1
|
Nosik M, Belikova MG, Ryzhov K, Avdoshina D, Sobkin A, Zverev V, Svitich O. Unique Profile of Proinflammatory Cytokines in Plasma of Drug-Naïve Individuals with Advanced HIV/TB Co-Infection. Viruses 2023; 15:1330. [PMID: 37376629 DOI: 10.3390/v15061330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-1 infection is characterized by aberrant immune activation, and infection with M. tuberculosis by an unbalanced production of proinflammatory cytokines. The expression of these cytokines in HIV-1/TB coinfection is still understudied. Here, we aimed to compare the production of proinflammatory cytokines in drug-naive patients coinfected with HIV-1 and M. tuberculosis (HIV/TB) compared to patients with respective monoinfections. Plasma samples of patients with HIV/TB coinfection (n = 36), HIV-1 monoinfection (n = 36), and TB monoinfection (n = 35) and healthy donors (n = 36) were examined for the levels of eight proinflammatory cytokines. Their levels were significantly increased in all patient groups compared to healthy donors. At the same time, a drastic decrease in the plasma levels of IFN-γ, TNF-α, Il-1β, IL-15, and IL-17 was detected in patients with HIV/TB coinfection compared to patients with HIV-1 or TB monoinfections. The plasma levels of IL-17 characterized the TB severity: in HIV/TB-coinfected patients with disseminated TB, plasma levels of IL-17 were eight times lower than in patients with less severe TB forms (infiltrative TB or TB of intrathoracic lymph nodes; p < 0.0001). At the same time, HIV/TB-coinfected patients had increased plasma levels of IL-8, IL-12, and IL-18, with the levels of IL-8 correlating with mortality (p < 0.0001). Thus, on the contrary to the patients with HIV-1 or TB monoinfections, HIV/TB-coinfected patients had suppressed production of most of the proinflammatory cytokines associated with antimicrobial immune response, specifically of T-cells involved in the containment of both infections. At the same time, they demonstrated an expansion of proinflammatory cytokines known to originate from both hematopoietic and nonhematopoietic cells, and manifest tissue inflammation. In HIV-1/TB coinfection, this leads to the disruption of granuloma formation, contributing to bacterial dissemination and enhancing morbidity and mortality.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Maria G Belikova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
- Translational Medicine Cluster, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | | | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - Alexandr Sobkin
- Department for Treatment of TB Patients with HIV Infection, G.A. Zaharyan Moscow Tuberculosis Clinic, 125466 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| |
Collapse
|
2
|
Lohman-Payne B, Gabriel B, Park S, Wamalwa D, Maleche-Obimbo E, Farquhar C, Bosire RK, John-Stewart G. HIV-exposed uninfected infants: elevated cord blood Interleukin 8 (IL-8) is significantly associated with maternal HIV infection and systemic IL-8 in a Kenyan cohort. Clin Transl Med 2018; 7:26. [PMID: 30198049 PMCID: PMC6129453 DOI: 10.1186/s40169-018-0206-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background In low and middle income countries, human immunodeficiency virus (HIV) exposed, uninfected (HEU) infants demonstrate higher morbidity and mortality than their unexposed counterparts. To determine possible immune correlates of this effect, we investigated the impact of in utero HIV exposure on the uninfected neonatal immune milieu and maternal factors mediating these abnormalities in a cohort of vaginally delivered mother-infants. Samples of delivery and cord blood plasma were selected from 22 Kenyan HIV-infected women and their HIV exposed uninfected (HEU) infants drawn from the pre-ARV era, while 19 Kenyan HIV-uninfected (HU) women and their infants were selected from a control cohort. Results Compared to HU cord plasma, HEU cord plasma contained significantly higher levels of pro-inflammatory cytokines interleukins (IL)-6 and -8 (both p < 0.001) and significantly lower levels of CXC motif chemokine 11 (CXC11) (p < 0.001). Mediation analysis demonstrated that maternal HIV infection status was a significant determinant of infant IL-8 responses: HEU status was associated with a ninefold higher infant:mother (cord:delivery) plasma levels of IL-8 (p < 0.005), whereas maternal viral load was negatively associated with HEU IL-8 levels (p = 0.04) and not associated with HEU IL-6 levels. Conclusions Exposure to maternal HIV infection drives an increase in prenatal IL-8 that is partially mediated by maternal cytokine levels. Differences between maternal and infant cytokine levels strongly suggest independent modulation in utero, consistent with prenatal immune activation. Elevated pro-inflammatory signals at birth may interfere with T cell responses at birth and subsequently influence immune maturation and the risk of morbidity and mortality in HEU infants.
