1
|
Zhao C, Crews CJ, Derdeyn CA, Blackwell JL. Lac-regulated system for generating adenovirus 5 vaccine vectors expressing cytolytic human immunodeficiency virus 1 genes. J Virol Methods 2009; 160:101-10. [PMID: 19409930 PMCID: PMC2704014 DOI: 10.1016/j.jviromet.2009.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/23/2009] [Indexed: 01/14/2023]
Abstract
Adenovirus (Ad) vectors have been developed as human immunodeficiency-1 (HIV-1) vaccine vectors because they consistently induce immune responses in preclinical animal models and human trials. Strong promoters and codon-optimization are often used to enhance vaccine-induced HIV-1 gene expression and immunogenicity. However, if the transgene is inherently cytotoxic in the cell line used to produce the vector, and is expressed at high levels, it is difficult to rescue a stable Ad HIV-1 vaccine vector. Therefore we hypothesized that generation of Ad vaccine vectors expressing cytotoxic genes, such as HIV-1 env, would be more efficient if expression of the transgene was down-regulated during Ad rescue. To test this hypothesis, a Lac repressor-operator system was applied to regulate expression of reporter luciferase and HIV-1 env transgenes during Ad rescue. The results demonstrate that during Ad rescue, constitutive expression of the Lac repressor in 293 cells reduced transgene expression levels to approximately 5% of that observed in the absence of regulation. Furthermore, Lac-regulation translated into more efficient Ad rescue compared to traditional 293 cells. Importantly, Ad vectors rescued with this system showed high levels of transgene expression when transduced into cells that lack the Lac repressor protein. The Lac-regulated system also facilitated the rescue of modified Ad vectors that have non-native receptor tropism. These tropism-modified Ad vectors infect a broader range of cell types than the unmodified Ad, which could increase their effectiveness as a vaccine vector. Overall, the Lac-regulated system described here (i) is backwards compatible with Ad vector methods that employ bacterial-mediated homologous recombination, (ii) is adaptable for the engineering of tropism-modified Ad vectors, and (iii) does not require co-expression of regulatory genes from the vector or the addition of exogenous chemicals to induce or repress transgene expression. This system therefore could facilitate the development of Ad-based vaccine candidates that otherwise would not be feasible to generate.
Collapse
Affiliation(s)
- Chunxia Zhao
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, United States
| | | | | | | |
Collapse
|
2
|
Kim EJ, Yoo JY, Choi YH, Ahn KJ, Lee JD, Yun CO, Yun M. Imaging of viral thymidine kinase gene expression by replicating oncolytic adenovirus and prediction of therapeutic efficacy. Yonsei Med J 2008; 49:811-8. [PMID: 18972602 PMCID: PMC2615367 DOI: 10.3349/ymj.2008.49.5.811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE We have used a genetically attenuated adenoviral vector which expresses HSVtk to assess the possible additive role of suicidal gene therapy for enhanced oncolytic effect of the virus. Expression of TK was measured using a radiotracer-based molecular counting and imaging system. MATERIALS AND METHODS Replication-competent recombinant adenoviral vector (Ad-DeltaE1B19/55) was used in this study, whereas replication-incompetent adenovirus (Ad-DeltaE1A) was generated as a control. Both Ad-DeltaE1B19/55-TK and Ad-DeltaE1A-TK comprise the HSVtk gene inserted into the E3 region of the viruses. YCC-2 cells were infected with the viruses and incubated with 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (I-131 FIAU) to measure amount of radioactivity. The cytotoxicity of the viruses was determined, and gamma ray imaging of HSVtk gene was performed. MTT assay was also performed after GCV treatment. RESULTS On gamma counter-analyses, counts/ minute (cpm)/microg of protein showed MOIs dependency with DeltaE1B19/55-TK infection. On MTT assay, Ad-DeltaE1B19/55-TK led to more efficient cell killing than Ad-DeltaE1A-TK. On plate imaging by gamma camera, both Ad-DeltaE1B19/55-TK and Ad-DeltaE1A-TK infected cells showed increased I-131 FIAU uptake in a MOI dependent pattern, and with GCV treatment, cell viability of DeltaE1B19/55-TK infection was remarkably reduced compared to that of Ad-DeltaE1A-TK infection. CONCLUSION Replicating Ad-DeltaE1B19/55-TK showed more efficient TK expression even in the presence of higher-cancer cell killing effects compared to non-replicating Ad-DeltaE1A-TK. Therefore, GCV treatment still possessed an additive role to oncolytic effect of Ad-DeltaE1B19/55-TK. The expression of TK by oncolytic viruses could rapidly be screened using a radiotracer-based counting and imaging technique.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Division of Nuclear Medicine, Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Yoo
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Hwan Choi
- Division of Nuclear Medicine, Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Jae Ahn
- Division of Nuclear Medicine, Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Doo Lee
- Division of Nuclear Medicine, Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Chae-Ok Yun
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Division of Nuclear Medicine, Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Dyachok O, Idevall-Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008; 8:26-37. [PMID: 18590690 DOI: 10.1016/j.cmet.2008.06.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/11/2008] [Accepted: 06/13/2008] [Indexed: 01/28/2023]
Abstract
Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.
