1
|
Grewe B, Vogt C, Horstkötter T, Tippler B, Xiao H, Müller B, Überla K, Wagner R, Asbach B, Bohne J. The HIV 5' Gag Region Displays a Specific Nucleotide Bias Regulating Viral Splicing and Infectivity. Viruses 2021; 13:v13060997. [PMID: 34071819 PMCID: PMC8227319 DOI: 10.3390/v13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing and the expression of intron-containing mRNAs is one hallmark of HIV gene expression. To facilitate the otherwise hampered nuclear export of non-fully processed mRNAs, HIV encodes the Rev protein, which recognizes its intronic response element and fuels the HIV RNAs into the CRM-1-dependent nuclear protein export pathway. Both alternative splicing and Rev-dependency are regulated by the primary HIV RNA sequence. Here, we show that these processes are extremely sensitive to sequence alterations in the 5’coding region of the HIV genomic RNA. Increasing the GC content by insertion of either GFP or silent mutations activates a cryptic splice donor site in gag, entirely deregulates the viral splicing pattern, and lowers infectivity. Interestingly, an adaptation of the inserted GFP sequence toward an HIV-like nucleotide bias reversed these phenotypes completely. Of note, the adaptation yielded completely different primary sequences although encoding the same amino acids. Thus, the phenotypes solely depend on the nucleotide composition of the two GFP versions. This is a strong indication of an HIV-specific mRNP code in the 5′ gag region wherein the primary RNA sequence bias creates motifs for RNA-binding proteins and controls the fate of the HIV-RNA in terms of viral gene expression and infectivity.
Collapse
Affiliation(s)
- Bastian Grewe
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
| | - Carolin Vogt
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
| | - Theresa Horstkötter
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
| | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Department of Biochemistry, Ruhr-University, 44780 Bochum, Germany
| | - Han Xiao
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Institute of Clinical and Molecular Virology, University Clinics Erlangen, 91054 Erlangen, Germany
| | - Bianca Müller
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Institute of Clinical and Molecular Virology, University Clinics Erlangen, 91054 Erlangen, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, 93053 Regensburg, Germany; (R.W.); (B.A.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University Regensburg, 93053 Regensburg, Germany; (R.W.); (B.A.)
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
- Correspondence: ; Tel.: +49-511-532-4308
| |
Collapse
|
2
|
Deng Y, Hammond JA, Pauszek R, Ozog S, Chai I, Rabuck-Gibbons J, Lamichhane R, Henderson SC, Millar DP, Torbett BE, Williamson JR. Discrimination between Functional and Non-functional Cellular Gag Complexes involved in HIV-1 Assembly. J Mol Biol 2021; 433:166842. [PMID: 33539875 DOI: 10.1016/j.jmb.2021.166842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.
Collapse
Affiliation(s)
- Yisong Deng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Raymond Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ilean Chai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jessica Rabuck-Gibbons
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States; The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
3
|
Characterization of Endogenous SERINC5 Protein as Anti-HIV-1 Factor. J Virol 2019; 93:JVI.01221-19. [PMID: 31597782 PMCID: PMC6880170 DOI: 10.1128/jvi.01221-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
SERINC5 is the long-searched-for antiviral factor that is counteracted by the HIV-1 accessory gene product Nef. Here, we engineered, via CRISPR/Cas9 technology, T-cell lines that express endogenous SERINC5 alleles tagged with a knocked-in HA epitope. This genetic modification enabled us to study basic properties of endogenous SERINC5 and to verify proposed mechanisms of HIV-1 Nef-mediated counteraction of SERINC5. Using this unique resource, we identified the susceptibility of endogenous SERINC5 protein to posttranslational modulation by type I IFNs and suggest uncoupling of Nef-mediated functional antagonism from SERINC5 exclusion from virions. When expressed in virus-producing cells, the cellular multipass transmembrane protein SERINC5 reduces the infectivity of HIV-1 particles and is counteracted by HIV-1 Nef. Due to the unavailability of an antibody of sufficient specificity and sensitivity, investigation of SERINC5 protein expression and subcellular localization has been limited to heterologously expressed SERINC5. We generated, via CRISPR/Cas9-assisted gene editing, Jurkat T-cell clones expressing endogenous SERINC5 bearing an extracellularly exposed hemagglutinin (HA) epitope [Jurkat SERINC5(iHA knock-in) T cells]. This modification enabled quantification of endogenous SERINC5 protein levels and demonstrated a predominant localization in lipid rafts. Interferon alpha (IFN-α) treatment enhanced cell surface levels of SERINC5 in a ruxolitinib-sensitive manner in the absence of modulation of mRNA and protein quantities. Parental and SERINC5(iHA knock-in) T cells shared the ability to produce infectious wild-type HIV-1 but not an HIV-1 Δnef mutant. SERINC5-imposed reduction of infectivity involved a modest reduction of virus fusogenicity. An association of endogenous SERINC5 protein with HIV-1 Δnef virions was consistently detectable as a 35-kDa species, as opposed to heterologous SERINC5, which presented as a 51-kDa species. Nef-mediated functional counteraction did not correlate with virion exclusion of SERINC5, arguing for the existence of additional counteractive mechanisms of Nef that act on virus-associated SERINC5. In HIV-1-infected cells, Nef triggered the internalization of SERINC5 in the absence of detectable changes of steady-state protein levels. These findings establish new properties of endogenous SERINC5 expression and subcellular localization, challenge existing concepts of HIV-1 Nef-mediated antagonism of SERINC5, and uncover an unprecedented role of IFN-α in modulating SERINC5 through accumulation at the cell surface. IMPORTANCE SERINC5 is the long-searched-for antiviral factor that is counteracted by the HIV-1 accessory gene product Nef. Here, we engineered, via CRISPR/Cas9 technology, T-cell lines that express endogenous SERINC5 alleles tagged with a knocked-in HA epitope. This genetic modification enabled us to study basic properties of endogenous SERINC5 and to verify proposed mechanisms of HIV-1 Nef-mediated counteraction of SERINC5. Using this unique resource, we identified the susceptibility of endogenous SERINC5 protein to posttranslational modulation by type I IFNs and suggest uncoupling of Nef-mediated functional antagonism from SERINC5 exclusion from virions.