Collapse
Affiliation(s)
- Barbara Lohman-Payne
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, 02903, USA.
| | - Benjamin Gabriel
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, 02903, USA
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, Providence, RI, 02903, USA.,Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Dalton Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | | | - Carey Farquhar
- Departments of Global Health, University of Washington, Seattle, WA, 98104, USA.,Departments of Medicine, University of Washington, Seattle, WA, 98104, USA.,Departments of Epidemiology, University of Washington, Seattle, WA, 98104, USA
| | - Rose Kerubo Bosire
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Grace John-Stewart
- Departments of Global Health, University of Washington, Seattle, WA, 98104, USA.,Departments of Medicine, University of Washington, Seattle, WA, 98104, USA.,Departments of Epidemiology, University of Washington, Seattle, WA, 98104, USA.,Department of Pediatrics, University of Washington, Seattle, WA, 98104, USA
| |
Collapse
|
3
|
Taylor GH, Williams AA, Garzino-Demo A. Highly active antiretroviral therapy reduces pulmonary IL-8 in HIV-positive women smokers. Pathog Dis 2015; 74:ftv115. [PMID: 26656889 DOI: 10.1093/femspd/ftv115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 11/14/2022] Open
Abstract
Increased levels of the proinflammatory cytokine IL-8 are detected in the sputum of patients with chronic obstructive pulmonary disease (COPD) and during the pathological pulmonary manifestations of HIV infection : To explore a potential interrelationship between smoking, highly active antiretroviral therapy (HAART) and HIV immune status, we collected sputum samples, along with complete pulmonary function tests from groups of HIV-infected women smokers who were either on or off HAART. Analysis of the patient's sputum for cell count along with quantitative measures of IL-8 was performed and correlated with concurrent assessment of pulmonary function test (PFT). We found that HIV-positive smokers had decreased measurements on PFT of the diffusing capacity of the lung for carbon monoxide (D(LCO)) compared to standard reference values that did not differ with HAART usage. HAART, when controlled for CD4, showed a suppressive effect on the levels of pro inflammatory cytokine IL-8 in sputum. We conclude that in the era of HAART, HIV along with concurrent tobacco smoking is associated with declines in PFT in HIV-infected women. The use of HAART in patients appears to mitigate the increases in IL-8 levels in relation to immune status based on CD4 count.
Collapse
Affiliation(s)
- Gregory H Taylor
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adrienne A Williams
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Illinois at Chicago College of Medicine, Department of Family Medicine Chicago, IL 60612, USA
| | - Alfredo Garzino-Demo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
4
|
Beaupere C, Garcia M, Larghero J, Fève B, Capeau J, Lagathu C. The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation. Aging Cell 2015; 14:534-46. [PMID: 25847297 PMCID: PMC4531068 DOI: 10.1111/acel.12308] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 12/28/2022] Open
Abstract
To maintain bone mass turnover and bone mineral density (BMD), bone marrow (BM) mesenchymal stem cells (MSCs) are constantly recruited and subsequently differentiated into osteoblasts. HIV-infected patients present lower BMD than non-HIV infected individuals and a higher prevalence of osteopenia/osteoporosis. In antiretroviral treatment (ART)-naive patients, encoded HIV proteins represent pathogenic candidates. They are released by infected cells within BM and can impact on neighbouring cells. In this study, we tested whether HIV proteins Tat and/or Nef could induce senescence of human BM-MSCs and reduce their capacity to differentiate into osteoblasts. When compared to nontreated cells, MSCs chronically treated with Tat and/or Nef up to 30 days reduced their proliferative activity and underwent early senescence, associated with increased oxidative stress and mitochondrial dysfunction. The antioxidant molecule N-acetyl- cysteine had no or minimal effects on Tat- or Nef-induced senescence. Tat but not Nef induced an early increase in NF-κB activity and cytokine/chemokine secretion. Tat-induced effects were prevented by the NF-κB inhibitor parthenolide, indicating that Tat triggered senescence via NF-κB activation leading to oxidative stress. Otherwise, Nef- but not Tat-treated cells displayed early inhibition of autophagy. Rapamycin, an autophagy inducer, reversed Nef-induced senescence and oxidative stress. Moreover, Tat+Nef had cumulative effects. Finally, Tat and/or Nef decreased the MSC potential of osteoblastic differentiation. In conclusion, our in vitro data show that Tat and Nef could reduce the number of available precursors by inducing MSC senescence, through either enhanced inflammation or reduced autophagy. These results offer new insights into the pathophysiological mechanisms of decreased BMD in HIV-infected patients.
