immediate-early role of ICP27 in the biology of HSV are discussed in light of these observations.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Disease Models, Animal
- Ganglia, Spinal/virology
- Gene Expression Profiling
- Gene Expression Regulation, Viral
- Genes, Immediate-Early
- Herpes Simplex/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/physiology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Mice
- Mutation
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- Transcription, Genetic
- Viral Plaque Assay
- Virus Replication
Collapse
Affiliation(s)
- Aixu Sun
- Department of Molecular Biology and Biochemistry and Center for Virus Research, University of California, Irvine, CA 92717-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wagner EK, Ramirez JJG, Stingley SWN, Aguilar SA, Buehler L, Devi-Rao GB, Ghazal P. Practical approaches to long oligonucleotide-based DNA microarray: lessons from herpesviruses. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:445-91. [PMID: 12108450 DOI: 10.1016/s0079-6603(02)71048-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Edward K Wagner
- Department of Molecular Biology and Biochemistry and Center for Virus Research, University of California, Irvine 92717, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Aguilar JS, Roy D, Ghazal P, Wagner EK. Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infect Dis 2002; 2:9. [PMID: 12052246 PMCID: PMC116584 DOI: 10.1186/1471-2334-2-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Accepted: 05/24/2002] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dimethyl sulfoxide (DMSO) is frequently used at a concentration of up to 95% in the formulation of antiherpetic agents because of its properties as a skin penetration enhancer. Here, we have analyzed the effect of DMSO on several parameters of Herpes Simplex Virus replication. METHODS Productive infection levels of HSV-1 were determined by plaque assay or by reporter gene activity, and its DNA replication was estimated by PCR. Transcript levels were evaluated with HSV-specific DNA micro-arrays. RESULTS DMSO blocks productive infection in vitro in different cell types with a 50% inhibitory concentration (IC50) from 0.7 to 2% depending upon the multiplicity of infection. The concentration dependence exhibits a Hill coefficient greater than 1, indicating that DMSO blocks productive infection by acting at multiple different points (mechanisms of action) with positive cooperativity. Consistently, we identified at least three distinct temporal target mechanisms for inhibition of virus growth by DMSO. At late stages of infection, DMSO reduces virion infectivity, and markedly inhibits viral DNA replication. A third mode of action was revealed using an oligonucleotide-based DNA microarray system for HSV. These experiments showed that DMSO reduced the transcript levels of many HSV-1 genes; including several genes coding for proteins involved in forming and assembling the virion. Also, DMSO markedly inhibited some but not all early transcripts indicating a previously unknown mode for inhibiting the early phase of HSV transcription-replication cycle. CONCLUSION These observations suggest that DMSO itself may have a role in the anti-herpetic activity of formulations utilizing it as a dispersant.
Collapse
Affiliation(s)
- JS Aguilar
- Dept. of Mol. Biol. & Biochem, U. Calif. Irvine, 19172 Jamboree Road, Irvine, CA 92697, USA
| | - D Roy
- Genomic Technology & Informatics Centre, University of Edinburgh, Summerhall EH9 1QH, UK
| | - P Ghazal
- Genomic Technology & Informatics Centre, University of Edinburgh, Summerhall EH9 1QH, UK
| | - EK Wagner
- Dept. of Mol. Biol. & Biochem, U. Calif. Irvine, 19172 Jamboree Road, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Tran RK, Lieu PT, Aguilar S, Wagner EK, Bloom DC. Altering the expression kinetics of VP5 results in altered virulence and pathogenesis of herpes simplex virus type 1 in mice. J Virol 2002; 76:2199-205. [PMID: 11836397 PMCID: PMC153803 DOI: 10.1128/jvi.76.5.2199-2205.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
While many herpes simplex virus (HSV) structural proteins are expressed with strict-late kinetics, the HSV virion protein 5 (VP5) is expressed as a "leaky-late" protein, such that appreciable amounts of VP5 are made prior to DNA replication. Our goal has been to determine if leaky-late expression of VP5 is a requirement for a normal HSV infection. It had been shown previously that recombinant viruses in which the VP5 promoter was replaced with promoters of other kinetic classes (including a strict late promoter) exhibited no alterations in replication kinetics or virus yields in vitro. In contrast, here we report that alterations in pathogenesis were observed when these recombinants were analyzed by experimental infection of mice. Following intracranial inoculation, a recombinant expressing VP5 from a strict-late promoter (U(L)38) exhibited an increased 50% lethal dose and a 10-fold decrease in virus yields in the central nervous system, while a recombinant expressing VP5 from an early (dUTPase) or another leaky-late (VP16) promoter exhibited wild-type neurovirulence. Moreover, following infection of the footpad, changing the expression kinetics of VP5 from leaky-late to strict-late resulted in 100-fold-less virus in the spinal ganglia during the acute infection than produced by either the parent virus or the rescued virus. These data indicate that the precise timing of appearance of the major capsid protein plays a role in the pathogenesis of HSV infections and that changing the expression kinetics has different effects in different cell types and tissues.
