1
|
Oscorbin IP, Filipenko ML. M-MuLV reverse transcriptase: Selected properties and improved mutants. Comput Struct Biotechnol J 2021; 19:6315-6327. [PMID: 34900141 PMCID: PMC8640165 DOI: 10.1016/j.csbj.2021.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022] Open
Abstract
Reverse transcriptases (RTs) are enzymes synthesizing DNA using RNA as the template and serving as the standard tools in modern biotechnology and molecular diagnostics. To date, the most commonly used reverse transcriptase is the enzyme from Moloney murine leukemia virus, M-MuLV RT. Since its discovery, M-MuLV RT has become indispensable for modern RNA studies; the range of M-MuLV RT applications is vast, from scientific tasks to clinical testing of human pathogens. This review will give a brief description of the structure, thermal stability, processivity, and fidelity, focusing on improving M-MuLV RT for practical usage.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Harrison JJEK, Tuske S, Das K, Ruiz FX, Bauman JD, Boyer PL, DeStefano JJ, Hughes SH, Arnold E. Crystal Structure of a Retroviral Polyprotein: Prototype Foamy Virus Protease-Reverse Transcriptase (PR-RT). Viruses 2021; 13:v13081495. [PMID: 34452360 PMCID: PMC8402755 DOI: 10.3390/v13081495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In most cases, proteolytic processing of the retroviral Pol portion of the Gag-Pol polyprotein precursor produces protease (PR), reverse transcriptase (RT), and integrase (IN). However, foamy viruses (FVs) express Pol separately from Gag and, when Pol is processed, only the IN domain is released. Here, we report a 2.9 Å resolution crystal structure of the mature PR-RT from prototype FV (PFV) that can carry out both proteolytic processing and reverse transcription but is in a configuration not competent for proteolytic or polymerase activity. PFV PR-RT is monomeric and the architecture of PFV PR is similar to one of the subunits of HIV-1 PR, which is a dimer. There is a C-terminal extension of PFV PR (101-145) that consists of two helices which are adjacent to the base of the RT palm subdomain, and anchors PR to RT. The polymerase domain of PFV RT consists of fingers, palm, thumb, and connection subdomains whose spatial arrangements are similar to the p51 subunit of HIV-1 RT. The RNase H and polymerase domains of PFV RT are connected by flexible linkers. Significant spatial and conformational (sub)domain rearrangements are therefore required for nucleic acid binding. The structure of PFV PR-RT provides insights into the conformational maturation of retroviral Pol polyproteins.
Collapse
Affiliation(s)
- Jerry Joe E. K. Harrison
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA; (J.J.E.K.H.); (S.T.); (K.D.); (F.X.R.); (J.D.B.)
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry, University of Ghana, Legon P.O. Box LG 56, Ghana
| | - Steve Tuske
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA; (J.J.E.K.H.); (S.T.); (K.D.); (F.X.R.); (J.D.B.)
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA; (J.J.E.K.H.); (S.T.); (K.D.); (F.X.R.); (J.D.B.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA; (J.J.E.K.H.); (S.T.); (K.D.); (F.X.R.); (J.D.B.)
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA; (J.J.E.K.H.); (S.T.); (K.D.); (F.X.R.); (J.D.B.)
| | - Paul L. Boyer
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA; (P.L.B.); (S.H.H.)
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA;
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA; (P.L.B.); (S.H.H.)
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA; (J.J.E.K.H.); (S.T.); (K.D.); (F.X.R.); (J.D.B.)
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Correspondence:
| |
Collapse
|
3
|
Sweeney NP, Vink CA. The impact of lentiviral vector genome size and producer cell genomic to gag-pol mRNA ratios on packaging efficiency and titre. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:574-584. [PMID: 34095341 PMCID: PMC8141603 DOI: 10.1016/j.omtm.2021.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Lentiviral vectors are showing success in the clinic, but producing enough vector to meet the growing demand is a major challenge. Furthermore, next-generation gene therapy vectors encode multiple genes resulting in larger genome sizes, which is reported to reduce titers. A packaging limit has not been defined. The aim of this work was to assess the impact of genome size on the production of lentiviral vectors with an emphasis on producer cell mRNA levels, packaging efficiency, and infectivity measures. Consistent with work by others, vector titers reduced as genome size increased. While genomic infectivity accounted for much of this effect, genome sizes exceeding that of clinical HIV-1 isolates result in low titers due to a combination of both low genomic infectivity and decreased packaging efficiency. Manipulating the relative level of genomic RNA to gag-pol mRNA in the producer cells revealed a direct relationship between producer cell mRNA levels and packaging efficiency yet could not rescue packaging of oversized genomes, implying a de facto packaging defect. However, independent of genome size, an equimolar ratio between wild-type gag-pol mRNA and vector genomic RNA in producer cells was optimal for titer.