Collapse
Affiliation(s)
- Carine Beaupere
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- INSERM; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| | - Marie Garcia
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- INSERM; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| | - Jerome Larghero
- Inserm; UMR1160; Institut Universitaire d'Hématologie; Hôpital Saint-Louis; 75010 Paris France
- AP-HP; Unité de Thérapie Cellulaire et CIC de Biothérapies; Hôpital Saint Louis; Paris France
- Univ Paris Diderot; Sorbonne Paris Cité F-75475 Paris France
| | - Bruno Fève
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- INSERM; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
- APHP; Hôpital Saint-Antoine; F-75012 Paris France
| | - Jacqueline Capeau
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- INSERM; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
- APHP; Hôpital Tenon; F-75020 Paris France
| | - Claire Lagathu
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- INSERM; UMR_S 938; CDR Saint-Antoine F-75012 Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| |
Collapse
|
5
|
Yan Z, Xu L, Han J, Wu YJ, Wang W, Yao W, Wu W. Transcriptional and posttranscriptional regulation and endocytosis were involved in zinc oxide nanoparticle-induced interleukin-8 overexpression in human bronchial epithelial cells. Cell Biol Toxicol 2014; 30:79-88. [DOI: 10.1007/s10565-014-9270-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
6
|
Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology 2014; 449:270-86. [DOI: 10.1016/j.virol.2013.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/02/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022]
|
7
|
González OA, Ebersole JL, Huang CB. The oral commensal, Streptococcus gordonii, synergizes with Tat protein to induce HIV-1 promoter activation in monocytes/macrophages. Cell Immunol 2011; 269:38-45. [PMID: 21459369 PMCID: PMC3115710 DOI: 10.1016/j.cellimm.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/24/2011] [Accepted: 03/09/2011] [Indexed: 01/02/2023]
Abstract
Trans-activator of transcription (Tat) is an HIV-1 protein essential for viral replication. Oral periodontopathogens (e.g. Fusobacterium nucleatum) enhance HIV-1LTR promoter activation in monocytes/macrophages in absence of Tat; however, some oral commensals fail to trigger this response. We sought to determine the effect of Tat on HIV-1LTR promoter activation induced by the representative oral commensal Streptococcus gordonii in monocytes/macrophages. S. gordonii enhanced HIV-1LTR reactivation in THP89GFP (Tat(+)), but not in BF24 (Tat(-)) cells. Interestingly, S. gordonii, but not Streptococcus sanguinis enhanced HIV-1LTR activation in the presence of recombinant Tat in BF24 cells. This response correlated with IL-8 but not TNFα or IL-6 production, and was abrogated by the NFκB inhibitor BAY 11-7082. Kinetics of NFκB-RelA activation did not explain the S. gordonii-induced HIV-1LTR activation in presence of Tat. These results suggest that S. gordonii-induced HIV-1 reactivation in monocytes/macrophages is Tat-dependent and appears to involve NFκB activation.