Collapse
|
4
|
Hammond JA, Zhou L, Lamichhane R, Chu HY, Millar DP, Gerace L, Williamson JR. A Survey of DDX21 Activity During Rev/RRE Complex Formation. J Mol Biol 2018; 430:537-553. [PMID: 28705764 PMCID: PMC5762417 DOI: 10.1016/j.jmb.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Abstract
HIV-1 requires a specialized nuclear export pathway to transport unspliced and partially spliced viral transcripts to the cytoplasm. Central to this pathway is the viral protein Rev, which binds to the Rev response element in stem IIB located on unspliced viral transcripts and subsequently oligomerizes in a cooperative manner. Previous work identified a number of cellular DEAD-box helicases as in vivo binding partners of Rev, and siRNA experiments indicated a functional role for many in the HIV replication cycle. Two DEAD-box proteins, DDX1 and DDX3, had previously been shown to play a role in HIV pathogenesis. In this study, another protein identified in that screen, DDX21, is tested for protein and RNA binding and subsequent enzymatic activities in the context of the Rev/RRE pathway. We found that DDX21 can bind to the RRE with high affinity, and this binding stimulates ATPase activity with an enzymatic efficiency similar to DDX1. Furthermore, DDX21 is both an ATP-dependent and ATP-independent helicase, and both ATPase and ATP-dependent helicase activities are inhibited by Rev in a dose-dependent manner, although ATP-independent helicase activity is not. A conserved binding interaction between DDX protein's DEAD domain and Rev was identified, with Rev's nuclear diffusion inhibitory signal motif playing a significant role in binding. Finally, DDX21 was shown to enhance Rev binding to the RRE in a manner similar to that previously described for DDX1, although DDX3 does not. These data indicate that DDX1 and DDX21 have similar biochemical activities with regard to the Rev/RRE system, while DDX3 differs.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Zhou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui-Yi Chu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Elsner C, Bohne J. The retroviral vector family: something for everyone. Virus Genes 2017; 53:714-722. [PMID: 28762206 DOI: 10.1007/s11262-017-1489-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
After 30 years of retroviral vector research it became clear that the parental viruses can be both friend and foe. Especially human immunodeficiency virus sparked a global pandemic, but could be converted into a versatile tool for cell therapy. For all retroviral genera, the way from virus to vector was similar resulting in split-vector systems based on the separation of the genes needed for vector particle formation and transgene expression. The first gene therapy trials, although clinically effective, revealed the genotoxicity of retroviral vectors caused by insertional mutagenesis. This issue was solved using self-inactivating vectors carrying weaker cellular promoters. Further fine-tuning was able to generate inducible systems. The current toolbox also contains vectors for the generation of induced pluripotent stem cells or efficient RNA interference. More recently the application of CRISPR-Cas9-mediated gene editing led to the development of genome-wide small guide RNA libraries targeting all human genes and single lentiviral vectors for an easy delivery of Cas9.
Collapse
Affiliation(s)
- Carina Elsner
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression. Retrovirology 2017; 14:10. [PMID: 28166800 PMCID: PMC5294762 DOI: 10.1186/s12977-017-0337-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. Results Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3′ splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3′ splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. Conclusions The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0337-6) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Pocock GM, Zimdars LL, Yuan M, Eliceiri KW, Ahlquist P, Sherer NM. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. Mol Biol Cell 2017; 28:476-487. [PMID: 27903772 PMCID: PMC5341730 DOI: 10.1091/mbc.e16-08-0612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/metabolism
- Genes, env/physiology
- HIV-1
- Mason-Pfizer monkey virus
- Molecular Imaging/methods
- RNA Processing, Post-Transcriptional/physiology
- RNA, Messenger/metabolism
- RNA, Viral
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/physiology
- Regulatory Sequences, Ribonucleic Acid/genetics
- Regulatory Sequences, Ribonucleic Acid/physiology
- Single-Cell Analysis/methods
Collapse
Affiliation(s)
- Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Laraine L Zimdars
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin W Eliceiri
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
8
|
HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors. PLoS Pathog 2016; 12:e1005565. [PMID: 27070420 PMCID: PMC4829213 DOI: 10.1371/journal.ppat.1005565] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.
