1
|
Fan M, Chen M, Gao Y, Jiang H, Li Y, Zhu G, Chen S, Xu Y, Chen X. Construction of a novel gene signature linked to ferroptosis in pediatric sepsis. Front Cell Dev Biol 2025; 13:1488904. [PMID: 40070882 PMCID: PMC11893615 DOI: 10.3389/fcell.2025.1488904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Pediatric sepsis is a complex and life-threatening condition characterized by organ failure due to an uncontrolled immune response to infection. Recent studies suggest that ferroptosis, a newly identified form of programmed cell death, may play a role in sepsis progression. However, the specific mechanisms of ferroptosis in pediatric sepsis remain unclear. Methods In this study, we analyzed microarray datasets from pediatric sepsis and healthy blood samples to identify ferroptosis-associated genes. A protein-protein interaction (PPI) network analysis and histological validation were performed to identify key genes. Additionally, immune infiltration analysis was conducted to explore the correlation between immune cells, immune checkpoint-related genes, and key genes. A competing endogenous RNA (ceRNA) network was constructed to investigate potential regulatory mechanisms involving long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and key ferroptosis-related genes. Results We identified 74 genes associated with ferroptosis in pediatric sepsis. Among them, five key genes (MAPK3, MAPK8, PPARG, PTEN, and STAT3) were confirmed through PPI network analysis and histological validation. Immune infiltration analysis revealed significant interactions between immune cells and key genes. The ceRNA network provided insights into the regulatory relationships between lncRNAs, miRNAs, and ferroptosis-related genes. Discussion These findings enhance our understanding of the role of ferroptosis in pediatric sepsis and highlight potential therapeutic targets for future research and clinical interventions.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meiting Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongqi Gao
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huilin Jiang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanling Li
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongxu Zhu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengkuan Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Guo L, Li P, Wang Y, Wang J, Lei J, Zhao J, Wu X, He W, Jia J, Miao J, Wang D, Cui H. YIQIFUMAI INJECTION AMELIORATED SEPSIS-INDUCED CARDIOMYOPATHY BY INHIBITION OF FERROPTOSIS VIA XCT/GPX4 AXIS. Shock 2024; 61:638-645. [PMID: 37983962 DOI: 10.1097/shk.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sepsis-induced cardiomyopathy ( SIC ) is a distinct form of myocardial injury that disrupts tissue perfusion and stands as the significant cause of mortality among sepsis patients. Currently, effective preventive or treatment strategies for SIC are lacking. YiQiFuMai injection (YQFM), composed of Panax ginseng C.A. Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., is widely used in China to treat cardiovascular diseases, such as coronary heart disease, heart failure, and SIC . Research has shown that YQFM can improve cardiac function and alleviate heart failure through multiple pathways. Nevertheless, the mechanisms through which YQFM exerts its effects on SIC remain to be fully elucidated. In this study, we firstly investigated the therapeutic effects of YQFM on a SIC rat model and explored its effects on myocardial ferroptosis in vivo. Then, LPS-induced myocardial cell death model was used to evaluate the effects of YQFM on ferroptosis and xCT/GPX4 axis in vitro . Furthermore, using GPX4 inhibitors, we aimed to verify whether YQFM improved cardiomyocyte ferroptosis through the xCT/GPX4 axis. The results showed that YQFM was effective in alleviating myocardial injury in septic model rats. Besides, the concentrations of iron and the levels of lipid peroxidation-related factors (ROS, MDA, and 4-HNE) were significantly decreased and the expression of xCT/GPX4 axis was upregulated in SIC rats after YQFM treatment. In vitro studies also showed that YQFM alleviated iron overload and lipid peroxidation and activated xCT/GPX4 axis in LPS-induced myocardial cell death model. Moreover, GPX4 inhibitor could abolish the effects above. In summary, the study highlights the regulatory effect of YQFM in mitigating myocardial injury. It probably achieves this ameliorative effect by enhancing xCT/GPX4 axis and further reducing ferroptosis.