Collapse
Affiliation(s)
- Octavio A González
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
8
|
Role of HIV-1 Tat in AIDS pathogenesis: its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS 2010; 24:1609-23. [PMID: 20588103 DOI: 10.1097/qad.0b013e32833ac6a0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Zhang SM, Sun Y, Fan R, Xu QZ, Liu XD, Zhang X, Wang Y, Zhou PK. HIV-1 Tat regulates cyclin B1 by promoting both expression and degradation. FASEB J 2009; 24:495-503. [PMID: 19825974 DOI: 10.1096/fj.09-143925] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclin B1, an important cell cycle regulator, was up-regulated in lymphocytes of human immunodeficiency virus (HIV)-infected patients. However, the mechanism of cyclin B1 up-regulation and the effects of the up-regulation on the host cells remain unclear. Here, we show that HIV-encoded Tat protein regulates cyclin B1 levels in two different ways: first, Tat stimulates the transcription of cyclin B1, which increases cyclin B1 levels and promotes the cells apoptosis; and second, Tat stimulates polyubiquitination-mediated degradation of cyclin B1 through binding to the N-terminal of cyclin B1 (aa 61-129) that is just downstream of the D box, which prevents excessive levels of cyclin B1 in the cells. These results suggest that Tat-regulating cyclin B1 affects the status of HIV: Tat stimulates cyclin B1 expression to slow down the host cell cycle progress and to promote the host cell apoptosis, which might facilitate HIV release; Tat stimulates cyclin B1 degradation to prevent overaccumulation of cyclin B1, which might facilitate HIV replication. Taken together, our results reveal for the first time how HIV-Tat regulates cyclin B1 and keeps its balance in the cells.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun 2008; 372:137-41. [PMID: 18477470 DOI: 10.1016/j.bbrc.2008.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/01/2008] [Indexed: 11/21/2022]
Abstract
NF-kappaB plays an important role in oncogenesis. Recently, we have demonstrated that loss of p53 function enhances DNA binding and transcriptional activities of NF-kappaB via IKKalpha and IKKbeta, and that glycolysis, activated by NF-kappaB, has an integral role in oncogene-induced cell transformation. Here, we show that ectopically expressed p53 induces acetylation and phosphorylation at Ser 536 of p65, an NF-kappaB component, and enhances DNA-binding activity of NF-kappaB. However, activated p53 suppresses transcriptional activity of NF-kappaB. Under non-stimulating conditions, p65 formed a complex with IKKalpha and IKKbeta. Activated p53 bound to p65 on DNA and disrupted binding of p65 to IKKbeta. Moreover, histone H3 kinase activity, which requires transcriptional activation of NF-kappaB, was diminished by p53. Thus, activated p53 may suppress transcriptional activity of NF-kappaB through inhibition of IKK and histone H3 kinase on DNA, suggesting a novel p53-mediated suppression system for tumorigenesis.
Collapse
|
11
|
O'Hara SP, Small AJ, Nelson JB, Badley AD, Chen XM, Gores GJ, Larusso NF. The human immunodeficiency virus type 1 tat protein enhances Cryptosporidium parvum-induced apoptosis in cholangiocytes via a Fas ligand-dependent mechanism. Infect Immun 2007; 75:684-96. [PMID: 17118988 PMCID: PMC1828501 DOI: 10.1128/iai.01348-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/24/2006] [Accepted: 11/01/2006] [Indexed: 01/04/2023] Open
Abstract
While Cryptosporidium parvum infection of the intestine has been reported in both immunocompetent and immunocompromised individuals, biliary infection is seen primarily in adult AIDS patients and is associated with development of AIDS cholangiopathy. However, the mechanisms of pathogen-induced AIDS cholangiopathy remain unclear. Since we previously demonstrated that the Fas/Fas ligand (FasL) system is involved in paracrine-mediated C. parvum cytopathicity in cholangiocytes, we also tested the potential synergistic effects of human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat)-mediated FasL regulation on C. parvum-induced apoptosis in cholangiocytes by semiquantitative reverse transcription-PCR, immunoblotting, immunofluorescence analysis, and immunogold electron microscopy. H69 cells do not express CXCR4 and CCR5, which are receptors required for direct HIV-1 viral infection. However, recombinant biologically active HIV-1-associated Tat protein increased FasL expression in the cytoplasm of cholangiocytes without a significant increase in apoptosis. We found that C. parvum-induced apoptosis was associated with translocation of intracellular FasL to the cell membrane surface and release of full-length FasL from infected H69 cells. Tat significantly (P < 0.05) increased C. parvum-induced apoptosis in bystander cells in a dose-dependent manner. Moreover, Tat enhanced both C. parvum-induced FasL membrane translocation and release of full-length FasL. In addition, the FasL neutralizing antibody NOK-1 and the caspase-8 inhibitor Z-IETD-fmk both blocked C. parvum-induced apoptosis in cholangiocytes. The data demonstrated that HIV-1 Tat enhances C. parvum-induced cholangiocyte apoptosis via a paracrine-mediated, FasL-dependent mechanism. Our results suggest that concurrent active HIV replication, with associated production of Tat protein, and C. parvum infection synergistically increase cholangiocyte apoptosis and thus jointly contribute to AIDS-related cholangiopathies.