Collapse
|
9
|
ORF57 overcomes the detrimental sequence bias of Kaposi's sarcoma-associated herpesvirus lytic genes. J Virol 2015; 89:5097-109. [PMID: 25694606 DOI: 10.1128/jvi.03264-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which enhances the expression of intronless KSHV genes on multiple posttranscriptional levels. However, it remains elusive how ORF57 recognizes viral RNAs. Here, we demonstrate that ORF57 also increases the expression of the multiple intron-containing K15 gene. The nucleotide bias of the K15 cDNA revealed an unusual high AT content. Thus, we optimized the K15 cDNA by raising the frequency of GC nucleotides, yielding an ORF57-independent version. To further prove the importance of the sequence bias of ORF57-dependent RNAs, we grouped KSHV mRNAs according to their AT content and found a correlation between AT-richness and ORF57 dependency. More importantly, latent genes, which have to be expressed in the absence of ORF57, have a low AT content and are indeed ORF57 independent. The nucleotide composition of K15 resembles that of HIV gag, which cannot be expressed unless RNA export is facilitated by the HIV Rev protein. Interestingly, ORF57 can partially rescue HIV Gag expression. Thus, the KSHV target RNAs of ORF57 and HIV gag RNA may share certain motifs based on the nucleotide bias. A bioinformatic comparison between wild-type and sequence-optimized K15 revealed a higher density for hnRNP-binding motifs in the former. We speculate that binding of particular hnRNPs to KSHV lytic transcripts is the prerequisite for ORF57 to enhance their expression. IMPORTANCE The mostly intronless genes of KSHV are only expressed in the presence of the viral regulator protein ORF57, but how ORF57 recognizes viral RNAs remains elusive. We focused on the multiple intron-containing KSHV gene K15 and revealed that its expression is also increased by ORF57. Moreover, sequences in the K15 cDNA mediate this enhancement. The quest for a target sequence or a response element for ORF57 in the lytic genes was not successful. Instead, we found the nucleotide bias to be the critical determinant of ORF57 dependency. Based on the fact that ORF57 has only a weak affinity for nucleic acids, we speculate that a cellular RNA-binding protein provides the sequence preference for ORF57. This study provides evidence that herpesviral RNA regulator proteins use the sequence bias of lytic genes and the resulting composition of the viral mRNP to distinguish between viral and cellular mRNAs.
Collapse
|
10
|
Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J Virol 2014; 88:4069-82. [PMID: 24478440 DOI: 10.1128/jvi.03584-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Intron-containing mRNAs are subject to restricted nuclear export in higher eukaryotes. Retroviral replication requires the nucleocytoplasmic transport of both spliced and unspliced RNA transcripts, and RNA export mechanisms of gammaretroviruses are poorly characterized. Here, we report the involvement of the nuclear export receptor NXF1/TAP in the nuclear export of gammaretroviral RNA transcripts. We identified a conserved cis-acting element in the pol gene of gammaretroviruses, including murine leukemia virus (MLV) and xenotropic murine leukemia virus (XMRV), named the CAE (cytoplasmic accumulation element). The CAE enhanced the cytoplasmic accumulation of viral RNA transcripts and the expression of viral proteins without significantly affecting the stability, splicing, or translation efficiency of the transcripts. Insertion of the CAE sequence also facilitated Rev-independent HIV Gag expression. We found that the CAE sequence interacted with NXF1, whereas disruption of NXF1 ablated CAE function. Thus, the CAE sequence mediates the cytoplasmic accumulation of gammaretroviral transcripts in an NXF1-dependent manner. Disruption of NXF1 expression impaired cytoplasmic accumulations of both spliced and unspliced RNA transcripts of XMRV and MLV, resulting in their nuclear retention or degradation. Thus, our results demonstrate that gammaretroviruses use NXF1 for the cytoplasmic accumulation of both spliced and nonspliced viral RNA transcripts. IMPORTANCE Murine leukemia virus (MLV) has been studied as one of the classic models of retrovirology. Although unspliced host messenger RNAs are rarely exported from the nucleus, MLV actively exports unspliced viral RNAs to the cytoplasm. Despite extensive studies, how MLV achieves this difficult task has remained a mystery. Here, we have studied the RNA export mechanism of MLV and found that (i) the genome contains a sequence which supports the efficient nuclear export of viral RNAs, (ii) the cellular factor NXF1 is involved in the nuclear export of both spliced and unspliced viral RNAs, and, finally, (iii) depletion of NXF1 results in nuclear retention or degradation of viral RNAs. Our study provides a novel insight into MLV nuclear export.
Collapse
|
11
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Naji S, Ambrus G, Cimermančič P, Reyes JR, Johnson JR, Filbrandt R, Huber MD, Vesely P, Krogan NJ, Yates JR, Saphire AC, Gerace L. Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production. Mol Cell Proteomics 2011; 11:M111.015313. [PMID: 22174317 DOI: 10.1074/mcp.m111.015313] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins.
Collapse
Affiliation(s)
- Souad Naji
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bodem J, Schied T, Gabriel R, Rammling M, Rethwilm A. Foamy virus nuclear RNA export is distinct from that of other retroviruses. J Virol 2011; 85:2333-41. [PMID: 21159877 PMCID: PMC3067772 DOI: 10.1128/jvi.01518-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/07/2010] [Indexed: 01/09/2023] Open
Abstract
Most retroviruses express all of their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. Two pathways have been described that explain how retroviruses circumvent this nuclear export inhibition. One involves a constitutive transport element in the viral RNA that interacts with the cellular mRNA transporter proteins NXF1 and NXT1 to facilitate nuclear export. The other pathway relies on the recognition of a viral RNA element by a virus-encoded protein that interacts with the karyopherin CRM1. In this report, we analyze the protein factors required for the nuclear export of unspliced foamy virus (FV) mRNA. We show that this export is CRM1 dependent. In contrast to other complex retroviruses, FVs do not encode an export-mediating protein. Cross-linking experiments indicated that the cellular protein HuR binds to the FV RNA. Inhibition studies showed that both ANP32A and ANP32B, which are known to bridge HuR and CRM1, are essential for FV RNA export. By using this export pathway, FVs solve a central problem of viral replication.
