1
|
Berche P. Laboratory-associated infections and biosafety. Presse Med 2025:104277. [PMID: 40188869 DOI: 10.1016/j.lpm.2025.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
The occurrence of laboratory-associated infections, which are caused by the handling of human or animal pathogens, represents a significant threat to the health and safety of laboratory workers and the general population. Such risks are present in clinical diagnostic and research laboratories, including those utilizing biotechnology on pathogenic organisms and industrial laboratories engaged in vaccine production. The investigation of these incidents is based on a retrospective analysis of published reports and voluntary questionnaires. The precise level of risk is challenging to ascertain, given the lack of a mandatory reporting system in the majority of countries. This indicates that many event involving exposure to contamination are not reported. The pathogens encountered in the primary published series include bacteria (e.g., Brucella spp., Mycobacterium tuberculosis, Salmonella spp., Shigella spp., Neisseria meningitidis, Coxiella burnetii), viruses (e.g., HBV, HCV, HIV, SARS-CoV-1, VEEV), and particularly dangerous viruses (e.g., hantavirus, filovirus, arenavirus), and less frequently fungi, parasites, and prions. Approximately 70% of these incidents are attributable to human errors. The primary modes of contamination are inhalation of aerosols and accidental parenteral injections. Additionally, contamination may occur during the handling of pathogens and the decontamination of waste, as well as during the inactivation processes of mass cultures utilized in vaccine production. It is therefore imperative that any incident or accident linked to contact with pathogens in laboratories be made compulsory to report. This will facilitate the systematic monitoring of these infections and data analysis for educational purposes, thereby enhancing prevention of laboratory accidents and leaks.
Collapse
Affiliation(s)
- Patrick Berche
- Premeritus of microbiology, Université Paris Cité, 85 boulevard Saint-Germain, 75006, Paris, France.
| |
Collapse
|
2
|
Massey SE. The Growing Phenomenon of 'Frozen' Virus Genome Sequences and Their Likely Origin in Research Facility Escapes. Microorganisms 2024; 12:2412. [PMID: 39770614 PMCID: PMC11678153 DOI: 10.3390/microorganisms12122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
'Frozen' virus genome sequences are sampled from outbreaks and have unusually low sequence divergence when compared to genome sequences from historical strains. A growing number of 'frozen' virus genome sequences are being reported as virus genome sequencing becomes more common. Examples of 'frozen' sequences include the 1977 H1N1 'Russian' flu; Venezuelan Equine Encephalitis Virus from Venezuela and Colombia in 1995; E71 sequences from a Hand, Foot and Mouth outbreak in 2007-2009 in China; and a polio strain isolated in 2014 from Anhui, China. The origin of these 'frozen' sequences has been attributed to escapes from research facilities and often appears to be associated with vaccine work. Consequently, a new paradigm for pathogen emergence appears in operation, that involves laboratory research or vaccine production which utilizes 'live' virus isolates of historical strains. The accidental release and re-emergence of such strains are straightforward to detect from their genome sequences and should spur the routine sequencing and publication of all known pathogenic viral strains undergoing experimentation, or being used for vaccine manufacture, in order to facilitate tracing. However, it is noted that novel pathogenic viruses accidentally released into the population from research facilities are harder to detect if their sequence has first not been made public, which should prompt the routine sequencing and reporting of all novel pathogenic viruses before experimentation.
Collapse
Affiliation(s)
- Steven E Massey
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan 00931, Puerto Rico
| |
Collapse
|
3
|
Toribio RE. Arboviral Equine Encephalitides. Vet Clin North Am Equine Pract 2022; 38:299-321. [PMID: 35953146 DOI: 10.1016/j.cveq.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A number of viruses transmitted by biological vectors or through direct contact, air, or ingestion cause neurologic disease in equids. Of interest are viruses of the Togaviridae, Flaviviridae, Rhabdoviridae, Herpesviridae, Bornaviridae, and Bunyaviridae families. Many are classified as arboviruses because they use arthropod vectors, whereas others are transmitted directly via ingestion, inhalation, or integument damage. The goal of this article is to provide an overview on pathophysiologic and clinical aspects of arboviruses of equine importance, including alphaviruses (Togaviridae) and flaviviruses (Flaviviridae).