Collapse
Affiliation(s)
- Steven P O'Hara
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Solis M, Wilkinson P, Romieu R, Hernandez E, Wainberg MA, Hiscott J. Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells. Virology 2006; 352:86-99. [PMID: 16730773 DOI: 10.1016/j.virol.2006.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/17/2006] [Accepted: 04/03/2006] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DC) are among the first targets of human immunodeficiency virus type-1 (HIV-1) infection and in turn play a crucial role in viral transmission to T cells and in the regulation of the immune response. The major group of HIV-1 has diversified genetically based on variation in env sequences and comprise at least 11 subtypes. Because little is known about the host response elicited against different HIV-1 clade isolates in vivo, we sought to use gene expression profiling to identify genes regulated by HIV-1 subtypes B, C, and A/E upon de novo infection of primary immature monocyte-derived DC (iMDDCs). A total of 3700 immune-related genes were subjected to a significance analysis of microarrays (SAM); 656 genes were selected as significant and were further divided into 8 functional categories. Regardless of the time of infection, 20% of the genes affected by HIV-1 were involved in signal transduction, followed by 14% of the genes identified as transcription-related genes, and 7% were classified as playing a role in cell proliferation and cell cycle. Furthermore, 7% of the genes were immune response genes. By 72 h postinfection, genes upregulated by subtype B included the inhibitor of the matrix metalloproteinase TIMP2 and the heat shock protein 40 homolog (Hsp40) DNAJB1, whereas the IFN inducible gene STAT1, the MAPK1/ERK2 kinase regulator ST5, and the chemokine CXCL3 and SHC1 genes were induced by subtypes C and A/E. These analyses distinguish a temporally regulated host response to de novo HIV-1 infection in primary dendritic cells.
Collapse
Affiliation(s)
- Mayra Solis
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Microbiology and Immunology, McGill University, 3755 Cote Ste. Catherine, Montreal, Quebec, Canada H3T1E2
| | | | | | | | | | | |
Collapse
|
13
|
Langford TD, Letendre SL, Larrea GJ, Masliah E. Changing patterns in the neuropathogenesis of HIV during the HAART era. Brain Pathol 2006; 13:195-210. [PMID: 12744473 PMCID: PMC4842209 DOI: 10.1111/j.1750-3639.2003.tb00019.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rapid progress in the development of highly active antiretroviral therapy has changed the observed patterns in HIV encephalitis and AIDS-related CNS opportunistic infections. Early in the AIDS epidemic, autopsy studies pointed to a high prevalence of these conditions. With the advent of nucleoside reverse transcriptase inhibitors, the prevalence at autopsy of opportunistic infections, such as toxoplasmosis and progressive multifocal leukoencephalopathy, declined while that of HIV encephalitis increased. After the introduction of protease inhibitors, a decline in both HIV encephalitis and CNS opportunistic infections was observed. However, with the increasing resistance of HIV strains to antiretrovirals, there has been a resurgence in the frequency of HIV encephalitis and HIV leukoencephalopathy. HIV leukoencephalopathy in AIDS patients failing highly active antiretroviral therapy is characterized by massive infiltration of HIV infected monocytes/macrophages into the brain and extensive white matter destruction. This condition may be attributable to interactions of anti-retrovirals with cerebrovascular endothelium, astroglial cells and white matter of the brain. These interactions may lead to cerebral ischemia, increased blood-brain barrier permeability and demyelination. Potential mechanisms of such interactions include alterations in host cell signaling that may result in trophic factor dysregulation and mitochondrial injury. We conclude that despite the initial success of combined anti-retroviral therapy, more severe forms of HIV encephalitis appear to be emerging as the epidemic matures. Factors that may contribute to this worsening include the prolonged survival of HIV-infected patients, thereby prolonging the brain's exposure to HIV virions and proteins, the use of increasingly toxic combinations of poorly penetrating drugs in highly antiretroviral-experienced AIDS patients, and selection of more virulent HIV strains with higher replication rates and greater virulence in neural tissues.