Collapse
Affiliation(s)
- Jochen Bodem
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Tanja Schied
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Richard Gabriel
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Matthias Rammling
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| |
Collapse
|
14
|
Kimura T, Hashimoto I, Nishizawa M, Ito S, Yamada H. Novel cis-active structures in the coding region mediate CRM1-dependent nuclear export of IFN-α 1 mRNA. Med Mol Morphol 2010; 43:145-57. [PMID: 20857263 DOI: 10.1007/s00795-010-0492-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/13/2010] [Indexed: 12/11/2022]
Abstract
We recently reported the chromosome region maintenance 1 (CRM1)-dependent nuclear export of intron-less human interferon-α1 (IFN-α1) mRNA, which encodes a main effecter of host innate immunity. We show that the coding region of IFN-α1 mRNA forms novel secondary structures that are responsible for the CRM1-dependent export of the transcript. Deletion-mutagenesis, in vivo export assays, and computer analyses of the folding potentials of export-competent fragments revealed the presence of a domain, termed the conserved secondary structure (CSS), comprising two adjacent putative stable stem-loop structures (nt 208-452). Internal deletion-mutagenesis and constitutive export assays of each stem-loop structure demonstrated that subregions 308-322 and 352-434 act as a core element by conferring the export function on the CSS. Leptomycin B (LMB) inhibition of the CRM1 pathway decreased the export of core element RNA, implying that the principal site of CRM1 action for exporting IFN-α1 mRNA resides within the core element. An RNPS1 (RNA-binding protein S1, serine-rich domain) cDNA was isolated by yeast three-hybrid screening, using bait containing two CSS regions. We showed that RNPS1 might recognize IFN-α1 mRNP that includes CRM1. The data demonstrate that interaction between RNA structures in the coding region and CRM1 affects the nucleocytoplasmic translocation of IFN-α1 mRNA.
Collapse
Affiliation(s)
- Tominori Kimura
- Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | | | |
Collapse
|
15
|
Zychlinski D, Erkelenz S, Melhorn V, Baum C, Schaal H, Bohne J. Limited complementarity between U1 snRNA and a retroviral 5' splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res 2010; 37:7429-40. [PMID: 19854941 PMCID: PMC2794156 DOI: 10.1093/nar/gkp694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5′ splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem–loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem–loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5′ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5′ss sequence. The reduced 5′ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem–loop. The mechanism of 5′ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing.
Collapse
Affiliation(s)
- Daniela Zychlinski
- Institute for Virology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Analysis of bovine foamy virus btas mRNA transcripts during persistent infection. Virus Genes 2009; 40:84-93. [PMID: 19911263 DOI: 10.1007/s11262-009-0422-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/01/2009] [Indexed: 12/11/2022]
Abstract
Foamy virus (FV) is an unconventional retrovirus that possesses a complex genome and a special mechanism for gene expression regulation. The genome encodes transcriptional protein Tas which is found to regulate both the internal promoter (IP) and the long terminal repeat promoter (LTR). However, the detailed mechanism of Tas-mediated gene expression remains unknown. In this study, we provided the first evidence for the temporal production and utilization of four different bovine foamy virus (BFV) btas mRNAs during persistent infection. These four forms of btas mRNA transcripts initiated either at BFV LTR or IP and spliced or unspliced have a differential ability to activate BFV promoters. Furthermore, by developing an MS2 translational operator/coat protein combined system to track mRNA exportation from the nucleus and distribution throughout the cytoplasm, we observed that the IP spliced transcript could be exported into the cytoplasm more efficiently than unspliced transcripts. These findings provide evidence for the hypothesis that the functional interplay of both promoters contributes to the temporal pattern of BFV transcription and suggest that a post-transcriptional regulation exist in BFV replication.
Collapse
|
17
|
Müllner M, Salmons B, Günzburg WH, Indik S. Identification of the Rem-responsive element of mouse mammary tumor virus. Nucleic Acids Res 2008; 36:6284-94. [PMID: 18835854 PMCID: PMC2577329 DOI: 10.1093/nar/gkn608] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) has previously been shown to encode a functional homolog of the human immunodeficiency virus-1 (HIV-1) nuclear export protein Rev, termed Rem. Here, we show that deletion of the rem gene from a MMTV molecular clone interfered with the nucleo-cytoplasmic transport of genomic length viral mRNA and resulted in a loss of viral capsid (Gag) protein production. Interestingly, nuclear export of single-spliced env mRNA was only moderately affected, suggesting that this transcript is, at least to some extent, transported via a distinct, Rem-independent export mechanism. To identify and characterize a cis-acting RNA element required for Rem responsiveness (RmRE), extensive computational and functional analyses were performed. By these means a region of 490 nt corresponding to positions nt 8517–nt 9006 in the MMTV reference strain was identified as RmRE. Deletion of this fragment, which spans the env-U3 junction region, abolished Gag expression. Furthermore, insertion of this sequence into a heterologous HIV-1-based reporter construct restored, in the presence of Rem, HIV-1 Gag expression to levels determined for the Rev/RRE export system. These results clearly demonstrate that the identified region, whose geometry resembles that of other retroviral-responsive elements, is capable to functionally substitute, in the presence of Rem, for Rev/RRE and thus provide unequivocal evidence that MMTV is a complex retrovirus.
