1
|
Characterization of the interaction domains between the phosphoprotein and the nucleoprotein of human Metapneumovirus. J Virol 2021; 96:e0090921. [PMID: 34730389 DOI: 10.1128/jvi.00909-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) causes severe respiratory diseases in young children. The HMPV RNA genome is encapsidated by the viral nucleoprotein (N), forming an RNA-N complex (NNuc), which serves as template for genome replication and mRNA transcription by the RNA-dependent RNA polymerase (RdRp). The RdRp is formed by the association of the large polymerase subunit (L), which has RNA polymerase, capping and methyltransferase activities, and the tetrameric phosphoprotein (P). P plays a central role in the RdRp complex by binding to NNuc and L, allowing the attachment of the L polymerase to the NNuc template. During infection these proteins concentrate in cytoplasmic inclusion bodies (IBs) where viral RNA synthesis occurs. By analogy to the closely related pneumovirus respiratory syncytial virus (RSV), it is likely that the formation of IBs depends on the interaction between HMPV P and NNuc, which has not been demonstrated yet. Here, we finely characterized the binding P- NNuc interaction domains by using recombinant proteins, combined with a functional assay for the polymerase complex activity, and the study of the recruitment of these proteins to IBs by immunofluorescence. We show that the last 6 C-terminal residues of HMPV P are necessary and sufficient for binding to NNuc, that P binds to the N-terminal domain of N (NNTD), and identified conserved N residues critical for the interaction. Our results allowed to propose a structural model for the HMPV P-NNuc interaction. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of severe respiratory infections in children but also affects human populations of all ages worldwide. Nowadays, no vaccine or efficient antiviral treatments are available for this pneumovirus. A better understanding of the molecular mechanisms involved in viral replication could help the design or discovery of specific antiviral compounds. In this work we have investigated the interaction between two major viral proteins involved in HMPV RNA synthesis, the N and P proteins. We finely characterized their domains of interaction, and identified a pocket on the surface of the N protein, a potential target of choice for the design of compounds interfering with N-P complexes and inhibiting viral replication.
Collapse
|
2
|
Brown PA, Briand FX, Guionie O, Lemaitre E, Courtillon C, Henry A, Jestin V, Eterradossi N. An alternative method to determine the 5' extremities of non-segmented, negative sense RNA viral genomes using positive replication intermediate 3' tailing: application to two members of the Paramyxoviridae family. J Virol Methods 2013; 193:121-7. [PMID: 23707921 DOI: 10.1016/j.jviromet.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/30/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Determining the sequence of non-segmented, negative sense RNA viral genomes is far from routine and often requires the application of several techniques. In this study, an existing method used currently just for determination of the genomic 3' extremity was used to determine both the 3' and 5' sequence extremities of a Newcastle disease virus and an avian metapneumovirus. This was achieved with a single 3' nucleotide tailing reaction of both the genomic RNA and the full length, positive sense, antigenomic RNA, followed by a single reverse transcription reaction targeted to the common polynucleotide tails, and then individual PCRs specific for each extremity using PCR primers derived from the sequence of the RT primer or from neighbouring virus sequences known previously. For each virus the method was employed separately. Sequences from both viruses were in agreement with those reported previously for other paramyxoviruses, yet one extra base at the 3' and one extra base at the 5' were identified for the avian metapneumovirus. In this study, importantly, the newly determined extremities maintained the complementarity known to exist between the extremities of these viruses. The method was equally successful with both viruses and can be tailored easily to function with other non-segmented, negative sense viruses through minor modification of only the primer sequences.