Collapse
Affiliation(s)
- Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Pascall DJ, Nomikou K, Bréard E, Zientara S, Filipe ADS, Hoffmann B, Jacquot M, Singer JB, De Clercq K, Bøtner A, Sailleau C, Viarouge C, Batten C, Puggioni G, Ligios C, Savini G, van Rijn PA, Mertens PPC, Biek R, Palmarini M. "Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence. PLoS Biol 2020; 18:e3000673. [PMID: 32343693 PMCID: PMC7188197 DOI: 10.1371/journal.pbio.3000673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Emmanuel Bréard
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), University of Brussels, Brussels, Belgium
- INRAE-VetAgro Sup, UMR Epidemiology of Animal and Zoonotic Diseases, Saint Genès-Champanelle, France
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Peter P. C. Mertens
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
5
|
Vakulenko Y, Deviatkin A, Lukashev A. Using Statistical Phylogenetics for Investigation of Enterovirus 71 Genotype A Reintroduction into Circulation. Viruses 2019; 11:E895. [PMID: 31557961 PMCID: PMC6832606 DOI: 10.3390/v11100895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
Abstract
Neurovirulent enterovirus 71 (EV-A71) caused a massive epidemic in China in 2008-2011. While subgenotype C4 was the major causative agent, a few isolates were almost identical to the prototype EV-A71 strain and belonged to genotype A. This variant was allegedly extinct since 1970, and its identification in this epidemic suggests reintroduction of the archive virus. Regression analysis of genetic distances (TempEst software) was of moderate utility due to the low resolution of classical phylogenetic methods. Bayesian phylogenetic analysis (BEAST software) suggested artificial introduction event based on highly aberrant phylogenetic tree branch rates that differed by over three standard deviations from the mean substitution rate for EV71. Manual nucleotide-level analysis was used to further explore the virus spread pattern after introduction into circulation. Upon reintroduction, the virus accumulated up to seven substitutions in VP1, most of them non-synonymous and located within the capsid's canyon or at its rims, compatible with readaptation of a lab strain to natural circulation.
Collapse
Affiliation(s)
- Yulia Vakulenko
- Sechenov First Moscow State Medical University, Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, 119435 Moscow, Russia.
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Andrei Deviatkin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119048 Moscow, Russia.
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, 119435 Moscow, Russia.
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119048 Moscow, Russia.
| |
Collapse
|
6
|
Rusnak JM, Glass PJ, Weaver SC, Sabourin CL, Glenn AM, Klimstra W, Badorrek CS, Nasar F, Ward LA. Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses 2019; 11:v11090807. [PMID: 31480472 PMCID: PMC6784384 DOI: 10.3390/v11090807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Licensure of a vaccine to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires use of the U.S. Food and Drug Administration (FDA) Animal Rule to assess vaccine efficacy as human studies are not feasible or ethical. An approach to selecting VEEV challenge strains for use under the Animal Rule was developed, taking into account Department of Defense (DOD) vaccine requirements, FDA Animal Rule guidelines, strain availability, and lessons learned from the generation of filovirus challenge agents within the Filovirus Animal Nonclinical Group (FANG). Initial down-selection to VEEV IAB and IC epizootic varieties was based on the DOD objective for vaccine protection in a bioterrorism event. The subsequent down-selection of VEEV IAB and IC isolates was based on isolate availability, origin, virulence, culture and animal passage history, known disease progression in animal models, relevancy to human disease, and ability to generate sufficient challenge material. Methods for the propagation of viral stocks (use of uncloned (wild-type), plaque-cloned, versus cDNA-cloned virus) to minimize variability in the potency of the resulting challenge materials were also reviewed. The presented processes for VEEV strain selection and the propagation of viral stocks may serve as a template for animal model development product testing under the Animal Rule to other viral vaccine programs. This manuscript is based on the culmination of work presented at the “Alphavirus Workshop” organized and hosted by the Joint Vaccine Acquisition Program (JVAP) on 15 December 2014 at Fort Detrick, Maryland, USA.