Collapse
Affiliation(s)
- Nathan P Sweeney
- GlaxoSmithKline, Cell and Gene Therapy, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Conrad A Vink
- GlaxoSmithKline, Cell and Gene Therapy, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| |
Collapse
|
4
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
5
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
6
|
Kim J, Hamid FB, Shin CG. Apoptotic events induced by prototype foamy virus infection. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2015.1137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Ali MK, Kim J, Hamid FB, Shin CG. Knockdown of the host cellular protein transportin 3 attenuates prototype foamy virus infection. Biosci Biotechnol Biochem 2015; 79:943-51. [PMID: 25660973 DOI: 10.1080/09168451.2015.1008973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transportin 3 (TNPO3) is a member of the importin-ß superfamily proteins. Despite numerous studies, the exact molecular mechanism of TNPO3 in retroviral infection is still controversial. Here, we provide evidence for the role and mechanism of TNPO3 in the replication of prototype foamy virus (PFV). Our findings revealed that PFV infection was reduced 2-fold by knockdown (KD) of TNPO3. However, late stage of viral replication including transcription, translation, viral assembly, and release was not influenced. The differential cellular localization of PFV integrase (IN) in KD cells pinpointed a remarkable reduction of viral replication at the nuclear import step. We also found that TNPO3 interacted with PFV IN but not with Gag, suggesting that IN-TNPO3 interaction is important for nuclear import of PFV pre-integration complex. Our report enlightens the mechanism of PFV interaction with TNPO3 and support ongoing research on PFV as a promising safe vector for gene therapy.
Collapse
Affiliation(s)
- Md Khadem Ali
- a Department of Systems Biotechnology , Chung Ang University , Ansung , Republic of Korea
| | | | | | | |
Collapse
|
8
|
Inhibition of foamy virus reverse transcriptase by human immunodeficiency virus type 1 RNase H inhibitors. Antimicrob Agents Chemother 2014; 58:4086-93. [PMID: 24798282 DOI: 10.1128/aac.00056-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNase H plays an essential role in the replication of human immunodeficiency virus type 1 (HIV-1). Therefore, it is a promising target for drug development. However, the identification of HIV-1 RNase H inhibitors (RHIs) has been hampered by the open morphology of its active site, the limited number of available RNase H crystal structures in complex with inhibitors, and the fact that, due to the high concentrations of Mg(2+) needed for protein stability, HIV-1 RNase H is not suitable for nuclear magnetic resonance (NMR) inhibitor studies. We recently showed that the RNase H domains of HIV-1 and prototype foamy virus (PFV) reverse transcriptases (RTs) exhibit a high degree of structural similarity. Thus, we examined whether PFV RNase H can serve as an HIV-1 RNase H model for inhibitor interaction studies. Five HIV-1 RHIs inhibited PFV RNase H activity at low-micromolar concentrations similar to those of HIV-1 RNase H, suggesting pocket similarity of the RNase H domains. NMR titration experiments with the PFV RNase H domain and the RHI RDS1643 (6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester) were performed to determine its binding site. Based on these results and previous data, in silico docking analysis showed a putative RDS1643 binding region that reaches into the PFV RNase H active site. Structural overlays were performed with HIV-1 and PFV RNase H to propose the RDS1643 binding site in HIV-1 RNase H. Our results suggest that this approach can be used to establish PFV RNase H as a model system for HIV-1 RNase H in order to identify putative inhibitor binding sites in HIV-1 RNase H.