Collapse
Affiliation(s)
- Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Jie Zhao
- Tianjin Second People's Hospital, Tianjin, China
| | - Xiliang Wu
- Tianjin Second People's Hospital, Tianjin, China
| | - Wenju He
- First Central Hospital Affiliated to Nankai University; Tianjin First Central Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Dongqiang Wang
- First Central Hospital Affiliated to Nankai University; Tianjin First Central Hospital, Tianjin, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma X, Aiyisake A, Cheng Q. Resveratrol Attenuates Sepsis-Induced Cardiomyopathy in Rats through Anti-Ferroptosis via the Sirt1/Nrf2 Pathway. J INVEST SURG 2023; 36:2157521. [PMID: 36576230 DOI: 10.1080/08941939.2022.2157521] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Sepsis-induced cardiomyopathy (SIC) is a severe myocardial dysfunction secondary to septicemia. It is a major concern owing to the high mortality and morbidity, which are greatly influenced by ferroptosis. Resveratrol (RSV) is a naturally existing agonist of the silent information regulator 1 (Sirt1). It has cardioprotective effects against sepsis-induced myocardial injury, However, the detailed mechanism is unknown.Methods: In this study, cecal ligation and puncture (CLP)-induced septic rats were employed to assess the changes in ferroptosis with RSV administration. According to the different treatments the rats were divided into the following groups: (1) the Sham, (2) CLP, (3) CLP + RSV at various doses (10, 30, and 50 mg/kg), and (4) CLP + Fer-1(a ferroptotic inhibitor) groups. After 24 h, the structure and function of the cardiac system in rats were evaluated, and mitochondrial morphology, ferroptosis-related biomarkers, and the levels of Sirt1/Nrf2 were assessed.Results: The rats that underwent CLP had suffered cardiac dysfunction, accompanied with myocardial damage, impaired mitochondria, elevated lipid peroxidation, and reduced Sirt1/Nrf2 expression in the myocardium. High-dose RSV successfully improved heart function, reversing the abnormalities in a dose-dependent manner. We then used EX527, a selective Sirt1 inhibitor, to further identify the intermediate signaling targets of RSV that regulate ferroptosis. EX527 diminished the curative effects of high-doses RSV.Conclusions: Summarily, our findings suggest a novel mechanism of RSV in reducing SIC: ferroptosis inhibition via upregulation of Sirt1/Nrf2 signaling pathways. This may be an effective therapeutic approach against organ failure in sepsis, particularly SIC.
Collapse
Affiliation(s)
- Youcheng Zeng
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China
| | - Guodong Cao
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China
| | - Liang Lin
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China
| | - Yixin Zhang
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China
| | - Xiqing Luo
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China
| | - Xiaoyu Ma
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China
| | - Akelibieke Aiyisake
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Qinghong Cheng
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, China.,The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021; 12:653601. [PMID: 34177611 PMCID: PMC8220204 DOI: 10.3389/fphys.2021.653601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims: We examined the change in endogenous hydrogen sulfide (H2S) production and its role in sepsis-induced myocardial dysfunction (SIMD). Results: Significant elevations in plasma cardiac troponin I (cTnI), creatine kinase (CK), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were noted in SIMD patients, whereas left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and plasma H2S were significantly decreased relative to those in the controls. Plasma H2S was linearly related to LVEF and LVFS. Subsequently, an SIMD model was developed in mice by injecting lipopolysaccharide (LPS), and NaHS, an H2S donor, was used to elucidate the pathophysiological role of H2S. The mice showed decreased ventricular function and increased levels of TNF-α, IL-1β, cTnI, and CK after LPS injections. Toll-like receptor (TLR) 4 protein and endoplasmic reticulum stress (ERS) proteins were over expressed in the SIMD mice. All of the parameters above showed more noticeable variations in cystathionine γ-lyase knockout mice relative to those in wild type mice. The administration of NaHS could improve ventricular function and attenuate inflammation and ERS in the heart. Conclusion: Overall, these findings indicated that endogenous H2S deficiency contributed to SIMD and exogenous H2S ameliorated sepsis-induced myocardial dysfunction by suppressing inflammation and ERS via inhibition of the TLR4 pathway.