Collapse
Affiliation(s)
- Janice M Rusnak
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA.
| | - Pamela J Glass
- Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Carol L Sabourin
- Battelle Biomedical Research Center, 1425 Plain City-Georgesville Road, West Jefferson, OH 43162, USA
| | - Andrew M Glenn
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| | - William Klimstra
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Christopher S Badorrek
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| | - Farooq Nasar
- Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Lucy A Ward
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| |
Collapse
|
7
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Venezuelan equine encephalitis. EFSA J 2017; 15:e04950. [PMID: 32625617 PMCID: PMC7010095 DOI: 10.2903/j.efsa.2017.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of VEE to be listed, Article 9 for the categorisation of VEE according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to VEE. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether VEE is eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, since it is inconclusive whether VEE can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, the assessment on compliance of VEE with the criteria as in Sections 4 and 5 of Annex IV to the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1), and which animal species can be considered to be listed for VEE according to Article 8(3) of the AHL is also inconclusive.
Collapse
|
8
|
Pisano MB, Torres C, Ré VE, Farías AA, Sánchez Seco MP, Tenorio A, Campos R, Contigiani MS. Genetic and evolutionary characterization of Venezuelan equine encephalitis virus isolates from Argentina. INFECTION GENETICS AND EVOLUTION 2014; 26:72-9. [PMID: 24833218 DOI: 10.1016/j.meegid.2014.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022]
Abstract
Venezuelan equine encephalitis viruses (VEEV) are emerging pathogens of medical and veterinary importance circulating in America. Argentina is a country free from epizootic VEEV activity, with circulation of enzootic strains belonging to Rio Negro virus (RNV; VEEV subtype VI) and Pixuna virus (PIXV, VEEV subtype IV). In this work, we aim to report the sequencing and phylogenetic analyses of all Argentinean VEE viruses, including 7 strains previously isolated from mosquitoes in 1980, 5 sequences obtained from rodents in 1991 and 11 sequences amplified from mosquitoes between 2003 and 2005. Two genomic regions, corresponding to the non-structural protein 4 (nsP4) and the protein E3/E2 (PE2) genes were analyzed, but only 8 samples could be amplified in the last one (longer and more variable fragment of 702 bp). For both genomic fragments, phylogenetic trees showed the absence of lineages within RNV group, and a close genetic relationship between Argentinean strains and the prototype strain BeAr35645 for PIXV clade. The analysis of nsP4 gene opens the possibility to propose a possible geographic clustering of strains within PIXV group (Argentina and Brazil). Coalescent analysis performed on RNV sequences suggested a common ancestor of 58.3 years (with a 95% highest posterior density [HPD] interval of 16.4-345.7) prior to 1991 and inferred a substitution rate of 9.8×10(-5)substitutions/site/year, slightly lower than other enzootic VEE viruses. These results provide, for the first time, information about genetic features and variability of all VEEVs detected in Argentina, creating a database that will be useful for future detections in our country. This is particularly important for RNV, which has indigenous circulation.
Collapse
Affiliation(s)
- María Belén Pisano
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016 Córdoba, Argentina.
| | - Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, 4° piso, C1113AAD Buenos Aires, Argentina
| | - Viviana Elizabeth Ré
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016 Córdoba, Argentina
| | - Adrián Alejandro Farías
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016 Córdoba, Argentina
| | - María Paz Sánchez Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo Km 2, E28220 Majadahonda, Madrid, Spain
| | - Antonio Tenorio
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo Km 2, E28220 Majadahonda, Madrid, Spain
| | - Rodolfo Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, 4° piso, C1113AAD Buenos Aires, Argentina
| | - Marta Silvia Contigiani
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016 Córdoba, Argentina
| |
Collapse
|
9
|
Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res 2010; 85:328-45. [PMID: 19857523 PMCID: PMC2815176 DOI: 10.1016/j.antiviral.2009.10.008] [Citation(s) in RCA: 956] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 11/20/2022]
Abstract
Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
Collapse
Affiliation(s)
- Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
10
|
Auguste AJ, Volk SM, Arrigo NC, Martinez R, Ramkissoon V, Adams AP, Thompson NN, Adesiyun AA, Chadee DD, Foster JE, Travassos Da Rosa APA, Tesh RB, Weaver SC, Carrington CVF. Isolation and phylogenetic analysis of Mucambo virus (Venezuelan equine encephalitis complex subtype IIIA) in Trinidad. Virology 2009; 392:123-30. [PMID: 19631956 DOI: 10.1016/j.virol.2009.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/03/2009] [Accepted: 06/22/2009] [Indexed: 12/12/2022]
Abstract
In the 1950s and 1960s, alphaviruses in the Venezuelan equine encephalitis (VEE) antigenic complex were the most frequently isolated arboviruses in Trinidad. Since then, there has been very little research performed with these viruses. Herein, we report on the isolation, sequencing, and phylogenetic analyses of Mucambo virus (MUCV; VEE complex subtype IIIA), including 6 recently isolated from Culex (Melanoconion) portesi mosquitoes and 11 previously isolated in Trinidad and Brazil. Results show that nucleotide and amino acid identities across the complete structural polyprotein for the MUCV isolates were 96.6-100% and 98.7-100%, respectively, and the phylogenetic tree inferred for MUCV was highly geographically- and temporally-structured. Bayesian analyses suggest that the sampled MUCV lineages have a recent common ancestry of approximately 198 years (with a 95% highest posterior density (HPD) interval of 63-448 years) prior to 2007, and an overall rate of evolution of 1.28 x 10(-4) substitutions/site/yr.