Collapse
Affiliation(s)
- Paul A Brown
- Anses, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan/Plouzané Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, VIPAC, BP 53, 22440 Ploufragan, France.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Noton SL, Fearns R. The first two nucleotides of the respiratory syncytial virus antigenome RNA replication product can be selected independently of the promoter terminus. RNA (NEW YORK, N.Y.) 2011; 17:1895-1906. [PMID: 21878549 PMCID: PMC3185921 DOI: 10.1261/rna.2813411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/31/2011] [Indexed: 05/31/2023]
Abstract
There is limited knowledge regarding how the RNA-dependent RNA polymerases of the nonsegmented negative-strand RNA viruses initiate genome replication. In a previous study of respiratory syncytial virus (RSV) RNA replication, we found evidence that the polymerase could select the 5'-ATP residue of the genome RNA independently of the 3' nucleotide of the template. To investigate if a similar mechanism is used during antigenome synthesis, a study of initiation from the RSV leader (Le) promoter was performed using an intracellular minigenome assay in which RNA replication was restricted to a single step, so that the products examined were derived only from input mutant templates. Templates in which Le nucleotides 1U, or 1U and 2G, were deleted directed efficient replication, and in both cases, the replication products were initiated at the wild-type position, at position -1 or -2 relative to the template, respectively. Sequence analysis of the RNA products showed that they contained ATP and CTP at the -1 and -2 positions, respectively, thus restoring the mini-antigenome RNA to wild-type sequence. These data indicate that the RSV polymerase is able to select the first two nucleotides of the antigenome and initiate at the correct position, even if the 3'-terminal two nucleotides of the template are missing. Substitution of positions +1 and +2 of the template reduced RNA replication and resulted in increased initiation at positions +3 and +5. Together these data suggest a model for how the RSV polymerase initiates antigenome synthesis.
Collapse
Affiliation(s)
- Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
4
|
Evidence that the polymerase of respiratory syncytial virus initiates RNA replication in a nontemplated fashion. Proc Natl Acad Sci U S A 2010; 107:10226-31. [PMID: 20479224 DOI: 10.1073/pnas.0913065107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA virus polymerases must initiate replicative RNA synthesis with extremely high accuracy to maintain their genome termini and to avoid generating defective genomes. For the single-stranded negative-sense RNA viruses, it is not known how this accuracy is achieved. To investigate this question, mutations were introduced into the 3' terminal base of a respiratory syncytial virus (RSV) template, and the RNA products were examined to determine the impact of the mutation. To perform the assay, RNA replication was reconstituted using a modified minireplicon system in which replication was limited to a single step. Importantly, this system allowed analysis of RSV RNA generated intracellularly, but from a defined template that was not subject to selection by replication. Sequence analysis of RNA products generated from templates containing 1U-C and 1U-A substitutions showed that, in both cases, replication products were initiated with a nontemplated, WT A residue, rather than a templated G or U residue, indicating that the polymerase selects the terminal NTP independently of the template. Examination of a template in which the position 1 nucleotide was deleted supported these findings. This mutant directed efficient replication at approximately 60% of WT levels, and its product was found to be initiated at the WT position (-1 relative to the template) with a WT A residue. These findings show that the RSV replicase selects ATP and initiates at the correct position, independently of the first nucleotide of the template, suggesting a mechanism by which highly accurate replication initiation is achieved.
Collapse
|
5
|
de Graaf M, Herfst S, Schrauwen EJA, Choi Y, van den Hoogen BG, Osterhaus ADME, Fouchier RAM. Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses. J Gen Virol 2008; 89:975-983. [PMID: 18343839 DOI: 10.1099/vir.0.83537-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human metapneumovirus (HMPV) and avian metapneumovirus (AMPV) have a similar genome organization and protein composition, but a different host range. AMPV subgroup C (AMPV-C) is more closely related to HMPV than other AMPVs. To investigate the specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses, a minireplicon system was generated for AMPV-C and used in combination with minireplicon systems for HMPV lineages A1 and B1. Viral RNA-like molecules representing HMPV-A1 and -B1, AMPV-A and -C and human respiratory syncytial virus were replicated efficiently by polymerase complexes of HMPV-A1 and -B1 and AMPV-C, but not by polymerase complexes of bovine parainfluenza virus 3. Upon exchange of HMPV and AMPV-C polymerase complex components, all chimeric polymerase complexes were functional; exchange between HMPVs did not result in altered polymerase activity, whereas exchange between HMPVs and AMPV-C did. Recombinant HMPV-B1 viruses in which polymerase genes were exchanged with those of HMPV-A1 replicated with normal kinetics in vitro, whilst replacement with AMPV-C genes resulted in moderate differences in virus replication. In hamsters, recombinant HMPV-B1 viruses in which individual polymerase genes were exchanged with those of AMPV-C were attenuated, irrespective of the results obtained with minireplicon systems or in vitro replication assays. This study provides insight into the specificity and functional interaction of polymerase complex proteins of human and avian metapneumoviruses, but neither minireplicon systems nor in vitro replication kinetics were found to be predictive for attenuation in permissive animals.