Collapse
Affiliation(s)
- Yu-Hong Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zhen-Jie Hu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Yang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
5
|
Zhao Z, Cai TZ, Lu Y, Liu WJ, Cheng ML, Ji YQ. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression. BIOCHEMISTRY (MOSCOW) 2016; 80:455-62. [PMID: 25869363 DOI: 10.1134/s0006297915040094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, 710002, China.
| | | | | | | | | | | |
Collapse
|
6
|
Bernard Q, Gallo RL, Jaulhac B, Nakatsuji T, Luft B, Yang X, Boulanger N. Ixodes tick saliva suppresses the keratinocyte cytokine response to TLR2/TLR3 ligands during early exposure to Lyme borreliosis. Exp Dermatol 2015; 25:26-31. [PMID: 26307945 DOI: 10.1111/exd.12853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Ixodes hard tick induces skin injury by its sophisticated biting process. Its saliva plays a key role to enable an efficient blood meal that lasts for several days. We hypothesized that this feeding process may also be exploited by pathogens to facilitate their transmission, especially in the context of arthropod-borne diseases. To test this, we used Lyme borreliosis as a model. This bacterial infection is caused by Borrelia burgdorferi sensu lato transmitted by Ixodes. We co-incubated Borrelia with human keratinocytes in the presence of poly (I: C), a dsRNA TLR3 agonist generated by skin injury. This induced a strong cytokine response from human primary keratinocytes that was much greater than that induced by Borrelia alone. OspC, a TLR2/1 agonist and a major surface lipoprotein of Borrelia also amplified the process. Interestingly, tick saliva inhibited cytokine responses by keratinocytes to these TLR agonists. We propose that Borrelia uses the immunoprivileged site produced by tick saliva to facilitate its transmission.
Collapse
Affiliation(s)
- Quentin Bernard
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benoît Jaulhac
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benjamin Luft
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Xiahoua Yang
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Nathalie Boulanger
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
7
|
Gonipeta B, Para R, He Y, Srkalovic I, Ortiz T, Kim E, Parvataneni S, Gangur V. Cardiac mMCP-4+ mast cell expansion and elevation of IL-6, and CCR1/3 and CXCR2 signaling chemokines in an adjuvant-free mouse model of tree nut allergy. Immunobiology 2014; 220:663-72. [PMID: 25499102 DOI: 10.1016/j.imbio.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nut allergy is a growing and potentially fatal public health problem. We have previously reported a novel mouse model of near-fatal hazelnut (HN) allergy that involves transdermal sensitization followed by oral elicitation of allergic reactions. Here we studied the cardiac mast cell and cardiac tissue responses during oral nut induced allergic reaction in this mouse model. METHODS Groups of mice were sensitized with HN and specific and total IgE were measured by ELISA. Oral allergic reaction was quantified by rectal thermometry and plasma mouse mast cell protease (mMCP)-1 by ELISA. Cardiovascular functions were determined by a non-invasive tail cuff method. Mucosal mast cells (MMC) and intestinal connective tissue MC (CTMC) were studied by immunohistochemistry (IHC) for mMCP-1 and mMCP-4 protein expression respectively. Cardiac MC were studied by toluidine blue (TB) as well as by the above IHC methods. Cytokines and chemokines in the tissues were quantified by a multiplex protein array method. RESULTS Oral allergen challenge (OAC) of transdermal sensitized mice results in hypothermia, hypotension, tachycardia and rapid elevation of circulating mMCP-1. The IHC analysis of small intestine found significant expansion of mMCP-1+ MMCs and mMCP-4+ CTMCs. The TB analysis of cardiac tissues showed degranulation of majority of cardiac MCs. The IHC analysis of cardiac tissues showed very little mMCP-1 expression, but marked mMCP-4 expression. Furthermore, repeated OAC resulted in significant expansion of mMCP-4+ cardiac MCs in both the pericardium and the myocardium. Protein array analysis revealed significant elevation of cardiac IL-6 and CCR1/3 and CXCR2 signaling chemokines upon oral elicitation compared to sensitization alone. CONCLUSION These results demonstrate that: (i) besides the intestine, cardiac mast cells and the cardiac tissue respond during oral nut induced allergic reaction; and (ii) repeated oral elicitation of reaction is associated with cardiac mMCP-4+ mast cell expansion and elevation of cardiac IL-6, and CCR1/3 and CXCR2 signaling chemokines.