Collapse
Affiliation(s)
- Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gall JGD, Lizonova A, EttyReddy D, McVey D, Zuber M, Kovesdi I, Aughtman B, King CR, Brough DE. Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes. Mol Biotechnol 2007; 35:263-73. [PMID: 17652790 DOI: 10.1007/bf02686012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/26/2022]
Abstract
Expression of certain transgenes from an adenovirus vector can be deleterious to its own replication. This can result in the inhibition of virus rescue, reduced viral yields, or, in the worst case, make it impossible to construct a vector expressing the inhibiting transgene product. A gene regulation system based on the tet operon was used to allow the rescue and efficient growth of adenovectors that express transgenes to high levels. A key advantage to this system is that repression of transgene expression is mediated by the packaging cell line, thus, expression of regulatory products from the adenovector are not required. This provides a simple, broadly applicable system wherein transgene repression is constitutive during vector rescue and growth and there is no effect on adenovector-mediated expression of gene products in transduced cells. Several high-level expression vectors based on first- and second-generation adenovectors were rescued and produced to high titer that otherwise could not be grown. Yields of adenovectors expressing inhibitory transgene products were increased, and the overgrowth of cultures by adenovectors with nonfunctional expression cassettes was prevented. The gene regulation system is a significant advancement for the development of adenovirus vectors for vaccine and other gene transfer applications.
Collapse
Affiliation(s)
- Jason G D Gall
- GenVec, Inc. 65 West Watkins Mill Rd, Gaithersburg MD 20878, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee HJ, Lee YJ, Kwon HC, Bae S, Kim SH, Min JJ, Cho CK, Lee YS. Radioprotective effect of heat shock protein 25 on submandibular glands of rats. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1601-11. [PMID: 17071584 PMCID: PMC1780208 DOI: 10.2353/ajpath.2006.060327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Irradiation (IR) is a fundamental treatment modality for head and neck malignancies. However, a significant drawback of IR treatment is irreversible damage of salivary gland in the IR field. In the present study, we investigated whether heat shock protein (HSP) 25 could be used as a radioprotective molecule for radiation-induced salivary gland damage in rats. HSP25 as well as inducible HSP70 (HSP70i) that were delivered to the salivary gland via an adenoviral vector significantly ameliorated radiation-induced salivary fluid loss. Radiation-induced apoptosis, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage in acinar cells, granular convoluted cells, and intercalated ductal cells were also inhibited by HSP25 or HSP70i transfer. The alteration of salivary contents, including amylase, protein, Ca+, Cl-, and Na+, was also attenuated by HSP25 transfer. Histological analysis revealed almost no radiation-induced damage in salivary gland when HSP25 was transferred. Aquaporin 5 expression in salivary gland was inhibited by radiation; and HSP25 transfer to salivary gland prevented this alteration. The protective effect of HSP70i on radiation-induced salivary gland damage was less or delayed than that of HSP25. These results indicate that HSP25 is a good candidate molecule to protect salivary gland from the toxicity of IR.