Collapse
Affiliation(s)
- T. D. Langford
- Departments of Pathology, University of California San Diego, La Jolla
| | - S. L. Letendre
- Departments of Medicine, and University of California San Diego, La Jolla
| | - G. J. Larrea
- Departments of Neurosciences, University of California San Diego, La Jolla
| | - E. Masliah
- Departments of Pathology, University of California San Diego, La Jolla
- Departments of Neurosciences, University of California San Diego, La Jolla
| |
Collapse
|
14
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Chipitsyna G, Slonina D, Siddiqui K, Peruzzi F, Skorski T, Reiss K, Sawaya BE, Khalili K, Amini S. HIV-1 Tat increases cell survival in response to cisplatin by stimulating Rad51 gene expression. Oncogene 2004; 23:2664-71. [PMID: 14755242 DOI: 10.1038/sj.onc.1207417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tat is an early regulatory protein of human immunodeficiency virus type 1, which plays a central role in the pathogenesis of AIDS by stimulating transcription of the viral genome and impairing several important cellular pathways during the progression of the disease. Here, we investigated the effect of Tat on cell response to DNA damage. Our results indicate that Tat production causes a noticeable increase in the survival rate of PC12 cells upon their treatment with genotoxic agents. Single-cell gel electrophoresis studies revealed reduced DNA breakage in PC12-Tat cells upon cisplatin treatment relative to the control cells. Furthermore, cytogenetic data exhibited less chromosomal damage in Tat-producing cells after recovery from cisplatin treatment, corroborating electrophoretic data. Examination of several proteins involved in the control of DNA repair showed elevated levels of Rad51, a key regulator of homologous recombination in cells expressing Tat. On the other hand, the level of Ku70, one of the components of the nonhomologous end-joining repair pathway, was slightly decreased in cells expressing Tat. Using a fluorescence-based assay, we demonstrated that repair of DNA double-strand breaks via homologous recombination is increased in Tat-producing cells. The results from in vitro nonhomologous end-joining assay revealed a reduced ability of protein extract from PC12-Tat cells compared to PC12 cells in rejoining linearized DNA. These observations ascribe a new role for Tat in host genomic integrity, perhaps by affecting the expression of genes involved in DNA repair.
Collapse
Affiliation(s)
- Galina Chipitsyna
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huigen MCDG, Kamp W, Nottet HSLM. Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection. Eur J Clin Invest 2004; 34:57-66. [PMID: 14984439 DOI: 10.1111/j.1365-2362.2004.01282.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The HIV-1 trans-activator (Tat) protein is proposed as an important factor in the complex HIV-induced pathogenesis of AIDS. In this paper, multiple effects of this viral protein are described. Originally discovered as an intracellular activator of HIV-1 transcription, Tat was found to regulate viral reverse transcription as well. Trans-activator was found to be secreted by HIV-infected cells and taken up by neighbouring cells. In this way, Tat is able to affect both infected and uninfected cells. Intracellularly, Tat can deregulate the expression of several heterologous cellular and viral genes. Extracellular Tat can contribute to the spreading of HIV-1 and immunosuppression of uninfected cells. Finally, there is evidence that exogenous Tat is involved in AIDS-associated pathologies such as Kaposi's sarcoma and HIV-associated dementia. These capacities together accelerate the progression towards AIDS and make Tat an interesting candidate as a constituent of an anti-AIDS vaccine.
Collapse
Affiliation(s)
- M C D G Huigen
- Eijkman-Winkler Center for Microbiology, Infectious Disease and Inflammation, Utrecht, The Netherlands
| | | | | |
Collapse
|
17
|
Joshi-Barve S, Barve SS, Butt W, Klein J, McClain CJ. Inhibition of proteasome function leads to NF-kappaB-independent IL-8 expression in human hepatocytes. Hepatology 2003; 38:1178-87. [PMID: 14578856 DOI: 10.1053/jhep.2003.50470] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breakdown of cellular proteins is a highly regulated process, and the ubiquitin-proteasome pathway is the major proteolytic system in the cell. It regulates the levels of numerous proteins that control gene expression and cell division, as well as responses to stress and inflammation. Recent studies have reported abnormalities in proteasome function in alcoholic liver disease (ALD). Moreover, a direct relation has been reported between impaired proteasome function and oxidative stress in experimental models of ALD. Neutrophil infiltration is a hallmark of ALD, and activated neutrophils are thought to play a role in the pathology of ALD. As a potent neutrophil chemoattractant and activator, interleukin 8 (IL-8) likely plays a key mechanistic role in many forms of liver injury. In this study, we evaluated the effects of inhibition of proteasome function on expression and release of IL-8 by human fetal hepatocytes and hepatoma cells. Our data demonstrate that inhibition of proteasome function in hepatocytes leads to apoptotic cell death. Decreased hepatocyte survival coincides with enhanced expression of IL-8, both at the protein and the messenger RNA (mRNA) levels. This increase in IL-8 is independent of nuclear factor kappaB (NF-kappaB) activation and is associated with an increase in c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1) activity. In conclusion, hepatocytes dying because of inhibition of proteasome function produce massive quantities of the proinflammatory chemokine IL-8, possibly resulting in neutrophil infiltration, increased inflammation, and liver injury.