Collapse
Affiliation(s)
- Babu Gonipeta
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Radhakrishna Para
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Yingli He
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Ines Srkalovic
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Tina Ortiz
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Eunjung Kim
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America; Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju, South Korea
| | - Sitaram Parvataneni
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America.
| |
Collapse
|
8
|
Machino-Ohtsuka T, Tajiri K, Kimura T, Sakai S, Sato A, Yoshida T, Hiroe M, Yasutomi Y, Aonuma K, Imanaka-Yoshida K. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J Am Heart Assoc 2014; 3:e001052. [PMID: 25376187 PMCID: PMC4338691 DOI: 10.1161/jaha.114.001052] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tenascin‐C (TN‐C), an extracellular matrix glycoprotein, appears at several important steps of cardiac development in the embryo, but is sparse in the normal adult heart. TN‐C re‐expresses under pathological conditions including myocarditis, and is closely associated with tissue injury and inflammation in both experimental and clinical settings. However, the pathophysiological role of TN‐C in the development of myocarditis is not clear. We examined how TN‐C affects the initiation of experimental autoimmune myocarditis, immunologically. Methods and Results A model of experimental autoimmune myocarditis was established in BALB/c mice by immunization with murine α‐myosin heavy chains. We found that TN‐C knockout mice were protected from severe myocarditis compared to wild‐type mice. TN‐C induced synthesis of proinflammatory cytokines, including interleukin (IL)‐6, in dendritic cells via activation of a Toll‐like receptor 4, which led to T‐helper (Th)17 cell differentiation and exacerbated the myocardial inflammation. In the transfer experiment, dendritic cells loaded with cardiac myosin peptide acquired the functional capacity to induce myocarditis when stimulated with TN‐C; however, TN‐C‐stimulated dendritic cells generated from Toll‐like receptor 4 knockout mice did not induce myocarditis in recipients. Conclusions Our results demonstrated that TN‐C aggravates autoimmune myocarditis by driving the dendritic cell activation and Th17 differentiation via Toll‐like receptor 4. The blockade of Toll‐like receptor 4‐mediated signaling to inhibit the proinflammatory effects of TN‐C could be a promising therapeutic strategy against autoimmune myocarditis.
Collapse
Affiliation(s)
- Tomoko Machino-Ohtsuka
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Kazuko Tajiri
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Taizo Kimura
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Satoshi Sakai
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Akira Sato
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Toshimichi Yoshida
- Mie University Research Center for Matrix Biology and Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan (T.Y., K.I.Y.)
| | - Michiaki Hiroe
- Department of Cardiology, National Center of Global Health and Medicine, Tokyo, Japan (M.H.)
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institution of Biomedical Innovation, Tsukuba, Japan (Y.Y.)
| | - Kazutaka Aonuma
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Kyoko Imanaka-Yoshida
- Mie University Research Center for Matrix Biology and Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan (T.Y., K.I.Y.)
| |
Collapse
|
9
|
Shen Y, Zhang FQ, Wei X. Truncated monocyte chemoattractant protein-1 can alleviate cardiac injury in mice with viral myocarditis via infiltration of mononuclear cells. Microbiol Immunol 2014; 58:195-201. [PMID: 24401088 DOI: 10.1111/1348-0421.12130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/21/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Abstract
BALB/c mice inoculated intraperitoneally with coxsackievirus group B type 3 (CVB3) were allocated to five groups; namely, a viral myocarditis group infected with CVB3 alone (control group), an antibody intervention group that received intracardiac anti-MCP-1, an antibody intervention control group that received goat IgG, a tMCP-1 intervention group that received plasmid pVMt expressing tMCP-1, and a tMCP-1 intervention control group that received plasmid pVAX1. There was also a normal control group. The ratio of murine heart weight to body weight, pathological score of myocardial tissue, serum creatine kinase-MB titers and CVB3 loading of myocardial tissue were assessed. The cardiac lesions in mice that received 20, 40 or 60 µg pVMt (P < 0.05) were less severe than those in control mice with untreated viral myocarditis. In addition, fewer mononuclear cells had infiltrated the myocardium of mice who received 40 or 60 µg pVMt intramyocardially (P < 0.01), whereas there was no difference in mononuclear cell infiltration between mice with viral myocarditis and those that received 20 µg pVMt (P > 0.05). There was also no difference between mice that received anti-MCP-1 antibody and those that received 40 µg pVMt in ratio of HW/BW, serum CK-MB titers and pathological score (P > 0.05). This study showed that tMCP-1 can alleviate cardiac lesions and cardiac injury in mice with viral myocarditis via infiltration of mononuclear cells. Thus, tMCP-1 may be an alternative to anti-MCP-1 antibody treatment of viral myocarditis. Further research is required.