Collapse
Affiliation(s)
- Hae-June Lee
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-Dong, Nowon-Ku, Seoul 139-706, Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ohrmalm C, Akusjärvi G. Cellular splicing and transcription regulatory protein p32 represses adenovirus major late transcription and causes hyperphosphorylation of RNA polymerase II. J Virol 2006; 80:5010-20. [PMID: 16641292 PMCID: PMC1472059 DOI: 10.1128/jvi.80.10.5010-5020.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/02/2006] [Indexed: 01/01/2023] Open
Abstract
The cellular protein p32 is a multifunctional protein, which has been shown to interact with a large number of cellular and viral proteins and to regulate several important activities like transcription and RNA splicing. We have previously shown that p32 regulates RNA splicing by binding and inhibiting the essential SR protein ASF/SF2. To determine whether p32 also functions as a regulator of splicing in virus-infected cells, we constructed a recombinant adenovirus expressing p32 under the transcriptional control of an inducible promoter. Much to our surprise the results showed that p32 overexpression effectively blocked mRNA and protein expression from the adenovirus major late transcription unit (MLTU). Interestingly, the p32-mediated inhibition of MLTU transcription was accompanied by an approximately 4.5-fold increase in Ser 5 phosphorylation and an approximately 2-fold increase in Ser 2 phosphorylation of the carboxy-terminal domain (CTD). Further, in p32-overexpressing cells the efficiency of RNA polymerase elongation was reduced approximately twofold, resulting in a decrease in the number of polymerase molecules that reached the end of the major late L1 transcription unit. We further show that p32 stimulates CTD phosphorylation in vitro. The inhibitory effect of p32 on MLTU transcription appears to require the CAAT box element in the major late promoter, suggesting that p32 may become tethered to the MLTU via an interaction with the CAAT box binding transcription factor.
Collapse
Affiliation(s)
- Christina Ohrmalm
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Husargatan 3, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
7
|
Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ. Production and formulation of adenovirus vectors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:193-260. [PMID: 16568893 DOI: 10.1007/10_008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adenovirus vectors have attracted considerable interest over the past decade, with ongoing clinical development programs for applications ranging from replacement therapy for protein deficiencies to cancer therapeutics to prophylactic vaccines. Consequently, considerable product, process, analytical, and formulation development has been undertaken to support these programs. For example, "gutless" vectors have been developed in order to improve gene transfer capacity and durability of expression; new cell lines have been developed to minimize recombination events; production conditions have been optimized to improve volumetric productivities; analytical techniques and scaleable purification processes have advanced towards the goal of purified adenovirus becoming a "well-characterized biological"; and liquid formulations have been developed which maintain virus infectivity at 2-8 degrees C for over 18 months. These and other advances in the production of adenovirus vectors are discussed in detail in this review. In addition, the needs for the next decade are highlighted.
Collapse
Affiliation(s)
- Nedim E Altaras
- Fermentation and Cell Culture, Merck Research Laboratories, West Point, Pennsylvannia 19486-0004, USA
| | | | | | | | | | | |
Collapse
|
8
|
Berenjian S, Akusjärvi G. Binary AdEasy vector systems designed for Tet-ON or Tet-OFF regulated control of transgene expression. Virus Res 2005; 115:16-23. [PMID: 16102868 DOI: 10.1016/j.virusres.2005.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 11/23/2022]
Abstract
Here, we describe the construction of a set of binary adenovirus vectors encoding for a tetracycline-regulatable expression cassette and the Tet-ON or the Tet-OFF transcriptional activator proteins from a single viral chromosome. The rabies virus glycoprotein was cloned into the E1 region and the tetracycline activator proteins were inserted in both orientation in place of the E3 region. To further restrict background transcription, we also introduced a Lac repressor protein based roadblock to transcription elongation. To make the system more versatile it has been engineered into the commonly used AdEasy system. We show that rabies virus glycoprotein expression is tightly regulated with an essentially undetectable basal expression and a several 100-fold induced expression. In our vector backbone, the Tet-ON and the Tet-OFF systems appears to work with essentially the same efficiency. Thus, the choice of principle can be based on whether a positive or negative regulation of reporter gene activity is desirable. Taken together our results suggest that the binary vectors described here should be a valuable addition to the repertoire of viral vectors used in basic and medical research.