Collapse
|
9
|
Hossain A, Ali K, Shin CG. Nuclear localization signals in prototype foamy viral integrase for successive infection and replication in dividing cells. Mol Cells 2014; 37:140-8. [PMID: 24598999 PMCID: PMC3935627 DOI: 10.14348/molcells.2014.2331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/27/2022] Open
Abstract
We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R → T), 313(R → T), 315(R → P), and 329(R → T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R → T), 318(K → T), and 324(K → T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.
Collapse
Affiliation(s)
- Alamgir Hossain
- Department of Biotechnology, Chung-Ang University, Ansung 456-756,
Korea
| | - Khadem Ali
- Department of Biotechnology, Chung-Ang University, Ansung 456-756,
Korea
| | - Cha-Gyun Shin
- Department of Biotechnology, Chung-Ang University, Ansung 456-756,
Korea
| |
Collapse
|
10
|
Rethwilm A. Specific RNA-protein interactions in the replication of foamy viruses (FVs). Curr Opin Virol 2013; 3:676-83. [PMID: 24119459 DOI: 10.1016/j.coviro.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/25/2022]
Abstract
The FV pathway of replication is fundamentally different from what we know about the strategy employed by all known other retroviruses. This unique pathway involves some distinctive RNA-protein interactions, which range from nuclear RNA export to activation of reverse transcription late in the viral replication cycle. Some peculiarities of this replication strategy will be summarized here.
Collapse
Affiliation(s)
- Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany.
| |
Collapse
|
11
|
Rethwilm A, Bodem J. Evolution of foamy viruses: the most ancient of all retroviruses. Viruses 2013; 5:2349-74. [PMID: 24072062 PMCID: PMC3814592 DOI: 10.3390/v5102349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed.
Collapse
Affiliation(s)
- Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str.7, Würzburg 97078, Germany.
| | | |
Collapse
|
12
|
Aghasadeghi MR, Zabihollahi R, Sadat SM, Esfahani AF, Ashtiani SH, Namazi R, Kashanizadeh N, Azadmanesh K. Production and evaluation of immunologic characteristics of mzNL4-3, a non-infectious HIV-1 clone with a large deletion in the pol-Sequence. Mol Biol 2013. [DOI: 10.1134/s0026893313020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Foamy virus assembly with emphasis on pol encapsidation. Viruses 2013; 5:886-900. [PMID: 23518575 PMCID: PMC3705302 DOI: 10.3390/v5030886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/02/2022] Open
Abstract
Foamy viruses (FVs) differ from all other genera of retroviruses (orthoretroviruses) in many aspects of viral replication. In this review, we discuss FV assembly, with special emphasis on Pol incorporation. FV assembly takes place intracellularly, near the pericentriolar region, at a site similar to that used by betaretroviruses. The regions of Gag, Pol and genomic RNA required for viral assembly are described. In contrast to orthoretroviral Pol, which is synthesized as a Gag-Pol fusion protein and packaged through Gag-Gag interactions, FV Pol is synthesized from a spliced mRNA lacking all Gag sequences. Thus, encapsidation of FV Pol requires a different mechanism. We detail how WT Pol lacking Gag sequences is incorporated into virus particles. In addition, a mutant in which Pol is expressed as an orthoretroviral-like Gag-Pol fusion protein is discussed. We also discuss temporal regulation of the protease, reverse transcriptase and integrase activities of WT FV Pol.
Collapse
|
14
|
Zabihollahi R, Sadat SM, Vahabpour R, Salehi M, Azadmanesh K, Siadat SD, Azizi Saraji AR, Pouriavali MH, Momen SB, Aghasadeghi MR. Introducing a frameshift mutation to the Pol sequence of HIV-1 provirus and evaluation of the immunogenic characteristics of the mutated virions (RINNL4-3). Mol Biol 2012. [DOI: 10.1134/s0026893312030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses 2011; 3:561-85. [PMID: 21994746 PMCID: PMC3185757 DOI: 10.3390/v3050561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 01/12/2023] Open
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.