Collapse
Affiliation(s)
- Matthias Müllner
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
18
|
The RNA transport element RTE is essential for IAP LTR-retrotransposon mobility. Virology 2008; 377:88-99. [PMID: 18485438 DOI: 10.1016/j.virol.2008.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/17/2008] [Accepted: 04/03/2008] [Indexed: 11/21/2022]
Abstract
We previously identified an RNA transport element (RTE) present at a high copy number in the mouse genome. Here, we show that a related element, RTE-D, is part of a mobile LTR-retrotransposon, which belongs to a family of intracisternal A-particle related elements (IAP). We demonstrate that RTE-D is essential for the mobility of the retrotransposon and it can be substituted by other known RNA export signals. RTE-deficient IAP transcripts are retained in the nucleus, while the RTE-containing transcripts accumulate in the cytoplasm allowing Gag protein expression. RTE-D acts as a posttranscriptional control element in a heterologous reporter mRNA and is activated by the cellular RNA binding protein 15 (RBM15), as reported for the previously described RTE. We identified a complex family of RTE-containing IAPs in mouse and mapped the active RTE-D-containing IAPs to the Mmr10 group of LTR-retrotransposons. These data reveal that, despite a complex evolutionary history, retroelements and retroviruses share the dependency on posttranscriptional regulation.
Collapse
|
19
|
Peters K, Barg N, Gärtner K, Rethwilm A. Complex effects of foamy virus central purine-rich regions on viral replication. Virology 2008; 373:51-60. [PMID: 18078974 DOI: 10.1016/j.virol.2007.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/29/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Similar to the lentiviruses family of retroviruses, foamy viruses (FVs) contain purine-rich sequences located in the center of the genome. Their function on viral replication or vector transfer remains elusive, although dual initiation of plus-strand reverse transcription has been suggested. To elucidate the physical nature of the central region of the prototype FV (PFV) genome, we performed 3' and 5' RACE experiments. Our results revealed that the PFV genome contains a centrally located gap in the DNA plus-strand with no definite termination and start point and of variable length. We did not find evidence for a DNA flap region. The PFV isolate harbors four centrally located purine-rich elements (A-D). Only the D element is identical in sequence to the 3' poly purine tract (PPT). We mutated these elements while conserving or altering the overlapping pol reading frame and analyzed the mutants for transient replication in an infectious or for vector transfer in a replication-deficient background. In addition, we determined the protein composition of the respective viral particles. The A and B elements appeared to play a role in Pol protein encapsidation, the C element is likely involved in regulating gene expression, while mutation of the D element resulted in an insignificant reduction in transiently replicating virus and an approximately 50% reduction in vector titer. The reason for this deficit remains to be elucidated.
Collapse
Affiliation(s)
- Katrin Peters
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
20
|
Oh T, Bajwa A, Jia G, Park F. Lentiviral vector design using alternative RNA export elements. Retrovirology 2007; 4:38. [PMID: 17550606 PMCID: PMC1904242 DOI: 10.1186/1742-4690-4-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 06/05/2007] [Indexed: 11/13/2022] Open
Abstract
Background Lentiviral vectors have been designed with complex RNA export sequences in both the integrating and packaging plasmids in order to co-ordinate efficient vector production. Recent studies have attempted to replace the existing complex rev/RRE system with a more simplistic RNA export system from simple retroviruses to make these vectors in a rev-independent manner. Results Towards this end, lentiviral transfer plasmids were modified with various cis-acting DNA elements that co-ordinate RNA export during viral production to determine their ability to affect the efficiency of vector titer and transduction in different immortalized cell lines in vitro. It was found that multiple copies of the constitutive transport element (CTE) originating from different simian retroviruses, including simian retrovirus type 1 (SRV-1) and type-2 (SRV-2) and Mason-Pfizer (MPV) could be used to eliminate the requirement for the rev responsive element (RRE) in the transfer and packaging plasmids with titers >106 T.U./mL (n = 4–8 preparations). The addition of multiple copies of the murine intracisternal type A particle, the woodchuck post-regulatory element (WPRE), or single and dual copies of the simian CTE had minimal effect on viral titer. Immortalized cell lines from different species were found to be readily transduced by VSV-G pseudotyped lentiviral vectors containing the multiple copies of the CTE similar to the findings in HeLa cells, although the simian-derived CTE were found to have a lower infectivity into murine cell lines compared to the other species. Conclusion These studies demonstrated that the rev-responsive element (RRE) could be replaced with other constitutive transport elements to produce equivalent titers using lentivectors containing the RRE sequence in vitro, but that concatemerization of the CTE or the close proximity of RNA export sequences was needed to enhance vector production.
Collapse
Affiliation(s)
- Taekeun Oh
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, South Korea
| | - Ali Bajwa
- Department of Medicine, Gene Therapy Program, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA, USA
| | - Guangfu Jia
- Department of Medicine, Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Frank Park
- Department of Medicine, Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| |
Collapse
|
21
|
Baum C, Schambach A, Bohne J, Galla M. Retrovirus Vectors: Toward the Plentivirus? Mol Ther 2006; 13:1050-63. [PMID: 16632409 DOI: 10.1016/j.ymthe.2006.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 01/19/2023] Open
Abstract
Recombinant retroviral vectors based upon simple gammaretroviruses, complex lentiviruses, or potentially nonpathogenic spumaviruses represent relatively well characterized tools that are widely used for stable gene transfer. Different members of the Retroviridae family have developed distinct and potentially useful features related to their life cycle. These natural differences can be exploited for specialized applications in gene therapy and could conceivably be combined to create future retroviral hybrid vectors, ideally incorporating the following features: an efficient, noncytopathic packaging system with low likelihood of recombination; serum resistance; an ability to pseudotype with cell-specific envelopes; high-fidelity reverse transcription before cell entry; unrestricted cytoplasmic transport and nuclear import; an insulated expression cassette; specific chromosomal targeting; and physiologic or regulated levels of transgene expression. We envisage that, compared to contemporary vectors, a hybrid vector combining these properties would have increased therapeutic efficacy and an enhanced biosafety profile. Many of the above goals will require the inclusion of nonretroviral components into vector particles or transgenes.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
22
|
Smulevitch S, Bear J, Alicea C, Rosati M, Jalah R, Zolotukhin AS, von Gegerfelt A, Michalowski D, Moroni C, Pavlakis GN, Felber BK. RTE and CTE mRNA export elements synergistically increase expression of unstable, Rev-dependent HIV and SIV mRNAs. Retrovirology 2006; 3:6. [PMID: 16412225 PMCID: PMC1363727 DOI: 10.1186/1742-4690-3-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 01/13/2006] [Indexed: 11/29/2022] Open
Abstract
Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved eukaryotic mRNA export mechanism(s), namely the Constitutive Transport Element (CTE) and the RNA Transport Element (RTE). Although RTE and CTE are potent in nucleocytoplasmic mRNA transport and expression, neither element is as powerful as the Rev-RRE posttranscriptional control. Here, we found that whereas CTE and the up-regulatory mutant RTEm26 alone increase expression from a subgenomic gag and env clones, the combination of these elements led to a several hundred-fold, synergistic increase. The use of the RTEm26-CTE combination is a simple way to increase expression of poorly expressed retroviral genes to levels otherwise only achieved via more cumbersome RNA optimization. The potent RTEm26-CTE element could be useful in lentiviral gene therapy vectors, DNA-based vaccine vectors, and gene transfer studies of other poorly expressed genes.