Collapse
Affiliation(s)
- Saideh Berenjian
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
| | | |
Collapse
|
9
|
Carlson CA, Shayakhmetov DM, Lieber A. Restoration of a functional open reading frame by homologous recombination between two adenoviral vectors. Mol Ther 2002; 6:99-105. [PMID: 12095309 DOI: 10.1006/mthe.2002.0635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the ability of adenoviral (Ad) vectors to undergo homologous recombination. The lacZ gene was divided between two parental, first-generation vectors such that neither encoded a functional product but both shared 494 bp in common. The open reading frame could only be restored by homologous recombination. We observed beta-galactosidase activity only upon co-infection of both parental vectors and after the onset of viral DNA replication, creating a delay in expression of 24-36 hours in HeLa cells. At peak efficiency, this recombination vector system resulted in beta-galactosidase activity levels 100x above background and just 18x less than a conventional, first-generation vector in HeLa cells. After recombination, the resultant progeny vector genomes containing reconstituted expression cassettes were devoid of all viral genes and contained two packaging signals. These progeny genomes were efficiently packaged, could be separated from their parental vectors based on their lighter buoyant densities in CsCl gradients, and were subsequently used as functional gene transfer vectors. This novel recombination vector system should be useful for transferring large transgenes (because the carrying capacity of two Ad vectors can be exploited) or expressing any cytotoxic or Ad replication inhibitory protein (because the parental vectors exhibit no background expression).
Collapse
Affiliation(s)
- Cheryl A Carlson
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
10
|
Lindberg A, Kreivi JP. Splicing inhibition at the level of spliceosome assembly in the presence of herpes simplex virus protein ICP27. Virology 2002; 294:189-98. [PMID: 11886277 DOI: 10.1006/viro.2001.1301] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus (HSV) immediate-early protein ICP27 is a multifunctional regulator of viral and cellular gene expression. It has previously been shown that ICP27 directly or indirectly modulates several posttranscriptional processes, such as pre-mRNA splicing and polyadenylation. We show here that pre-mRNA splicing is inhibited in nuclear extracts prepared from cells in which ICP27 has been transiently expressed. Our results show that splicing inhibition in ICP27 extracts is manifested at early stages of the splicing process. Furthermore, our results suggest that an enzymatic activity in ICP27-containing extracts causes the splicing inhibition.
Collapse
Affiliation(s)
- Anette Lindberg
- Unit of Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
11
|
Molin M, Bouakaz L, Berenjian S, Akusjärvi G. Unscheduled expression of capsid protein IIIa results in defects in adenovirus major late mRNA and protein expression. Virus Res 2002; 83:197-206. [PMID: 11864752 DOI: 10.1016/s0168-1702(01)00443-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenovirus gene expression is to a large extent regulated at the level of alternative RNA splicing. For example, in the major late region 1 (L1) unit, a common 5' splice site can be joined to two alternative 3' splice sites, resulting in the formation of the so-called 52,55K (proximal 3' splice site) or the IIIa (distal 3' splice site) mRNAs. Whereas, the 52,55K mRNA is expressed both early and late during infection, the IIIa mRNA is strictly confined to the late phase of the infectious cycle. We have previously shown that IIIa mRNA splicing is subjected to a tight viral control of IIIa 3 splice site usage. In an attempt to determine why adenovirus uses elaborate mechanisms to confine IIIa mRNA production to the late phase of infection, we characterized the phenotype of a recombinant adenovirus expressing the IIIa protein from an inducible tetracycline regulated gene cassette. The results show that expression of the IIIa protein during the early phase of infection results in a significant reduction in late viral protein synthesis and a moderate block to viral DNA replication. Interestingly, unscheduled IIIa protein expression resulted in a perturbation of the accumulation of alternatively spliced L1 mRNAs. Thus, 52,55K mRNA accumulation was inhibited while no effects on endogenous IIIa mRNA expression was detected.
Collapse
Affiliation(s)
- Magnus Molin
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|