Collapse
Affiliation(s)
- Yan Shen
- First Affiliated Hospital, Zhengzhou University, 1 Jian She Road, Zhengzhou, 450052, China
| | | | | |
Collapse
|
10
|
Barin JG, Čiháková D. Control of inflammatory heart disease by CD4+ T cells. Ann N Y Acad Sci 2013; 1285:80-96. [PMID: 23692566 DOI: 10.1111/nyas.12134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review focuses on autoimmune myocarditis and its sequela, inflammatory dilated cardiomyopathy (DCMI), and the inflammatory and immune mechanisms underlying the pathogenesis of these diseases. Several mouse models of myocarditis and DCMI have improved our knowledge of the pathogenesis of these diseases, informing more general problems of cardiac remodeling and heart failure. CD4(+) T cells are critical in driving the pathogenesis of myocarditis. We discuss in detail the role of T helper cell subtypes in the pathogenesis of myocarditis, the biology of T cell-derived effector cytokines, and the participation of other leukocytic effectors in mediating disease pathophysiology. We discuss interactions between these subsets in both suppressive and collaborative fashions. These findings indicate that cardiac inflammatory disease, and autoimmunity in general, may be more diverse in divergent effector mechanisms than has previously been appreciated.
Collapse
Affiliation(s)
- Jobert G Barin
- Department of Pathology, Division of Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
11
|
Yue Y, Gui J, Xu W, Xiong S. Gene therapy with CCL2 (MCP-1) mutant protects CVB3-induced myocarditis by compromising Th1 polarization. Mol Immunol 2011; 48:706-13. [DOI: 10.1016/j.molimm.2010.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/27/2010] [Accepted: 11/23/2010] [Indexed: 11/27/2022]
|
12
|
Doi K. Experimental encephalomyocarditis virus infection in small laboratory rodents. J Comp Pathol 2010; 144:25-40. [PMID: 20594559 DOI: 10.1016/j.jcpa.2010.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/24/2010] [Accepted: 05/18/2010] [Indexed: 11/30/2022]
Abstract
Encephalomyocarditis virus (EMCV) is a cardiovirus that belongs to the family Picornaviridae. EMCV is an important cause of acute myocarditis in piglets and of fetal death or abortion in pregnant sows. Small rodents, especially rats, have been suspected to be reservoir hosts or carriers. This virus also induces type 1 diabetes mellitus, encephalomyelitis, myocarditis, orchitis and/or sialodacryoadenitis in small laboratory rodents. This paper reviews the pathology and pathogenesis of experimental infection with EMCV in small laboratory rodents.
Collapse
Affiliation(s)
- K Doi
- Nippon Institute for Biological Science, 9-2221-1, Shin-Machi, Ome, Tokyo 198-0024, Japan.
| |
Collapse
|
13
|
Ahmad G, Zhang W, Torben W, Haskins C, Diggs S, Noor Z, Le L, Siddiqui AA. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol Res 2009; 105:1767-77. [PMID: 19809833 DOI: 10.1007/s00436-009-1646-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/23/2009] [Indexed: 12/17/2022]
Abstract
Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Okabe TA, Hattori M, Yuan Z, Kishimoto C. L-arginine ameliorates experimental autoimmune myocarditis by maintaining extracellular matrix and reducing cytotoxic activity of lymphocytes. Int J Exp Pathol 2008; 89:382-8. [PMID: 18808530 DOI: 10.1111/j.1365-2613.2008.00609.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
It was previously shown that administration of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) aggravated murine viral myocarditis by increasing myocardial virus titres. Experimental autoimmune myocarditis in mice and rats mimics human fulminant myocarditis. The effects of L-arginine, a precursor of nitric oxide, upon heart failure in experimental autoimmune myocarditis were evaluated. Dietary L-arginine (L-arginine group) and L-arginine plus N(G)-nitro-L-arginine methyl ester (L-arginine + l-NAME group) were administered to C57BL/6 mice immunized with porcine cardiac myosin over 3 weeks. An untreated myocarditis group was prepared. Cardiac damage was less in the L-arginine group compared with the other two groups, as was incidence of heart failure. In addition, extracellular matrix change was less prominent in the L-arginine group. Plasma concentrations of nitric oxide were elevated in the L-arginine group. Cytotoxic activities of lymphocytes were lower in L-arginine group than in other two groups. L-arginine treatment may be effective in preventing the development of heart failure in experimental myocarditis by maintaining extracellular matrix and reducing the cytotoxic activity of lymphocytes.