Collapse
Affiliation(s)
- Robert K Tran
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Expression of the more than 80 individual genes of herpes simplex virus 1 (HSV-1) takes place in a tightly regulated sequential manner that was first described over 20 years ago. Investigations since that time have focused on understanding the mechanisms that regulate this orderly and efficient expression of viral genes. This review examines recent findings that have shed light on how this process is regulated during productive infection of the cell. Although the story is still not complete, several aspects of HSV gene expression are now clearer as a result of these findings. In particular, several new functions have recently been ascribed to some of the known viral regulatory proteins. The results indicate that the viral gene expression is regulated through transcriptional as well as post-transcriptional mechanisms. In addition, it has become increasingly clear that the virus has evolved specific functions to interact with the host cell in order to divert and redirect critical host functions for its own needs. Understanding the interactions of HSV and the host cell during infection will be essential for a complete understanding of how viral gene expression is regulated. Future challenges in the field will be to develop a complete understanding of the mechanisms that temporally regulate virus gene expression, and to identify and characterize the relevant interactions between the virus and the distinctive cell types normally infected by the virus.
Collapse
Affiliation(s)
- J P Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Stingley SW, Ramirez JJ, Aguilar SA, Simmen K, Sandri-Goldin RM, Ghazal P, Wagner EK. Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 2000; 74:9916-27. [PMID: 11024119 PMCID: PMC102029 DOI: 10.1128/jvi.74.21.9916-9927.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
More than 100 transcripts of various abundances and kinetic classes are expressed during phases of productive and latent infections by herpes simplex virus (HSV) type 1. To carry out rapid global analysis of variations in such patterns as a function of perturbation of viral regulatory genes and cell differentiation, we have made DNA microchips containing sets of 75-mer oligonucleotides specific for individual viral transcripts. About half of these are unique for single transcripts, while others function for overlapping ones. We have also included probes for 57 human genes known to be involved in some aspect of stress response. The chips efficiently detect all viral transcripts, and analysis of those abundant under various conditions of infection demonstrates excellent correlation with known kinetics of mRNA accumulation. Further, quantitative sensitivity is high. We have further applied global analysis of transcription to an investigation of mRNA populations in cells infected with a mutant virus in which the essential immediate-early alpha27 (U(L)54) gene has been functionally deleted. Transcripts expressed at 6 h following infection with this mutant can be classified into three groups: those whose abundance is augmented (mainly immediate-early transcripts) or unaltered, those whose abundance is somewhat reduced, and those where there is a significant reduction in transcript levels. These do not conform to any particular kinetic class. Interestingly, levels of many cellular transcripts surveyed are increased. The high proportion of such transcripts suggests that the alpha27 gene plays a major role in the early decline in cellular gene expression so characteristic of HSV infection.
Collapse
Affiliation(s)
- S W Stingley
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The HSV-1 VP5 and VP16 transcripts are expressed with leaky-late (gamma1) kinetics and reach maximal levels after viral DNA replication. While the minimal VP5 promoter includes only an Sp1 site at -48, a TATA box at -30, and an initiator (Inr) element at the cap site, here we show that elements upstream of -48 can functionally compensate for the mutational loss of the critical Sp1 site at -48. To determine whether this is a general feature of leaky-late promoters, we have carried out a detailed analysis of the VP16 promoter in the context of the viral genome at the gC locus. Sequence analysis suggests a great deal of similarity between the two. Despite this, however, mutational analysis revealed that the 5' boundary of the VP16 promoter extends to ca. -90. This region includes an Sp1 binding site at -46, CAAT box homology at -77, and "E box" (CACGTG) at -85. Mutational and deletional analyses demonstrate that the proximal Sp1 site plays little or no role in promoter strength; despite this it can be shown to bind Sp1 protein using DNA mobility shift assays. Like the VP5 promoter, the VP16 promoter also requires an initiator element at the cap site. The VP16 Inr element differs in sequence from that of the VP5 promoter, and its deletion or mutation has a significantly smaller effect on promoter strength. The difference between these two Inr elements was confirmed by our finding that the VP16 initiator element binds to the 65-kDa YY1 transcription factor, and the VP5 Inr element competes poorly for the binding between the VP16 element and infected cell proteins in comparative bandshift assays. While the VP16 Inr sequence is identical to that of several murine TATA-less promoters, the VP16 Inr requires a TATA box for measurable activity.
Collapse
Affiliation(s)
- P T Lieu
- Program in Animal Virology, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|