Collapse
Affiliation(s)
- Miranda de Graaf
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Eefje J A Schrauwen
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ying Choi
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | - Ron A M Fouchier
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
6
|
Dibben O, Thorpe LC, Easton AJ. Roles of the PVM M2-1, M2-2 and P gene ORF 2 (P-2) proteins in viral replication. Virus Res 2007; 131:47-53. [PMID: 17881076 DOI: 10.1016/j.virusres.2007.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/11/2007] [Accepted: 08/12/2007] [Indexed: 10/22/2022]
Abstract
A plasmid-based reverse genetics system for pneumonia virus of mice (PVM) using a synthetic minigenome is described. The system was used to investigate the functions of several viral proteins. The M2-1 protein of PVM was shown to enhance reporter gene expression when present at low levels, similar to the situation for the equivalent respiratory syncytial virus (RSV) M2-1 protein, but at high levels was shown to reduce gene expression from the minigenome activity, which differs significantly form the situation with RSV. Analysis of levels of nucleocapsid complex RNA showed that high levels of the PVM M2-1 protein inhibits RNA replication rather than transcription. In contrast, expression of the PVM M2-2 protein in conjunction with the polymerase proteins in a minigenome assay greatly reduced the levels of CAT reporter protein. This is similar to the situation with the RSV M2-2 protein although there is no significant sequence identity between the M2-2 proteins of the pneumoviruses. A significant difference between the genome organisations of RSV and PVM is that the P gene of PVM contains a second open reading frame, encoding the P-2 protein, which has no counterpart in the RSV P gene. Co-expression of the PVM P-2 protein with the minigenome inhibited virus gene expression. This resembles the situation seen with the accessory proteins expressed from alternate reading frames of the P gene of other paramyxoviruses. Analysis of levels of antigenome RNA and CAT mRNA produced by the minigenome in the presence of the P2 protein indicated that the protein inhibits viral transcription in a dose-dependent fashion.
Collapse
Affiliation(s)
- Oliver Dibben
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
7
|
Dibben O, Easton AJ. Mutational analysis of the gene start sequences of pneumonia virus of mice. Virus Res 2007; 130:303-9. [PMID: 17658649 DOI: 10.1016/j.virusres.2007.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/28/2007] [Accepted: 06/11/2007] [Indexed: 11/18/2022]
Abstract
The transcriptional start sequence of pneumonia virus of mice is more variable than that of the other pneumoviruses, with five different nine-base gene start (GS) sequences found in the PVM genome. The sequence requirements of the PVM gene start signal, and the efficiency of transcriptional initiation of the different virus genes, was investigated using a reverse genetics approach with a minigenome construct containing two reporter genes. A series of GS mutants were created, where each of the nine bases of the gene start consensus sequence of a reporter gene was changed to every other possible base, and the resulting effect on initiation of transcription was assayed. Nucleotide positions 1, 2 and 7 were found to be most sensitive to mutation whilst positions 4, 5 and 9 were relatively insensitive. The L gene GS sequence was found to have only 20% of the activity of the consensus sequence whilst the published M2 gene start sequence was found to be non-functional. A minigenome construct in which the two reporter genes were separated by the F-M2 gene junction of PVM was used to confirm the presence of two alternative, functional, GS sequences that could both drive the transcription of the PVM M2 gene.
Collapse
Affiliation(s)
- Oliver Dibben
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
8
|
Edworthy NL, Easton AJ. Mutational analysis of the avian pneumovirus conserved transcriptional gene start sequence identifying critical residues. J Gen Virol 2005; 86:3343-3347. [PMID: 16298980 DOI: 10.1099/vir.0.81352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven of the eight genes in the avian pneumovirus (APV) genome contain a conserved 9 nt transcriptional start sequence with the virus large (L) polymerase gene differing from the consensus at three positions. The sequence requirements of the APV transcriptional gene start sequence were investigated by generating a series of mutations in which each of the nine conserved bases was mutated to each of the other three possible nucleotides in a minigenome containing two reporter genes. The effect of each mutation was assessed by measuring the relative levels of expression from the altered and unaltered gene start sequences. Mutations at positions 2, 7 and 9 significantly reduced transcription levels while alterations to position 5 had little effect. The L gene start sequence directed transcription at levels approximately 50 % below that of the consensus gene start sequence. These data suggest that there are common features in pneumovirus transcriptional control sequences.