Collapse
Affiliation(s)
- Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany; E-Mail:
| |
Collapse
|
16
|
Grandchamp N, Henriot D, Philippe S, Amar L, Ursulet S, Serguera C, Mallet J, Sarkis C. Influence of insulators on transgene expression from integrating and non-integrating lentiviral vectors. GENETIC VACCINES AND THERAPY 2011; 9:1. [PMID: 21205311 PMCID: PMC3025823 DOI: 10.1186/1479-0556-9-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 01/04/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND The efficacy and biosafety of lentiviral gene transfer is influenced by the design of the vector. To this end, properties of lentiviral vectors can be modified by using cis-acting elements such as the modification of the U3 region of the LTR, the incorporation of the central flap (cPPT-CTS) element, or post-transcriptional regulatory elements such as the woodchuck post-transcriptional regulatory element (WPRE). Recently, several studies evaluated the influence of the incorporation of insulators into the integrating lentiviral vector genome on transgene expression level and position effects. METHODS In the present study, the influence of the matrix attachment region (MAR) of the mouse immunoglobulin-κ (Ig-κ) or the chicken lysozyme (ChL) gene was studied on three types of HIV-1-derived lentiviral vectors: self-inactivating (SIN) lentiviral vectors (LV), double-copy lentiviral vectors (DC) and non-integrating lentiviral vectors (NILVs) in different cell types: HeLa, HEK293T, NIH-3T3, Raji, and T Jurkat cell lines and primary neural progenitors. RESULTS AND DISCUSSION Our results demonstrate that the Ig-κ MAR in the context of LV slightly increases transduction efficiency only in Hela, NIH-3T3 and Jurkat cells. In the context of double-copy lentiviral vectors, the Ig-κ MAR has no effect or even negatively influences transduction efficiency. In the same way, in the context of non-integrating lentiviral vectors, the Ig-κ MAR has no effect or even negatively influences transduction efficiency, except in differentiated primary neural progenitor cells.The ChL MAR in the context of integrating and non-integrating lentiviral vectors shows no effect or a decrease of transgene expression in all tested conditions. CONCLUSIONS This study demonstrates that MAR sequences not necessarily increase transgene expression and that the effect of these sequences is probably context dependent and/or vector dependent. Thus, this study highlights the importance to consider a MAR sequence in a given context. Moreover, other recent reports pointed out the potential effects of random integration of insulators on the expression level of endogenous genes. Taken together, these results show that the use of an insulator in a vector for gene therapy must be well assessed in the particular therapeutic context that it will be used for, and must be balanced with its potential genotoxic effects.
Collapse
Affiliation(s)
- Nicolas Grandchamp
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,NewVectys - 109 rue du Faubourg Saint-Honoré, 75008 Paris, France
| | - Dorothée Henriot
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,NewVectys - 109 rue du Faubourg Saint-Honoré, 75008 Paris, France
| | - Stéphanie Philippe
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,Unit of Gene Therapy & Stem Cell Biology, Ophthalmology Department of the University of Lausanne, Jules-Gonin Eye Hospital, avenue de France 15, 1004 Lausanne, Switzerland
| | - Lahouari Amar
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A10, 221 84 Lund, Sweden
| | - Suzanna Ursulet
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,NewVectys - 109 rue du Faubourg Saint-Honoré, 75008 Paris, France
| | - Che Serguera
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,CRC MIRcen - Laboratoire INSERM - Modélisation des biothérapies, 18, route du Panorama, 92265, Fontenay-aux-roses, France
| | - Jacques Mallet
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Chamsy Sarkis
- CRICM - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière - UPMC/INERM UMR_S975/CNRS UMR7225, Equipe de Biotechnologie et Biothérapie, 83 boulevard de l'Hôpital, 75013 Paris, France.,NewVectys - 109 rue du Faubourg Saint-Honoré, 75008 Paris, France
| |
Collapse
|
17
|
Foamy retrovirus integrase contains a Pol dimerization domain required for protease activation. J Virol 2010; 85:1655-61. [PMID: 21123385 DOI: 10.1128/jvi.01873-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike orthoretroviruses, foamy retroviruses (FV) synthesize Pol independently of Gag. The FV Pol precursor is cleaved only once between reverse transcriptase (RT) and integrase (IN) by the protease (PR), resulting in a PR-RT and an IN protein. Only the Pol precursor, not the cleaved subunits, is packaged into virions. Like orthoretroviral PRs, FV PR needs to dimerize to be active. Previously, we showed that a Pol mutant lacking IN has defects in PR activity and Pol packaging into virions. We now show that introduction of a leucine zipper (zip) dimerization motif in an IN truncation mutant can restore PR activity, leading to Pol processing in cells. However, these zip mutants neither cleave Gag nor incorporate Pol into virions. We propose that IN is required for Pol dimerization, which is necessary for the creation of a functional PR active site.