Collapse
Affiliation(s)
- Swati Joshi-Barve
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
18
|
De Falco G, Bellan C, Lazzi S, Claudio P, La Sala D, Cinti C, Tosi P, Giordano A, Leoncini L. Interaction between HIV-1 Tat and pRb2/p130: a possible mechanism in the pathogenesis of AIDS-related neoplasms. Oncogene 2003; 22:6214-9. [PMID: 13679860 DOI: 10.1038/sj.onc.1206637] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tat protein is an early nonstructural protein necessary for virus replication, which is secreted by infected cells and taken up by uninfected cells. Extensive evidence indicates that Tat may be a cofactor in the development of AIDS-related neoplasms. The molecular mechanism underlying Tat's oncogenic activity may include deregulation of cellular genes. Among these genes, it has recently been shown that pRb2/p130 oncosuppressor protein is one of the targets in the interaction between HIV gene product Tat and host proteins. However, whether the HIV-1 gene product Tat may inactivate the oncosuppressive function of pRb2/p130 has not yet been elucidated. Here, we show that mRNA levels of pRb2/p130 increase in the presence of Tat, whereas no change in the phosphorylation status of pRb2/p130 is observed. In addition, Tat can inhibit the growth control activity exerted by pRb2/p130 in the T98G cell line. Finally, Tat does not compete with E2F-4 in binding to pRb2/p130. The interaction between Tat and pRb2/p130 seems to result in the deregulation of the control exerted by pRb2/p130 on the cell cycle. Taken together, these results open a window on the role of pRb2/p130 in AIDS-related oncogenesis.
Collapse
Affiliation(s)
- Giulia De Falco
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Langford D, Masliah E. Role of trophic factors on neuroimmunity in neurodegenerative infectious diseases. J Neurovirol 2002; 8:625-38. [PMID: 12476355 DOI: 10.1080/13550280290100996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Viral infection of the central nervous system elicits a myriad of cellular, vascular, and neuroimmune factors that contribute to acute, subacute, and chronic damage to the brain. In response to cellular damage, the host is capable of producing trophic factors that may protect neuronal, glial, and endothelial cell populations. Both neurotrophic and angiotrophic factors can also operate by modulating the neuroimmune response, which plays a central role in the pathogenesis of the neurodegenerative process. In this regard, crosstalk signaling among host cells, components of the neuroimmune response, and virus could influence cell fate by production of trophic factors that protect or rescue neurons vulnerable to viral damage. In this context, the main objective of this review is to provide an overview of evidence in support of the role of trophic factors in regulating the neuroimmune response in chronic viral infections of the central nervous system. Special emphasis is placed on the interaction of the human immunodeficiency virus (HIV) Tat protein with endothelial, astroglial, microglial, and neuronal cells, resulting in altered expression of vascular endothelial growth factor, fibroblast growth factor, interleukin-8, and regulation of calcium flux via CXCR2, which directly influences neuronal cell fitness.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
20
|
Abstract
Due to the development of HIV-1 resistance to current antiviral drugs and the known toxicity of many of these drugs, there is a clear need to identify and develop novel compounds for use in the treatment of HIV-1 infected patients. The HIV-1 regulatory proteins, Tat and Rev, are required for HIV-1 replication and therefore represent two important viral targets for drug development. Novel drugs that target these proteins would increase the number of available treatment strategies for HIV-1 infection. This could result in better combination therapies in which many different viral targets could be inhibited simultaneously, thereby decreasing the likelihood of selecting for drug-resistant viruses. This review outlines many of the ways that Tat and Rev can be targeted for drug development, describes recently reported lead compounds as inhibitors of these proteins and discusses strategies for implementing drug screens for identifying novel inhibitors.