Collapse
Affiliation(s)
- Nicole L Edworthy
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Cowton VM, Fearns R. Evidence that the respiratory syncytial virus polymerase is recruited to nucleotides 1 to 11 at the 3' end of the nucleocapsid and can scan to access internal signals. J Virol 2005; 79:11311-22. [PMID: 16103183 PMCID: PMC1193587 DOI: 10.1128/jvi.79.17.11311-11322.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 3'-terminal end of the respiratory syncytial virus genomic RNA contains a 44-nucleotide leader (Le) region adjoining the gene start signal of the first gene. Previous mapping studies demonstrated that there is a promoter located at the 3' end of Le, which can signal initiation of antigenome synthesis. The aim of this study was to investigate the role of the 3' terminus of the RNA template in (i) promoter recognition and (ii) determining the initiation site for antigenome synthesis. A panel of minigenomes containing additional sequence at the 3' end of the Le were analyzed for their ability to direct antigenome and mRNA synthesis. Minigenomes containing heterologous extensions of 6 nucleotides or more were unable to support efficient RNA synthesis. However, the activity of a minigenome with a 56-nucleotide extension could be restored by insertion of Le nucleotides 1 to 11 or 1 to 13 at the 3' end, indicating that these nucleotides, in conjunction with the 3' terminus, are sufficient to recruit polymerase to the template. Northern blot and 5' rapid amplification of cDNA ends analysis of antigenome RNA indicated that antigenome initiation occurred at the first position of Le, irrespective of the terminal extension. This finding demonstrates that the 3' terminus of the RNA is not necessary for determining the antigenome initiation site. Data are presented which suggest that following recruitment to a promoter at the 3' end of Le, the polymerase is able to scan and respond to a promoter signal embedded within the RNA template.
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee, UK
| | | |
Collapse
|
10
|
Lwamba HCM, Alvarez R, Wise MG, Yu Q, Halvorson D, Njenga MK, Seal BS. Comparison of the full-length genome sequence of avian metapneumovirus subtype C with other paramyxoviruses. Virus Res 2005; 107:83-92. [PMID: 15567037 DOI: 10.1016/j.virusres.2004.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 07/06/2004] [Accepted: 07/10/2004] [Indexed: 01/24/2023]
Abstract
We determined the nucleotide (nt) sequence of the small hydrophobic (SH), attachment glycoprotein (G), and RNA polymerase (L) genes, plus the leader and trailer regions of the Colorado strain of Avian metapneumovirus subtype C (aMPV/C) in order to complete the genome sequencing. The complete genome comprised of 13,134 nucleotides, with a 40 nt leader at its 3' end and a 45 nt trailer at its 5' end. The aMPV/C L gene was the largest with 6173 nt and consisting of a single open reading frame encoding a 2005 amino acids (aa) protein. Comparison of the aMPV/C SH, G, and L nt and predicted aa sequences with those of Human metapneumoviruses (hMPV) revealed higher nt and aa sequence identities than the sequence identities between the aMPV subtypes A, B, C, and D, supporting earlier finding that aMPV/C was closer evolutionary to hMPV than the other aMPV subtypes.