Collapse
|
18
|
Zamborlini A, Renault N, Saïb A, Delelis O. Early reverse transcription is essential for productive foamy virus infection. PLoS One 2010; 5:e11023. [PMID: 20552014 PMCID: PMC2884000 DOI: 10.1371/journal.pone.0011023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/18/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although viral RNA constitutes the majority of nucleic acids packaged in virions, a late occurring step of reverse transcription leads to the presence of infectious viral cDNA in foamy virus particles. This peculiarity distinguishes them from the rest of the retroviral family. PRINCIPAL FINDINGS To evaluate the respective contribution of these viral nucleic acids in the replication of foamy viruses, their fate was studied by real-time PCR and RT-PCR early after infection, in the presence or in the absence of AZT. We found that an early reverse transcription step, which occurs during the first hours post-entry, is absolutely required for productive infection. Remarkably, sensitivity to AZT can be counteracted by increasing the multiplicity of infection (moi). We also show that 2-LTR circular viral DNA, which appears as soon as four hours post-infection, is transcriptionally competent. CONCLUSION Taken together, our data demonstrate that an early reverse transcription process, which takes place soon after viral entry, is indispensable for infectivity of FVs at low moi, when the amount of DNA-containing particles is not sufficient to lead to a productive infection. This study demonstrates a key role of the packaged viral RNA in the foamy virus infection, suggesting that the replication of this virus can be achieved by involving either viral DNA or RNA genome, depending on the condition of infection.
Collapse
Affiliation(s)
- Alessia Zamborlini
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
| | - Noémie Renault
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
| | - Ali Saïb
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
- Chaire de Biologie, Conservatoire National des Arts et Métiers, Paris, France
| | | |
Collapse
|
19
|
Abstract
One of the most fascinating areas in retrovirology is the study of foamy viruses (FVs), because these viruses appear to do everything that is common to all other retroviruses differently. FVs have found a completely new way to propagate their genome. And they do this extremely successfully because most of wild non-human primates, felines, bovines, equines, and small ruminants are likely to be non-pathogenically infected. The success of FVs can also be viewed from a different angle, since they replicate very conservatively and do not need to shape their genotypic and phenotypic makeup every now and then. The elucidation of the underlying basic mechanisms of the FV replication strategy is the topic of this review.
Collapse
|
20
|
Hartl MJ, Mayr F, Rethwilm A, Wöhrl BM. Biophysical and enzymatic properties of the simian and prototype foamy virus reverse transcriptases. Retrovirology 2010; 7:5. [PMID: 20113504 PMCID: PMC2835651 DOI: 10.1186/1742-4690-7-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/29/2010] [Indexed: 11/28/2022] Open
Abstract
Background The foamy virus Pol protein is translated independently from Gag using a separate mRNA. Thus, in contrast to orthoretroviruses no Gag-Pol precursor protein is synthesized. Only the integrase domain is cleaved off from Pol resulting in a mature reverse transcriptase harboring the protease domain at the N-terminus (PR-RT). Although the homology between the PR-RTs from simian foamy virus from macaques (SFVmac) and the prototype foamy virus (PFV), probably originating from chimpanzee, exceeds 90%, several differences in the biophysical and biochemical properties of the two enzymes have been reported (i.e. SFVmac develops resistance to the nucleoside inhibitor azidothymidine (AZT) whereas PFV remains AZT sensitive even if the resistance mutations from SFVmac PR-RT are introduced into the PFV PR-RT gene). Moreover, contradictory data on the monomer/dimer status of the foamy virus protease have been published. Results We set out to purify and directly compare the monomer/dimer status and the enzymatic behavior of the two wild type PR-RT enzymes from SFVmac and PFV in order to get a better understanding of the protein and enzyme functions. We determined kinetic parameters for the two enzymes, and we show that PFV PR-RT is also a monomeric protein. Conclusions Our data show that the PR-RTs from SFV and PFV are monomeric proteins with similar biochemical and biophysical properties that are in some aspects comparable with MLV RT, but differ from those of HIV-1 RT. These differences might be due to the different conditions the viruses are confronted with in dividing and non-dividing cells.