Collapse
Affiliation(s)
- Taka-aki Okabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
15
|
Avraham BCR, Dotan G, Hasanreisoglu M, Kramer M, Monselise Y, Cohen Y, Weinberger D, Goldenberg-Cohen N. Increased plasma and optic nerve levels of IL-6, TNF-alpha, and MIP-2 following induction of ischemic optic neuropathy in mice. Curr Eye Res 2008; 33:395-401. [PMID: 18398714 DOI: 10.1080/02713680801932891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate levels of proinflammatory cytokines in a mouse model of anterior ischemic optic neuropathy (rAION). METHODS AION was induced in C57/BL6 mice and levels of IL-6, TNF-alpha, and MIP-2 were measured in plasma by ELISA and in the optic nerves by RT-PCR at predetermined intervals. RESULTS Plasma: IL-6 levels were elevated immediately after rAION induction and decreased gradually thereafter. TNF-alpha showed an early peak on day 1 and again from day 21. MIP-2 levels were increased until day 7. Optic nerve: IL-6, TNF-alpha, and MIP-2 levels increased within a few hours and then decreased gradually. IL-6 had a second peak on day 3. CONCLUSIONS Proinflammatory cytokines may play a role in the pathogenesis of rAION.
Collapse
Affiliation(s)
- Bat Chen R Avraham
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lopez MV, Adris SK, Bravo AI, Chernajovsky Y, Podhajcer OL. IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis. THE JOURNAL OF IMMUNOLOGY 2005; 175:5885-94. [PMID: 16237081 DOI: 10.4049/jimmunol.175.9.5885] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preclinical studies demonstrated that certain cytokines are potentially useful for the induction of antitumor immune responses. However, their administration in clinical settings was only marginally useful and evoked serious toxicity. In this study, we demonstrate that the combination of autologous inactivated tumor cells expressing IL-12 and IL-10 induced tumor remission in 50-70% of mice harboring large established colon or mammary tumors and spontaneous lung metastases, with the consequent establishment of an antitumor immune memory. Mice treatment with tumor cells expressing IL-12 was only marginally effective, while expression of IL-10 was not effective at all. Administration of the combined immunotherapy stimulated the recruitment of a strong inflammatory infiltrate that correlated with local, increased expression levels of the chemokines MIP-2, MCP-1, IFN-gamma-inducible protein-10, and TCA-3 and the overexpression of IFN-gamma, but not IL-4. The combined immunotherapy was also therapeutically effective on established lung metastases from both colon and mammary tumors. The antitumor effect of the combined immunotherapy was mainly dependent on CD8+ cells although CD4+ T cells also played a role. The production of IFN-gamma and IL-4 by spleen cells and the development of tumor-specific IgG1 and IgG2a Abs indicate that each cytokine stimulated its own Th pathway and that both arms were actively engaged in the antitumor effect. This study provides the first evidence of a synergistic antitumor effect of IL-12 and IL-10 suggesting that a Th1 and a Th2 cytokine can be effectively combined as a novel rational approach for cancer immunotherapy.