Collapse
Affiliation(s)
- Humphrey C M Lwamba
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Easton AJ, Domachowske JB, Rosenberg HF. Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 2004; 17:390-412. [PMID: 15084507 PMCID: PMC387412 DOI: 10.1128/cmr.17.2.390-412.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumoviruses are single-stranded, negative-sense, nonsegmented RNA viruses of the family Paramyxoviridae, subfamily Pneumovirinae, and include pathogens that infect humans (respiratory syncytial virus and human metapneumovirus), domestic mammals (bovine, ovine, and caprine respiratory syncytial viruses), rodents (pneumonia virus of mice), and birds (avian metapneumovirus). Among the topics considered in this review are recent studies focused on the roles of the individual virus-encoded components in promoting virus replication as well as in altering and evading innate antiviral host defenses. Advances in the molecular technology of pneumoviruses and the emergence of recombinant pneumoviruses that are leading to improved virus-based vaccine formulations are also discussed. Since pneumovirus infection in natural hosts is associated with a profound inflammatory response that persists despite adequate antiviral therapy, we also review the recent experimental treatment strategies that have focused on combined antiviral, anti-inflammatory, and immunomodulatory approaches.
Collapse
|
12
|
Whelan SPJ, Barr JN, Wertz GW. Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:61-119. [PMID: 15298168 DOI: 10.1007/978-3-662-06099-5_3] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nonsegmented negative-strand (NNS) RNA viruses of the order Mononegavirales include a wide variety of human, animal, and plant pathogens. The NNS RNA genomes of these viruses are templates for two distinct RNA synthetic processes: transcription to generate mRNAs and replication of the genome via production of a positive-sense antigenome that acts as template to generate progeny negative-strand genomes. The four virus families within the Mononegavirales all express the information encoded in their genomes by transcription of discrete subgenomic mRNAs. The key feature of transcriptional control in the NNS RNA viruses is entry of the virus-encoded RNA-dependent RNA polymerase at a single 3' proximal site followed by obligatory sequential transcription of the linear array of genes. Levels of gene expression are primarily regulated by position of each gene relative to the single promoter and also by cis-acting sequences located at the beginning and end of each gene and at the intergenic junctions. Obligatory sequential transcription dictates that termination of each upstream gene is required for initiation of downstream genes. Therefore, termination is a means to regulate expression of individual genes within the framework of a single transcriptional promoter. By engineering either whole virus genomes or subgenomic replicon derivatives, elements important for signaling transcript initiation, 5' end modification, 3' end polyadenylation, and transcription termination have been identified. Although the diverse families of NNS RNA virus use different sequences to control these processes, transcriptional termination is a common theme in controlling gene expression and overall transcriptional regulation is key in controlling the outcome of viral infection. The latest models for control of replication and transcription are discussed.
Collapse
Affiliation(s)
- S P J Whelan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Stokes HL, Easton AJ, Marriott AC. Chimeric pneumovirus nucleocapsid (N) proteins allow identification of amino acids essential for the function of the respiratory syncytial virus N protein. J Gen Virol 2003; 84:2679-2683. [PMID: 13679601 DOI: 10.1099/vir.0.19370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid (N) protein of the pneumovirus respiratory syncytial virus (RSV) is a major structural protein which encapsidates the RNA genome and is essential for replication and transcription of the RSV genome. The N protein of the related virus pneumonia virus of mice (PVM) is functionally unable to replace the RSV N protein in a minigenome replication assay. Using chimeric proteins, in which the immediate C-terminal part of the RSV N protein was replaced with the equivalent region of the PVM N protein, it was shown that six amino acid residues near the C terminus of the N protein (between residues 352-369) are essential for its function in replication and for the ability of the N protein to bind to the viral phosphoprotein, P.
Collapse
Affiliation(s)
- H L Stokes
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| | - A J Easton
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| | - A C Marriott
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| |
Collapse
|
14
|
Zhou H, Cheng X, Jin H. Identification of amino acids that are critical to the processivity function of respiratory syncytial virus M2-1 protein. J Virol 2003; 77:5046-53. [PMID: 12692207 PMCID: PMC153968 DOI: 10.1128/jvi.77.9.5046-5053.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2-1 protein of respiratory syncytial virus (RSV) is a transcription processivity factor that is essential for virus replication. The function of RSV M2-1 protein can be examined by using an RSVlacZ minigenome assay in vitro since the expression of the lacZ gene is dependent on M2-1. The M2-1 protein of pneumonia virus of mice (PVM), also a member of the Pneumovirus genus, functions poorly in the RSVlacZ minigenome assay despite conservation of the Cys(3)-His(1) motif at its N terminus and an overall 40% amino acid identity with RSV M2-1. To identify the amino acids responsible for the differences between these two proteins, two chimeric proteins were constructed. The RSV/PVM (RP) M2-1 chimera that contains the N-terminal 30 amino acids from RSV and the remaining C-terminal 148 amino acids from PVM maintained a level of activity at an ca. 36% of RSV M2-1. However, the PVM/RSV (PR) M2-1 chimera with the N-terminal 29 amino acids from PVM and 164 amino acids from RSV had an activity of <5% of RSV M2-1, indicating that the functional determinants are mainly located in the N terminus of M2-1. Mutagenesis of the N terminus of PR M2-1 and RSV M2-1 identified that Leu-16 and Asn-17 of RSV M2-1 are critical to the M2-1 function. In addition, several charged residues in the N terminus of RSV M2-1 also contributed to the functional integrity of M2-1.