Collapse
Affiliation(s)
- Albert J Auguste
- Department of Preclinical Sciences, Faculty of Medical Sciences, the University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saeed MF, Kolokoltsov AA, Davey RA. Novel, rapid assay for measuring entry of diverse enveloped viruses, including HIV and rabies. J Virol Methods 2006; 135:143-50. [PMID: 16584792 DOI: 10.1016/j.jviromet.2006.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/10/2006] [Accepted: 02/20/2006] [Indexed: 11/29/2022]
Abstract
Entry is the first and essential step in virus replication and is a target for therapeutic intervention. However, current knowledge on entry mechanism for the majority of viruses is poor, partly due to lack of a simple, sensitive and accurate entry assay that can be applied to diverse viruses. To overcome this obstacle, a novel contents-mixing-based virus entry assay is described that can be broadly applied to many enveloped viruses. By fusing firefly luciferase to the HIV Nef protein, luciferase was directly packaged into HIV particles pseudotyped with envelope proteins of diverse viruses including HIV, rabies and others. Upon cell entry, the luciferase-fusion protein was released into the cell cytoplasm, reacted with its substrates and was detected by light emission. The assay was validated by demonstrating its versatility in measuring virus entry. Entry was detected much more rapidly (in real-time) with higher sensitivity (a multiplicity of infection <0.1 gives a robust signal) and lower background (signal/noise ration >1000) than other comparable assays. In addition to its utility in studying virus entry mechanisms, the assay will aid in screening potential entry/fusion inhibitors and in diagnosis of virus infections.
Collapse
Affiliation(s)
- Mohammad F Saeed
- Department of Microbiology and Immunology, and Western Regional Center for Excellence in Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
12
|
Navarro JC, Medina G, Vasquez C, Coffey LL, Wang E, Suárez A, Biord H, Salas M, Weaver SC. Postepizootic persistence of Venezuelan equine encephalitis virus, Venezuela. Emerg Infect Dis 2006; 11:1907-15. [PMID: 16485478 PMCID: PMC3367636 DOI: 10.3201/eid1112.050533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Etiologic subtype IC of virus persists, 5 years after the major 1995 epidemic. Five years after the apparent end of the major 1995 Venezuelan equine encephalitis (VEE) epizootic/epidemic, focal outbreaks of equine encephalitis occurred in Carabobo and Barinas States of western Venezuela. Virus isolates from horses in each location were nearly identical in sequence to 1995 isolates, which suggests natural persistence of subtype IC VEE virus (VEEV) strains in a genetically stable mode. Serologic evidence indicated that additional outbreaks occurred in Barinas State in 2003. Field studies identified known Culex (Melanoconion) spp. vectors and reservoir hosts of enzootic VEEV but a dearth of typical epidemic vectors. Cattle serosurveys indicated the recent circulation of enzootic VEEV strains, and possibly of epizootic strains. Persistence of VEEV subtype IC strains and infection of horses at the end of the rainy season suggest the possibility of an alternative, cryptic transmission cycle involving survival through the dry season of infected vectors or persistently infected vertebrates.