Collapse
Affiliation(s)
- Sergey Smulevitch
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Margherita Rosati
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Andrei S Zolotukhin
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Agneta von Gegerfelt
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Daniel Michalowski
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Christoph Moroni
- Institut für Medizinische Mikrobiologie Universitaet Basel, Basel, Switzerland
| | - George N Pavlakis
- Human Retrovirus Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| |
Collapse
|
23
|
Hlavaty J, Schittmayer M, Stracke A, Jandl G, Knapp E, Felber BK, Salmons B, Günzburg WH, Renner M. Effect of posttranscriptional regulatory elements on transgene expression and virus production in the context of retrovirus vectors. Virology 2005; 341:1-11. [PMID: 16054668 DOI: 10.1016/j.virol.2005.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/27/2005] [Accepted: 06/22/2005] [Indexed: 11/20/2022]
Abstract
Ineffective transgene expression in a sufficient amount of target cells is still a limitation in retroviral vector mediated gene therapy. Thus, we systematically evaluated four genetic modulators, (i) the woodchuck posttranscriptional regulatory element (WPRE), (ii) the mouse RNA transport element (RTE), (iii) the constitutive transport element (CTE) of the simian retrovirus type 1 (SRV-1), and (iv) the 5' untranslated region of the human heat shock protein 70 (Hsp70 5'UTR), all of them involved in the posttranscriptional control of mRNA nucleo/cytoplasmatic transport, RNA stability, and translation efficiency, in an MLV-based retrovirus vector context. Insertion of the WPRE into the retrovirus vector resulted in enhancement of transgene expression (EGFP) both in transfected virus producing cells as well as in infected recipient cells irrespective of the location in the vector. The best effect was observed with two copies of the WPRE, 3' of the transgene and in the 3' untranslated region of the vector backbone. However, oligomerization of this element does not further increase transgene expression. Presence of the WPRE resulted also in an increase in virus production. Introduction of the CTE and/or RTE in the retroviral vector did not alter transgene expression and infectious particle production. Positive effects were observed only in vectors harboring the CTE and/or RTE in combination with the WPRE. The activity of the Hsp70 5'UTR as a translational enhancer was found to be negligible in the context of the retroviral vector. However, interference of the Hsp70 5'UTR strong secondary structure with the packaging sequence of the viral RNA was experimentally excluded as being the cause of this. These data suggest that only the WPRE is a suitable element for the improvement of transgene expression and oncoretroviral vector production.
Collapse
Affiliation(s)
- Juraj Hlavaty
- Research Institute of Virology and Biomedicine, University of Veterinary Medicine, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Peters K, Wiktorowicz T, Heinkelein M, Rethwilm A. RNA and protein requirements for incorporation of the Pol protein into foamy virus particles. J Virol 2005; 79:7005-13. [PMID: 15890940 PMCID: PMC1112116 DOI: 10.1128/jvi.79.11.7005-7013.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5' long terminal repeat and one at the 3' end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins.