Collapse
Affiliation(s)
- Maximilian J Hartl
- Universität Bayreuth, Lehrstuhl für Struktur und Chemie der Biopolymere & Research, Center for Biomacromolecules, 95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
21
|
Gärtner K, Wiktorowicz T, Park J, Mergia A, Rethwilm A, Scheller C. Accuracy estimation of foamy virus genome copying. Retrovirology 2009; 6:32. [PMID: 19348676 PMCID: PMC2678077 DOI: 10.1186/1742-4690-6-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/06/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Foamy viruses (FVs) are the most genetically stable viruses of the retrovirus family. This is in contrast to the in vitro error rate found for recombinant FV reverse transcriptase (RT). To investigate the accuracy of FV genome copying in vivo we analyzed the occurrence of mutations in HEK 293T cell culture after a single round of reverse transcription using a replication-deficient vector system. Furthermore, the frequency of FV recombination by template switching (TS) and the cross-packaging ability of different FV strains were analyzed. RESULTS We initially sequenced 90,000 nucleotides and detected 39 mutations, corresponding to an in vivo error rate of approximately 4 x 10-4 per site per replication cycle. Surprisingly, all mutations were transitions from G to A, suggesting that APOBEC3 activity is the driving force for the majority of mutations detected in our experimental system. In line with this, we detected a late but significant APOBEC3G and 3F mRNA by quantitative PCR in the cells. We then analyzed 170,000 additional nucleotides from experiments in which we co-transfected the APOBEC3-interfering foamy viral bet gene and observed a significant 50% drop in G to A mutations, indicating that APOBEC activity indeed contributes substantially to the foamy viral replication error rate in vivo. However, even in the presence of Bet, 35 out of 37 substitutions were G to A, suggesting that residual APOBEC activity accounted for most of the observed mutations. If we subtract these APOBEC-like mutations from the total number of mutations, we calculate a maximal intrinsic in vivo error rate of 1.1 x 10-5 per site per replication. In addition to the point mutations, we detected one 49 bp deletion within the analyzed 260000 nucleotides.Analysis of the recombination frequency of FV vector genomes revealed a 27% probability for a template switching (TS) event within a 1 kilobase (kb) region. This corresponds to a 98% probability that FVs undergo at least one additional TS event per replication cycle. We also show that a given FV particle is able to cross-transfer a heterologous FV genome, although at reduced efficiency than the homologous vector. CONCLUSION Our results indicate that the copying of the FV genome is more accurate than previously thought. On the other hand recombination among FV genomes appears to be a frequent event.
Collapse
Affiliation(s)
- Kathleen Gärtner
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Jeonghae Park
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ayalew Mergia
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Carsten Scheller
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| |
Collapse
|
22
|
Hizi A, Herschhorn A. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): a comparison of their molecular and biochemical properties. Virus Res 2008; 134:203-20. [PMID: 18291546 DOI: 10.1016/j.virusres.2007.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
This chapter reviews most of the biochemical data on reverse transcriptases (RTs) of retroviruses, other than those of HIV-1 and murine leukemia virus (MLV) that are covered in detail in other reviews of this special edition devoted to reverse transcriptases. The various RTs mentioned are grouped according to their retroviral origins and include the RTs of the alpharetroviruses, lentiviruses (both primate, other than HIV-1, and non-primate lentiviruses), betaretroviruses, deltaretroviruses and spumaretroviruses. For each RT group, the processing, molecular organization as well as the enzymatic activities and biochemical properties are described. Several RTs function as dimers, primarily as heterodimers, while the others are active as monomeric proteins. The comparisons between the diverse properties of the various RTs show the common traits that characterize the RTs from all retroviral subfamilies. In addition, the unique features of the specific RTs groups are also discussed.