Collapse
Affiliation(s)
| | - Gladys Medina
- Instituto Nacional de Investigaciones Agropecuarias, Maracay, Venezuela
| | | | - Lark L. Coffey
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Eryu Wang
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Suárez
- Universidad Central de Venezuela, Caracas, Venezuela
- Instituto Nacional de Higiene, Caracas, Venezuela
| | - Hernán Biord
- Sociedad Venezolana de Ciencias Naturales, Venezuela
| | - Marlene Salas
- Ministerio de Agricultura y Tierras, Barinas, Venezuela
| | | |
Collapse
|
13
|
Ortiz DI, Anishchenko M, Weaver SC. Susceptibility of Psorophora confinnis (Diptera: Culicidae) to infection with epizootic (subtype IC) and enzootic (subtype ID) Venezuelan Equine encephalitis viruses. JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:857-63. [PMID: 16365999 DOI: 10.1093/jmedent/42.5.857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To test the hypothesis that adaptation to epizootic mosquito vectors mediates the emergence of Venezuelan equine encephalitis virus (family Togaviridae, genus Alphavirus, VEEV) from enzootic progenitors, the susceptibility of the epizootic vector Psorophora confinnis (Lynch-Arribalzaga) to epizootic versus enzootic strains was evaluated. Artificial bloodmeals containing subtype IC strains isolated during the 1962-1964, 1992-1993, and 1995 Venezuelan/Colombian epizootics and closely related Venezuelan enzootic subtype ID strains were used to compare mosquito infectivity and transmission potential. Strains from the smaller 1992-1993 epizootic showed lower or equal infectivity and replication compared with enzootic viruses and to strains isolated during the larger 1962-1964 and 1995 epizootics. These experiments failed to provide evidence that Ps. confinnis selects for epizootic VEEV viruses with higher infectivity, as has been shown for Aedes (Ochlerotatus) taeniorhynchus (Wiedemann). Nonetheless, its high susceptibility, abundance in enzootic and epizootic regions, and feeding behavior suggest that Ps. confinnis is an important bridge vector for both enzootic and epizootic VEEV.
Collapse
Affiliation(s)
- Diana I Ortiz
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
14
|
Greene IP, Paessler S, Austgen L, Anishchenko M, Brault AC, Bowen RA, Weaver SC. Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic venezuelan equine encephalitis virus. J Virol 2005; 79:9128-33. [PMID: 15994807 PMCID: PMC1168750 DOI: 10.1128/jvi.79.14.9128-9133.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemics of Venezuelan equine encephalitis (VEE) result from high-titer equine viremia of IAB and IC subtype viruses that mediate increased mosquito transmission and spillover to humans. Previous genetic studies suggest that mutations in the E2 envelope glycoprotein allow relatively viremia-incompetent, enzootic subtype ID strains to adapt for equine replication, leading to VEE emergence. To test this hypothesis directly, chimeric VEEV strains containing the genetic backbone of enzootic subtype ID strains and the partial envelope glycoprotein genes of epizootic subtype IC and IAB strains, as well as reciprocal chimeras, were used for experimental infections of horses. Insertion of envelope genes from two different, closely related enzootic subtype ID strains into the epizootic backbones resulted in attenuation, demonstrating that the epizootic envelope genes are necessary for the equine-virulent and viremia-competent phenotypes. The partial epizootic envelope genes introduced into an enzootic ID backbone were sufficient to generate the virulent, viremia-competent equine phenotype. These results indicate that a small number of envelope gene mutations can generate an equine amplification-competent, epizootic VEEV from an enzootic progenitor and underscore the limitations of small animal models for evaluating and predicting the epizootic phenotype.
Collapse
Affiliation(s)
- Ivorlyne P Greene
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Estrada-Franco JG, Navarro-Lopez R, Freier JE, Cordova D, Clements T, Moncayo A, Kang W, Gomez-Hernandez C, Rodriguez-Dominguez G, Ludwig GV, Weaver SC. Venezuelan equine encephalitis virus, southern Mexico. Emerg Infect Dis 2005; 10:2113-21. [PMID: 15663847 PMCID: PMC3323369 DOI: 10.3201/eid1012.040393] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Equine epizootics of Venezuelan equine encephalitis (VEE) occurred in the southern Mexican states of Chiapas in 1993 and Oaxaca in 1996. To assess the impact of continuing circulation of VEE virus (VEEV) on human and animal populations, serologic and viral isolation studies were conducted in 2000 to 2001 in Chiapas State. Human serosurveys and risk analyses indicated that long-term endemic transmission of VEEV occurred among villages with seroprevalence levels of 18% to 75% and that medical personnel had a high risk for VEEV exposure. Seroprevalence in wild animals suggested cotton rats as possible reservoir hosts in the region. Virus isolations from sentinel animals and genetic characterizations of these strains indicated continuing circulation of a subtype IE genotype, which was isolated from equines during the recent VEE outbreaks. These data indicate long-term enzootic and endemic VEEV circulation in the region and continued risk for disease in equines and humans.