Collapse
Affiliation(s)
- Katrin Peters
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
25
|
Mustafa F, Phillip PS, Jayanth P, Ghazawi A, Lew KA, Schmidt RD, Rizvi TA. Close proximity of the MPMV CTE to the polyadenylation sequences is important for efficient function in the subgenomic context. Virus Res 2005; 105:209-18. [PMID: 15351494 DOI: 10.1016/j.virusres.2004.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) is a short cis-acting sequence element critical for virus gene expression. Analogous to the Rev/Rev Responsive Element (RRE) of primate lentiviruses, CTE allows the nucleocytoplasmic transport of unspliced viral mRNAs. In fact, CTE can functionally replace Rev/RRE in the genomic context and has been used successfully in the expression of viral and cellular genes from expression vectors as well. However, unlike RRE, CTE accomplishes this by interacting with cellular factors, making CTE function independent of co-expressed trans factors. Thus, CTE has proven to be a valuable tool in the expression of heterologous genes. Our previous studies have shown that close proximity of CTE to the polyadenylation sequences is important for CTE function in the genomic context. However, it is controversial whether CTE needs to be located spatially close to the polyadenylation sequences in the subgenomic context. Since CTE is being frequently used in expression vectors, we investigated the position dependency of CTE in the heterologous, subgenomic background using both genetic and structural analyses. Our results reveal that similar to the genomic situation, close proximity of CTE to the polyadenylation sequences is important for its function in the heterologous subgenomic context.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Base Sequence
- Gene Expression Regulation, Viral
- Genes, env
- Genes, rev
- Mason-Pfizer monkey virus/genetics
- Mason-Pfizer monkey virus/physiology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Ribonucleic Acid
Collapse
Affiliation(s)
- Farah Mustafa
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, The United Arab Emirates University, Al Ain, UAE
| | | | | | | | | | | | | |
Collapse
|
26
|
Bohne J, Wodrich H, Kräusslich HG. Splicing of human immunodeficiency virus RNA is position-dependent suggesting sequential removal of introns from the 5' end. Nucleic Acids Res 2005; 33:825-37. [PMID: 15701754 PMCID: PMC549389 DOI: 10.1093/nar/gki185] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription of the HIV-1 genome yields a single primary transcript, which is alternatively spliced to >30 mRNAs. Productive infection depends on inefficient and regulated splicing and appears to proceed in a tight 5' to 3' order. To analyse whether sequential splicing is mediated by the quality of splice sites or by the position of an intron, we inserted the efficient beta-globin intron (BGI) into the 3' region or 5'UTR of a subgenomic expression vector or an infectious proviral plasmid. RNA analysis revealed splicing of the 3' BGI only if all upstream introns were removed, while splicing of the same intron in the 5'UTR was efficient and independent of further splicing. Furthermore, mutation of the upstream splice signal in the subgenomic vector did not eliminate the inhibition of 3' splicing, although the BGI sequence was the only intron in this case. These results suggest that downstream splicing of HIV-1 RNAs is completely dependent on prior splicing of all upstream intron(s). This hypothesis was supported by the mutation of the major 5' splice site in the HIV-1 genome, which completely abolished all splicing. It appears likely that the tight order of splicing is important for HIV-1 replication, which requires the stable production of intron containing RNAs, while splicing of 3' introns on incompletely spliced RNAs would be likely to render them subject to nonsense-mediated decay.
Collapse
Affiliation(s)
- Jens Bohne
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- Department of Hematology and Oncology, Hannover Medical SchoolD-30625 Hannover, Germany
| | - Harald Wodrich
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- Institute de Généthique Moléculaire de Montepellier CNRS UMR 5535F-34293 Montepellier, France
| | - Hans-Georg Kräusslich
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- To whom correspondence should be addressed at Abteilung Virologie, Universitätsklinikum Heidelberg Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany. Tel: +49 6221 56 5001; Fax: +49 6221 56 5003;
| |
Collapse
|
27
|
Kraunus J, Schaumann DHS, Meyer J, Modlich U, Fehse B, Brandenburg G, von Laer D, Klump H, Schambach A, Bohne J, Baum C. Self-inactivating retroviral vectors with improved RNA processing. Gene Ther 2005; 11:1568-78. [PMID: 15372067 DOI: 10.1038/sj.gt.3302309] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three RNA features have been identified that elevate retroviral transgene expression: an intron in the 5' untranslated region (5'UTR), the absence of aberrant translational start codons and the presence of the post-transcriptional regulatory element (PRE) of the woodchuck hepatitis virus in the 3'UTR. To include such elements into self-inactivating (SIN) vectors with potentially improved safety, we excised the strong retroviral promoter from the U3 region of the 3' long terminal repeat (LTR) and inserted it either downstream or upstream of the retroviral RNA packaging signal (Psi). The latter concept is new and allows the use of an intron in the 5'UTR, taking advantage of retroviral splice sites surrounding Psi. Three LTR and four SIN vectors were compared to address the impact of RNA elements on titer, splice regulation and transgene expression. Although titers of SIN vectors were about 20-fold lower than those of their LTR counterparts, inclusion of the PRE allowed production of more than 10(6) infectious units per ml without further vector optimizations. In comparison with state-of-the-art LTR vectors, the intron-containing SIN vectors showed greatly improved splicing. With regard to transgene expression, the intron-containing SIN vectors largely matched or even exceeded the LTR counterparts in all cell types investigated (embryonic carcinoma cells, fibroblasts, primary T cells and hematopoietic progenitor cells).
Collapse
Affiliation(s)
- J Kraunus
- Department of Cell & Virus Genetics, Heinrich-Pette-Institute, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Kräusslich HG, Lichter P. Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 2005; 302:180-93. [PMID: 15561100 DOI: 10.1016/j.yexcr.2004.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/30/2004] [Indexed: 12/15/2022]
Abstract
RNA polymerase II transcripts are confined to nuclear compartments. A detailed analysis of the nuclear topology of RNA from individual genes was performed for transcripts from the marker gene coding for chloramphenicol acetyltransferase, expressed at a high level from the HTLV-1 LTR promoter. The construct was transfected into A293 cells where the RNA was organized as an extensive reticular network. We also studied the RNA distribution from combinations of neighboring HIV and bacterial resistance genes that co-integrated within the genome of COS-7 cells-revealing spherical or track-like accumulations of RNA that were extensively branched. There were many nuclei with distinct but overlapping RNA accumulations. Since the coding genes localized at the overlapping points, the RNAs are synthesized at a common region and diverge. The correlation between the frequency of the separation of the transcripts and the physical distance of the respective genes suggests a subcompartmentalization in the microenvironment of genes on the basis of geometric parameters. Thus, the more distant the genes are on the same chromosome, the more likely they are confined to separated subcompartments of an extensive reticular system. Co-delineation of the RNA transcripts with Cajal bodies and chromosome territories indicated the organization of nuclear RNA transcripts in a reticular interchromosome domain compartment.