Collapse
Affiliation(s)
- Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
23
|
Kretzschmar B, Nowrouzi A, Hartl MJ, Gärtner K, Wiktorowicz T, Herchenröder O, Kanzler S, Rudolph W, Mergia A, Wöhrl B, Rethwilm A. AZT-resistant foamy virus. Virology 2007; 370:151-7. [PMID: 17904181 PMCID: PMC2276251 DOI: 10.1016/j.virol.2007.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/25/2007] [Accepted: 08/21/2007] [Indexed: 11/24/2022]
Abstract
Azidothymidine (AZT) is a reverse transcriptase (RT) inhibitor that efficiently blocks the replication of spumaretroviruses or foamy viruses (FVs). To more precisely elucidate the mechanism of action of the FV RT enzyme, we generated an AZT-resistant FV in cell culture. Biologically resistant virus was obtained for simian foamy virus from macaque (SFVmac), which was insensitive to AZT concentrations of 1 mM, but not for FVs derived from chimpanzees. Nucleotide sequencing revealed four non-silent mutations in the pol gene. Introduction of these mutations into an infectious molecular clone identified all changes to be required for the fully AZT-resistant phenotype of SFVmac. The alteration of individual sites showed that AZT resistance in SFVmac was likely acquired by consecutive acquisition of pol mutations in a defined order, because some alterations on their own did not result in an efficiently replicating virus, neither in the presence nor in the absence of AZT. The introduction of the mutations into the RT of the closely related prototypic FV (PFV) did not yield an AZT-resistant virus, instead they significantly impaired the viral fitness.
Collapse
Affiliation(s)
- Benedikt Kretzschmar
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Ali Nowrouzi
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | - Kathleen Gärtner
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Ottmar Herchenröder
- Technische Universität Dresden, Medizinische Fakultät “Carl Gustav Carus,” Institut für Virologie, Dresden, Germany
| | - Sylvia Kanzler
- Technische Universität Dresden, Medizinische Fakultät “Carl Gustav Carus,” Institut für Virologie, Dresden, Germany
| | - Wolfram Rudolph
- Technische Universität Dresden, Medizinische Fakultät “Carl Gustav Carus,” Institut für Virologie, Dresden, Germany
| | - Ayalew Mergia
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Birgitta Wöhrl
- Universität Bayreuth, Lehrstuhl Biopolymere, Bayreuth, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
- Corresponding author. Fax: +49 931 201 49553. E-mail address: (A. Rethwilm)
| |
Collapse
|
24
|
Boyer PL, Stenbak CR, Hoberman D, Linial ML, Hughes SH. In vitro fidelity of the prototype primate foamy virus (PFV) RT compared to HIV-1 RT. Virology 2007; 367:253-64. [PMID: 17631930 PMCID: PMC2720797 DOI: 10.1016/j.virol.2007.05.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/22/2007] [Accepted: 05/14/2007] [Indexed: 01/30/2023]
Abstract
We compared the in vitro fidelity of wild-type human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) and the prototype foamy virus (PFV) RT. Both enzymes had similar error rates for single nucleotide substitutions; however, PFV RT did not appear to make errors at specific hotspots, like HIV-1 RT. In addition, PFV RT made more deletions and insertions than HIV-1 RT. Although the majority of the missense errors made by HIV-1 RT and PFV RT are different, relatively few of the mutations caused by either enzyme can be explained by a misalignment/slippage mechanism. We suggest that the higher polymerase activity of PFV RT could contribute to the ability of the enzyme to jump to the same or a different template.
Collapse
Affiliation(s)
- Paul L. Boyer
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | | | - David Hoberman
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Maxine L. Linial
- Division of Basic Sciences A3-015, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stephen H. Hughes
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702
- Corresponding author. Fax: +1 301 846-6966. E-mail address:
| |
Collapse
|
25
|
Abstract
Foamy virus Pol precursor protein processing by the viral protease occurs at only one site, releasing a protease-reverse transcriptase and an integrase protein. To examine whether the cleavage of the Pol precursor protein is necessary for enzymatic activities and efficient viral replication, several mutations were generated around the cleavage site. All cleavage site mutants synthesize wild-type levels of Pol precursor protein. Mutants containing more than two amino acid substitutions around the cleavage site exhibit no detectable Pol processing. The Pol cleavage site is not required for the production of infectious particles in a single round of infection, but is important for subsequent rounds of viral infection. Mutations around the cleavage site affected the enzymatic activities of the protease and reverse transcriptase and prevented replication after two rounds of infection. Interestingly, Pol encapsidation is significantly reduced in some of the mutants.