Collapse
|
16
|
Kolokoltsov AA, Weaver SC, Davey RA. Efficient functional pseudotyping of oncoretroviral and lentiviral vectors by Venezuelan equine encephalitis virus envelope proteins. J Virol 2005; 79:756-63. [PMID: 15613303 PMCID: PMC538582 DOI: 10.1128/jvi.79.2.756-763.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 10(6) CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.
Collapse
Affiliation(s)
- Andrey A Kolokoltsov
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | |
Collapse
|
17
|
Abstract
Many pandemics have been attributed to the ability of some RNA viruses to change their host range to include humans. Here, we review the mechanisms of disease emergence that are related to the host-range specificity of selected mosquito-borne alphaviruses and flaviviruses. We discuss viruses of medical importance, including Venezuelan equine and Japanese encephalitis viruses, dengue viruses and West Nile viruses.
Collapse
Affiliation(s)
- Scott C Weaver
- Department of Pathology, Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | |
Collapse
|
18
|
Ortiz DI, Weaver SC. Susceptibility of Ochlerotatus taeniorhynchus (Diptera: Culicidae) to infection with epizootic (subtype IC) and enzootic (subtype ID) Venezuelan equine encephalitis viruses: evidence for epizootic strain adaptation. JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:987-993. [PMID: 15535633 DOI: 10.1603/0022-2585-41.5.987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To test the hypothesis that adaptation to epizootic mosquito vectors mediates emergence of Venezuelan equine encephalitis virus (VEEV) from enzootic progenitors, experimental infection studies were conducted to determine the susceptibility of Ochlerotatus taeniorhynchus (Wiedemann) to epizootic and enzootic strains. Artificial blood meals containing epizootic subtype IC strains isolated during the 1962-1964, 1992-1993, and 1995 Venezuelan/Colombian epizootics and closely related Venezuelan enzootic subtype ID strains were used to compare infectivity and transmission potential. Their greater infectivity and replication suggested that adaptation of epizootic strains to Oc. taeniorhynchus may have enhanced epizootic transmission during the 1962-1964 and 1995 IC coastal epizootics. However, strains from the small 1992-1993 Venezuelan outbreak that did not extend to coastal regions do not seem to infect this species better than closely related subtype ID strains. Adaptation of VEEV to epizootic vectors such as Oc. taeniorhynchus mosquitoes may be a determinant of some but not all VEE emergence events and may influence spread into coastal regions.
Collapse
Affiliation(s)
- Diana I Ortiz
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | |
Collapse
|
19
|
Weaver SC, Anishchenko M, Bowen R, Brault AC, Estrada-Franco JG, Fernandez Z, Greene I, Ortiz D, Paessler S, Powers AM. Genetic determinants of Venezuelan equine encephalitis emergence. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2004:43-64. [PMID: 15119762 DOI: 10.1007/978-3-7091-0572-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Following a period of inactivity from 1973-1991, Venezuelan equine encephalitis (VEE) reemerged during the past decade in South America and Mexico. Experimental studies of VEE virus (VEEV) infection of horses with virus strains isolated during these outbreaks have revealed considerable variation in the ability of equine-virulent, epizootic strains to exploit horses as efficient amplification hosts. Subtype IC strains from recent outbreaks in Venezuela and Colombia amplify efficiently in equines, with a correlation between maximum viremia titers and the extent of the outbreak from which the virus strain was isolated. Studies of enzootic VEEV strains that are believed to represent progenitors of the epizootic subtypes support the hypothesis that adaptation to efficient replication in equines is a major determinant of emergence and the ability of VEEV to spread geographically. Correlations between the ability of enzootic and epizootic VEEV strains to infect abundant, equiphilic mosquitoes, and the location and extent of these outbreaks, also suggest that specific adaptation to Ochlerotatus taeniorhynchus mosquitoes is a determinant of some but not all emergence events. Genetic studies imply that mutations in the E2 envelope glycoprotein gene are major determinants of adaptation to both equines and mosquito vectors.