Collapse
Affiliation(s)
- Roger G Ptak
- Infectious Disease Research Department, Southern Research Institute, 431 Aviation Way, Frederick, Maryland 21701, USA.
| |
Collapse
|
21
|
de la Fuente C, Santiago F, Deng L, Eadie C, Zilberman I, Kehn K, Maddukuri A, Baylor S, Wu K, Lee CG, Pumfery A, Kashanchi F. Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals. BMC BIOCHEMISTRY 2002; 3:14. [PMID: 12069692 PMCID: PMC116586 DOI: 10.1186/1471-2091-3-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Accepted: 06/10/2002] [Indexed: 11/15/2022]
Abstract
BACKGROUND Expression profiling holds great promise for rapid host genome functional analysis. It is plausible that host expression profiling in an infection could serve as a universal phenotype in virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in HIV-1 infected and Tat expressing cells. We utilized microarray analysis from uninfected, latently HIV-1 infected cells, as well as cells that express Tat, to decipher some of the cellular changes associated with this viral activator. RESULTS Utilizing uninfected, HIV-1 latently infected cells, and Tat expressing cells, we observed that most of the cellular host genes in Tat expressing cells were down-regulated. The down-regulation in Tat expressing cells is most apparent on cellular receptors that have intrinsic receptor tyrosine kinase (RTK) activity and signal transduction members that mediate RTK function, including Ras-Raf-MEK pathway. Co-activators of transcription, such as p300/CBP and SRC-1, which mediate gene expression related to hormone receptor genes, were also found to be down-regulated. Down-regulation of receptors may allow latent HIV-1 infected cells to either hide from the immune system or avoid extracellular differentiation signals. Some of the genes that were up-regulated included co-receptors for HIV-1 entry, translation machinery, and cell cycle regulatory proteins. CONCLUSIONS We have demonstrated, through a microarray approach, that HIV-1 Tat is able to regulate many cellular genes that are involved in cell signaling, translation and ultimately control the host proliferative and differentiation signals.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Francisco Santiago
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Longwen Deng
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Carolyne Eadie
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Irene Zilberman
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Kylene Kehn
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Anil Maddukuri
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Shanese Baylor
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Kaili Wu
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Chee Gun Lee
- Department of Biochemistry and Molecular Biology UMDNJ-New Jersey Medical School Newark, NJ 07103, USA
| | - Anne Pumfery
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Fatah Kashanchi
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| |
Collapse
|
22
|
Mahieux R, Pise-Masison C, Gessain A, Brady JN, Olivier R, Perret E, Misteli T, Nicot C. Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage. Blood 2001; 98:3762-9. [PMID: 11739184 DOI: 10.1182/blood.v98.13.3762] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of patients with adult T-cell leukemia-lymphoma (ATLL) using conventional chemotherapy has limited benefit because human T-cell leukemia virus type 1 (HTLV-1) cells are resistant to most apoptosis-inducing agents. The recent report that arsenic trioxide induces apoptosis in HTLV-1-transformed cells prompted investigation of the mechanism of action of this drug in HTLV-1 and HTLV-2 interleukin-2-independent T cells and in HTLV-1-immortalized cells or in ex vivo ATLL samples. Fluorescence-activated cell sorter analysis, fluorescence microscopy, and measures of mitochondrial membrane potential (Delta Psi m) demonstrated that arsenic trioxide alone was sufficient to induce programmed cell death in all HTLV-1 and -2 cells tested and in ATLL patient samples. I kappa B-alpha phosphorylation strongly decreased, and NF-kappa B translocation to the nucleus was abrogated. Expression of the antiapoptotic protein Bcl-X(L), whose promoter is NF-kappa B dependent, was down-regulated. The collapse of Delta Psi m and the release of cytochrome c to the cytosol resulted in the activation of caspase-3, as demonstrated by the cleavage of PARP. A specific caspase-3 inhibitor (Ac-DEVD-CHO) could reverse this phenotype. The antiapoptotic factor Bcl-2 was then cleaved, converting it to a Bax-like death effector. These results demonstrated that arsenic trioxide induces apoptosis in HTLV-1- and -2-infected cells through activation of the caspase pathway.
Collapse
Affiliation(s)
- R Mahieux
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|