Collapse
Affiliation(s)
- Joanna M Bridger
- Abteilung Molekulare Genetik, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bohne J, Kräusslich HG. Mutation of the major 5' splice site renders a CMV-driven HIV-1 proviral clone Tat-dependent: connections between transcription and splicing. FEBS Lett 2004; 563:113-8. [PMID: 15063733 DOI: 10.1016/s0014-5793(04)00277-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/06/2004] [Accepted: 03/08/2004] [Indexed: 01/28/2023]
Abstract
Efficient transcription from the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR) promoter is dependent on the viral transactivator Tat. To generate a Tat-independent proviral plasmid, we replaced the promoter in the HIV-1 LTR with the immediate early promoter of cytomegalovirus. Transfection of this plasmid yielded Tat-independent production of infectious HIV-1. Tat-independent expression was lost, however, when the major 5' splice site in the HIV-1 genome was mutated and no HIV-1-specific RNA or protein was detected. This defect was restored when a Tat expression plasmid was cotransfected. Our results support recent reports indicating an influence of the recognition of splice sites on efficient transcriptional elongation.
Collapse
Affiliation(s)
- Jens Bohne
- Department of Virology, Universität Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Muthumani K, Zhang D, Dayes NS, Hwang DS, Calarota SA, Choo AY, Boyer JD, Weiner DB. Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo. Virology 2003; 314:134-46. [PMID: 14517067 DOI: 10.1016/s0042-6822(03)00459-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HIV-1 sequences are highly diverse due to the inaccuracy of the viral reverse transcriptase. This diversity has been studied and used to categorize HIV isolates into subtypes or clades, which are geographically distinct. To develop effective vaccines against HIV-1, immunogens representing different subtypes may be important for induction of cross-protective immunity, but little data exist describing and comparing the immunogenicity induced by different subtype-based vaccines. This issue is further complicated by poor expression of HIV structural antigens due to rev dependence. One costly approach is to codon optimize each subtype construct to be examined. Interestingly, cis-acting transcriptional elements (CTE) can also by pass rev restriction by a rev independent export pathway. We reasoned that rev+CTE constructs might have advantages for such expression studies. A subtype A envelope sequence from a viral isolate from east Africa was cloned into a eukaryotic expression vector under the control of the CMV-IE promoter. The utility of inclusion of the Mason-Pfizer monkey virus (MPV)-CTE with/without rev for driving envelope expression and immunogenicity was examined. Expression of envelope (gp120) was confirmed by immunoblot analysis and by pseudotype virus infectivity assays. The presence of rev and the CTE together increased envelope expression and viral infection. Furthermore the CTE+rev construct was significantly more immunogenic then CTE alone vector. Isotype analysis and cytokine profiles showed strong Th1 response in plasmid-immunized mice, which also demonstrated the superior nature of the rev+CTE construct. These responses were of similar or greater magnitude to a codon-optimized construct. The resulting cellular immune responses were highly cross-reactive with a HIV-1 envelope subtype B antigen. This study suggests a simple strategy for improving the expression and immunogenicity of HIV subtype-specific envelope antigens as plasmid or vector-borne immunogens.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
An overview of the pattern and mechanisms of spuma or foamy virus (FV) gene expression is presented. FVs are complex retroviruses with respect to their genetic outfit and the elements used to control and regulate expression of the viral genome. The increased insight into transcriptional and posttranscriptional mechanisms has revealed that the FVs are distinct, unconventional retroviruses clearly apart from the orthoretroviruses. Although less characterized than the orthoretroviruses, FVs have several unique features that are important for construction and assembly of FV-based vectors for targeted gene delivery and vaccination purposes. Some of these distinguishing features are directly related to the FV-specific mechanisms of gene expression and include (1) the presence of an internal, functional active second transcription unit for expression of the nonstructural genes, (2) the utilization of a subgenomic, spliced transcript for Pol protein expression, and (3) distinct but not yet understood mechanisms for the nuclear exit of defined transcripts and thus an additional level of posttranscriptional control of gene expression. Finally, the interactions of the viral transactivator not only with both viral promoters but also with regulatory elements controlling the expression of defined cellular genes are an important issue with respect to vector development and the apparent apathogenicity of FVs in their natural hosts.
Collapse
Affiliation(s)
- M Löchelt
- Abteilung Retrovirale Genexpression, Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany.
| |
Collapse
|
32
|
Heinkelein M, Dressler M, Jármy G, Rammling M, Imrich H, Thurow J, Lindemann D, Rethwilm A. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76:3774-83. [PMID: 11907217 PMCID: PMC136074 DOI: 10.1128/jvi.76.8.3774-3783.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy virus (FV) vectors that have minimal cis-acting sequences and are devoid of residual viral gene expression were constructed and analyzed by using a packaging system based on transient cotransfection of vector and different packaging plasmids. Previous studies indicated (i) that FV gag gene expression requires the presence of the R region of the long terminal repeat and (ii) that RNA from packaging constructs is efficiently incorporated into vector particles. Mutants with changes in major 5' splice donor (SD) site located in the R region identified this sequence element as responsible for regulating gag gene expression by an unidentified mechanism. Replacement of the FV 5' SD with heterologous splice sites enabled expression of the gag and pol genes. The incorporation of nonvector RNA into vector particles could be reduced to barely detectable levels with constructs in which the human immunodeficiency virus 5' SD or an unrelated intron sequence was substituted for the FV 5' untranslated region and in which gag expression and pol expression were separated on two different plasmids. By this strategy, efficient vector transfer was achieved with constructs that have minimal genetic overlap.
Collapse
Affiliation(s)
- Martin Heinkelein
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|