Collapse
Affiliation(s)
- S C Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Anishchenko M, Paessler S, Greene IP, Aguilar PV, Carrara AS, Weaver SC. Generation and characterization of closely related epizootic and enzootic infectious cDNA clones for studying interferon sensitivity and emergence mechanisms of Venezuelan equine encephalitis virus. J Virol 2004; 78:1-8. [PMID: 14671082 PMCID: PMC303380 DOI: 10.1128/jvi.78.1.1-8.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging pathogen and a continuing threat to humans and equines in the Americas. Identification of the genetic determinants that enable epizootic VEEV strains to arise and exploit equines as amplification hosts to cause widespread human disease is pivotal to understanding VEE emergence. The sensitivity to murine alpha/beta interferon-mediated antiviral activity was previously correlated to the epizootic phenotype of several VEEV strains. Infectious cDNA clones were generated from an epizootic subtype IC VEEV strain (SH3) isolated during the 1992 Venezuelan outbreak and a closely related enzootic, sympatric subtype ID strain (ZPC738). These VEEV strains had low-cell-culture-passage histories and differed by only 12 amino acids in the nonstructural and structural proteins. Rescued viruses showed similar growth kinetics to their parent viruses in several cell lines, and murine infections resulted in comparable viremia and disease. Unlike what was found in other studies of epizootic and enzootic VEEV strains, the sensitivities to murine alpha/beta interferon did not differ appreciably between these epizootic versus enzootic strains, calling into question the reliability of interferon sensitivity as a marker of epizootic potential.
Collapse
Affiliation(s)
- Michael Anishchenko
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | | | |
Collapse
|
21
|
Barrera R, Torres N, Freier JE, Navarro JC, García CZ, Salas R, Vasquez C, Weaver SC. Characterization of enzootic foci of Venezuelan equine encephalitis virus in western Venezuela. Vector Borne Zoonotic Dis 2003; 1:219-30. [PMID: 12653150 DOI: 10.1089/153036601753552585] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The distribution of the sylvatic subtype ID Venezuelan equine encephalitis (VEE) viruses in the lowland tropical forests of western Venezuela was investigated using remote sensing and geographic information system technologies. Landsat 5 Thematic Mapper satellite imagery was used to study the reflectance patterns of VEE endemic foci and to identify other locations with similar reflectance patterns. Enzootic VEE virus variants isolated during this study are the closest genetic relatives of the epizootic viruses that emerged in western Venezuela during 1992-1993. VEE virus surveillance was conducted by exposing sentinel hamsters to mosquito bites and trapping wild vertebrates in seven forests identified and located by means of the satellite image. We isolated VEE viruses from 48 of a total of 1,363 sentinel hamsters in two of the forests on six occasions, in both dry and wet seasons. None of the 12 small vertebrates captured in 8,190 trap-nights showed signs of previous VEE virus infection. The satellite image was classified into 13 validated classes of land use/vegetation using unsupervised and supervised techniques. Data derived from the image consisted of the raw digital values of near- and mid-infrared bands 4, 5, and 7, derived Tasseled Cap indices of wetness, greenness, and brightness, and the Normalized Difference Vegetation Index. Digitized maps provided ancillary data of elevation and soil geomorphology. Image enhancement was applied using Principal Component Analysis. A digital layer of roads together with georeferenced images was used to locate the study sites. A cluster analysis using the above data revealed two main groups of dense forests separated by spectral properties, altitude, and soil geomorphology. Virus was isolated more frequently from the forest type identified on flat flood plains of main rivers rather than the forest type found on the rolling hills of the study area. The spatial analysis suggests that mosquitoes carrying the enzootic viruses would reach 82-97% of the total land area by flying only 1-3 km from forests. We hypothesize that humans within that area are at risk of severe disease caused by enzootic ID VEE viruses. By contrast, equines could actually become naturally vaccinated, thus preventing the local emergence of epizootic IC VEE virus strains and protecting humans indirectly.