Collapse
Affiliation(s)
- M Verónica Lopez
- Gene Therapy Laboratory, Leloir Institute-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
17
|
Miñano FJ, Tavares E, Maldonado R. Role of endogenous macrophage inflammatory protein-2 in regulating fever induced by bacterial endotoxin in normal and immunosuppressed rats. Clin Exp Pharmacol Physiol 2004; 31:723-31. [PMID: 15554915 DOI: 10.1111/j.1440-1681.2004.04086.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During myelosuppressive chemotherapy, Gram-negative bacterial infection with consequent exposure to lipopolysaccharide (LPS) is one of the most important causes of persistent fever. The classical model of the pathogenesis of fever suggests that pro-inflammatory cytokines, produced by leucocytes in the bloodstream in response to exogenous pyrogens such as bacterial LPS, represent the distal mediators of the febrile response. Neutrophils are the first effectors cells and the most prominent leucocyte population involved in acute bacterial infection. Macrophage inflammatory protein (MIP)-2 plays a crucial role in influencing early cell trafficking and neutrophil activation during pathophysiological processes and serves the same chemotactic function as human interleukin-8. In the present study, we investigated the role of MIP-2 in the development of a febrile response induced by LPS in immunocompetent and leukopenic rats. Intraperitoneal injection of LPS in leukopenic rats elicited a biphasic febrile response of rapid onset, the magnitude and duration of which were significantly greater than in immunocompetent animals. The febrile responses to LPS were accompanied by a pronounced induction of serum MIP-2 levels at 1, 2 and 4 h compared with their respective controls. In both normal and leukopenic rats, neutralization of endogenous MIP-2 bioactivity by systemic administration of antirat MIP-2 antibody caused a significant attenuation of the early phase of LPS fever. However, in contrast with normal rats, the second phase of fever was unimpaired by anti-MIP-2 in leukopenic rats. These findings suggest that circulating MIP-2 is involved in the generation of the early phase of LPS fever that contributes to the maintenance of the later phase of fever in immunocompetent, but not leukopenic, rats. Our data support a regulatory role for endogenous MIP-2 in initiating the fever responses to LPS. Furthermore, these results provide evidence that different cellular and humoral mechanisms are implicated in the development of a febrile response triggered by Gram-negative bacterial infections in leukopenic hosts.
Collapse
Affiliation(s)
- Francisco J Miñano
- Research Unit, Laboratory for Clinical and Experimental Pharmacology, Valme University Hospital, Seville, Spain.
| | | | | |
Collapse
|
18
|
Neutralization of macrophage inflammatory protein-2 blocks the febrile response induced by lipopolysaccharide in rats. J Therm Biol 2004. [DOI: 10.1016/j.jtherbio.2004.08.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Liu W, Nakamura H, Shioji K, Tanito M, Oka SI, Ahsan MK, Son A, Ishii Y, Kishimoto C, Yodoi J. Thioredoxin-1 Ameliorates Myosin-Induced Autoimmune Myocarditis by Suppressing Chemokine Expressions and Leukocyte Chemotaxis in Mice. Circulation 2004; 110:1276-83. [PMID: 15337697 DOI: 10.1161/01.cir.0000141803.41217.b6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Cardiac myosin–induced myocarditis is an experimental autoimmune myocarditis (EAM) model used to investigate autoimmunological mechanisms in inflammatory heart diseases and resembles fulminant myocarditis in humans. We investigated the therapeutic role of thioredoxin-1 (TRX-1), a redox-regulatory protein with antioxidant and antiinflammatory effects, in murine EAM.
Methods and Results—
EAM was generated in 5-week-old male BALB/c mice by immunization with porcine cardiac myosin at days 0 and 7. Recombinant human TRX-1 (rhTRX-1), C32S/C35S mutant rhTRX-1, or saline was administered intraperitoneally every second day from day 0 to 20. In addition, rabbit anti-mouse TRX-1 serum or normal rabbit serum was administered intraperitoneally on days −1, 2, and 6. Animals were euthanized on day 21. Histological analysis of the heart showed that TRX-1 significantly reduced the severity of EAM, whereas mutant TRX-1 failed to have such an effect, and anti–TRX-1 antibody enhanced the disease markedly. Immunohistochemical analysis showed that TRX-1 significantly suppressed cardiac macrophage inflammatory protein (MIP)-1α, MIP-2, and 8-hydroxydeoxyguanosine expression and macrophage infiltration into the heart in EAM. Although serum levels of MIP-1α were not suppressed by TRX-1 until day 21, both an in vitro chemotaxis chamber assay and an in vivo air pouch model showed that TRX-1 significantly suppressed MIP-1α– or MIP-2–induced leukocyte chemotaxis. However, real-time reverse transcription–polymerase chain reaction showed that TRX-1 failed to decrease chemokine receptor expression increased in the bone marrow cells of EAM mice.
Conclusions—
TRX-1 attenuates EAM by suppressing chemokine expressions and leukocyte chemotaxis in mice.
Collapse
Affiliation(s)
- Wenrui Liu
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|