Collapse
Affiliation(s)
- Helen Zhou
- MedImmune Vaccines, Inc., Mountain View, California 94043, USA
| | | | | |
Collapse
|
15
|
van den Hoogen BG, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Analysis of the genomic sequence of a human metapneumovirus. Virology 2002; 295:119-32. [PMID: 12033771 DOI: 10.1006/viro.2001.1355] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described the isolation of a novel paramyxovirus from children with respiratory tract disease in The Netherlands. Based on biological properties and limited sequence information the virus was provisionally classified as the first nonavian member of the Metapneumovirus genus and named human metapneumovirus (hMPV). This report describes the analysis of the sequences of all hMPV open reading frames (ORFs) and intergenic sequences as well as partial sequences of the genomic termini. The overall percentage of amino acid sequence identity between APV and hMPV N, P, M, F, M2-1, M2-2, and L ORFs was 56 to 88%. Some nucleotide sequence identity was also found between the noncoding regions of the APV and hMPV genomes. Although no discernible amino acid sequence identity was found between two of the ORFs of hMPV and ORFs of other paramyxoviruses, the amino acid content, hydrophilicity profiles, and location of these ORFs in the viral genome suggest that they represent SH and G proteins. The high percentage of sequence identity between APV and hMPV, their similar genomic organization (3'-N-P-M-F-M2-SH-G-L-5'), and phylogenetic analyses provide evidence for the proposed classification of hMPV as the first mammalian metapneumovirus.
Collapse
Affiliation(s)
- Bernadette G van den Hoogen
- Department of Virology, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 50, Rotterdam, 3015 GE, The Netherlands
| | | | | | | |
Collapse
|
16
|
Fearns R, Peeples ME, Collins PL. Mapping the transcription and replication promoters of respiratory syncytial virus. J Virol 2002; 76:1663-72. [PMID: 11799161 PMCID: PMC135899 DOI: 10.1128/jvi.76.4.1663-1672.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important, unresolved issue in mononegavirus biology is whether or not transcription is initiated by the same promoter as RNA replication. In this study, residues important for respiratory syncytial virus (RSV) transcription and RNA replication were identified by subjecting the first 26 nucleotides of genome RNA to saturation mutagenesis. This analysis was performed using a genome analog that allowed transcription and RNA replication to be dissociated from each other and monitored as independent events in an intracellular assay. This analysis showed that nucleotides 3C, 5C, 8U, 9U, 10U, and 11U were important for transcription and RNA replication. Additional nucleotides (1U, 2G, 6U, and 7U) were important for RNA replication, but not transcription. At position 4, G versus C or U augmented transcription and decreased replication, showing that the naturally occurring assignments in the genomic (4G) and antigenomic (4U) promoters are optimal for transcription and RNA replication, respectively. These data show that RSV transcription and RNA replication each involve a cis-acting signal at the very 3" end of the genome. This signal appears to contain a minimum, common element that functions in both transcription and RNA replication, defined by those substitutions that had similar effects on the two processes. Apart from these common nucleotides, other positions were involved in RNA replication but not transcription or had different effects on the two processes. This indicates that the promoters for transcription and replication involve overlapping sets of nucleotides at the very 3" end of the genome and provides evidence that the nucleotide preferences for the two processes are not identical.
Collapse
Affiliation(s)
- Rachel Fearns
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0720, USA
| | | | | |
Collapse
|