Collapse
Affiliation(s)
- R Barrera
- Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang E, Brault AC, Powers AM, Kang W, Weaver SC. Glycosaminoglycan binding properties of natural venezuelan equine encephalitis virus isolates. J Virol 2003; 77:1204-10. [PMID: 12502837 PMCID: PMC140800 DOI: 10.1128/jvi.77.2.1204-1210.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine-virulent, epidemic/epizootic strains of Venezuelan equine encephalitis (VEE) virus (VEEV) arise via mutation of progenitor enzootic strains that replicate poorly in equines. Sequencing studies have implicated positively charged amino acids on the surface of the E2 envelope glycoprotein in the acquisition of equine virulence and viremia potential, suggesting that changes in binding to cell surface glycosaminoglycans (GAGs) may mediate VEE emergence. Therefore, we evaluated the binding of natural enzootic and epizootic VEEV isolates to Chinese hamster ovary (CHO) cells expressing normal, high levels of GAGs as well as to mutant CHO cells lacking GAG expression. Binding to GAGs was not consistently associated with the epizootic phenotype, and cell culture passages resulted in increased GAG binding. The low levels of GAG binding exhibited by some low-passage, equine-virulent subtype IC VEEV strains indicate that the positive-charge E2 mutations implicated in VEE subtype IC emergence are not artifacts of laboratory passage and suggest that GAG binding does not play a major role in mediating VEE emergence. The increased GAG binding exhibited by VEEV strain CPA201 from the 1993 Mexican epizootic, when compared to that of closely related enzootic subtype IE strains, was shown to result from a Glu-to-Lys mutation at position 117 of the E2 envelope glycoprotein.
Collapse
Affiliation(s)
- Eryu Wang
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston 77555-0609, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
During the past 20 years there has been a dramatic resurgence or emergence of epidemic arboviral diseases affecting both humans and domestic animals. These epidemics have been caused primarily by viruses thought to be under control such as dengue, Japanese encephalitis, yellow fever, and Venezuelan equine encephalitis, or viruses that have expanded their geographic distribution such as West Nile and Rift Valley fever. Several of these viruses are presented as case studies to illustrate the changing epidemiology. The factors responsible for the dramatic resurgence of arboviral diseases in the waning years of the 20th century are discussed, as is the need for rebuilding the public health infrastructure to deal with epidemic vector-borne diseases in the 21st century.
Collapse
Affiliation(s)
- Duane J Gubler
- Department of Health and Human Services, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Fort Collins, CO 80522, USA.
| |
Collapse
|
24
|
Brault AC, Powers AM, Weaver SC. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J Virol 2002; 76:6387-92. [PMID: 12021373 PMCID: PMC136209 DOI: 10.1128/jvi.76.12.6387-6392.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.
Collapse
Affiliation(s)
- Aaron C Brault
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | |
Collapse
|
25
|
Brault AC, Powers AM, Holmes EC, Woelk CH, Weaver SC. Positively charged amino acid substitutions in the e2 envelope glycoprotein are associated with the emergence of venezuelan equine encephalitis virus. J Virol 2002; 76:1718-30. [PMID: 11799167 PMCID: PMC135911 DOI: 10.1128/jvi.76.4.1718-1730.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemic-epizootic Venezuelan equine encephalitis (VEE) viruses (VEEV) have emerged repeatedly via convergent evolution from enzootic predecessors. However, previous sequence analyses have failed to identify common sets of nucleotide or amino acid substitutions associated with all emergence events. During 1993 and 1996, VEEV subtype IE epizootics occurred on the Pacific Coast of the states of Chiapas and Oaxaca in southern Mexico. Like other epizootic VEEV strains, when inoculated into guinea pigs and mice, the Mexican isolates were no more virulent than closely related enzootic strains, complicating genetic studies of VEE emergence. Complete genomic sequences of 4 of the Mexican strains were determined and compared to those of closely related enzootic subtype IE isolates from Guatemala. The epizootic viruses were less than 2% different at the nucleotide sequence level, and phylogenetic relationships confirmed that the equine-virulent Mexican strains probably evolved from enzootic progenitors on the Pacific Coast of Mexico or Guatemala. Of 35 amino acids that varied among the Guatemalan and Mexican isolates, only 8 were predicted phylogenetically to have accompanied the phenotypic change. One mutation at position 117 of the E2 envelope glycoprotein, involving replacement of Glu by Lys, resulted in a small-plaque phenotype characteristic of epizootic VEEV strains. Analysis of additional E2 sequences from representative enzootic and epizootic VEEV isolates implicated similar surface charge changes in the emergence of previous South American epizootic phenotypes, indicating that E2 mutations are probably important determinants of the equine-virulent phenotype and of VEE emergence. Maximum-likelihood analysis indicated that one change at E2 position 213 has been influenced by positive selection and convergent evolution of the epizootic phenotype.
Collapse
Affiliation(s)
- Aaron C Brault
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | |
Collapse
|