Collapse
Affiliation(s)
- Jacqueline Roy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | |
Collapse
|
26
|
Baum C, Schambach A, Bohne J, Galla M. Retrovirus Vectors: Toward the Plentivirus? Mol Ther 2006; 13:1050-63. [PMID: 16632409 DOI: 10.1016/j.ymthe.2006.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 01/19/2023] Open
Abstract
Recombinant retroviral vectors based upon simple gammaretroviruses, complex lentiviruses, or potentially nonpathogenic spumaviruses represent relatively well characterized tools that are widely used for stable gene transfer. Different members of the Retroviridae family have developed distinct and potentially useful features related to their life cycle. These natural differences can be exploited for specialized applications in gene therapy and could conceivably be combined to create future retroviral hybrid vectors, ideally incorporating the following features: an efficient, noncytopathic packaging system with low likelihood of recombination; serum resistance; an ability to pseudotype with cell-specific envelopes; high-fidelity reverse transcription before cell entry; unrestricted cytoplasmic transport and nuclear import; an insulated expression cassette; specific chromosomal targeting; and physiologic or regulated levels of transgene expression. We envisage that, compared to contemporary vectors, a hybrid vector combining these properties would have increased therapeutic efficacy and an enhanced biosafety profile. Many of the above goals will require the inclusion of nonretroviral components into vector particles or transgenes.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
27
|
Cartellieri M, Rudolph W, Herchenröder O, Lindemann D, Rethwilm A. Determination of the relative amounts of Gag and Pol proteins in foamy virus particles. Retrovirology 2005; 2:44. [PMID: 16004609 PMCID: PMC1185564 DOI: 10.1186/1742-4690-2-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/08/2005] [Indexed: 11/10/2022] Open
Abstract
We determined the relative ratios of Gag and Pol molecules in highly purified virions of spumaretroviruses or foamy viruses (FVs) using monoclonal antibodies and bacterially expressed reference proteins. We found that the cleaved p68Gag moiety dominates in infectious FVs. Furthermore, approximate mean ratios in FV are 16:1 (pr71Gag plus p68Gag:p85RT),12:1 (p68Gag:p85RT), and 10:1 (pr71Gag plus p68Gag:p40IN). Thus, the results indicate that FVs have found a way to incorporate approximately as much Pol protein into their capsids as orthoretroviruses, despite a completely different Pol expression strategy.
Collapse
Affiliation(s)
- Marc Cartellieri
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | - Wolfram Rudolph
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
| | - Ottmar Herchenröder
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
| | - Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| |
Collapse
|
28
|
Peters K, Wiktorowicz T, Heinkelein M, Rethwilm A. RNA and protein requirements for incorporation of the Pol protein into foamy virus particles. J Virol 2005; 79:7005-13. [PMID: 15890940 PMCID: PMC1112116 DOI: 10.1128/jvi.79.11.7005-7013.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5' long terminal repeat and one at the 3' end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins.
Collapse
Affiliation(s)
- Katrin Peters
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
29
|
Stenbak CR, Linial ML. Role of the C terminus of foamy virus Gag in RNA packaging and Pol expression. J Virol 2004; 78:9423-30. [PMID: 15308736 PMCID: PMC506921 DOI: 10.1128/jvi.78.17.9423-9430.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/14/2004] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FV) are complex retroviruses that possess several unique features that distinguish them from all other retroviruses. FV Gag and Pol proteins are expressed independently of one another, and both proteins undergo single cleavage events. Thus, the mature FV Gag protein does not consist of the matrix, capsid, and nucleocapsid (NC) proteins found in orthoretroviruses, and the putative NC domain of FV Gag lacks the hallmark Cys-His motifs or I domains. As there is no Gag-Pol fusion protein, the mechanism of Pol packaging is different but unknown. FV RNA packaging is not well understood either. The C terminus of FV Gag has three glycine-arginine motifs (GR boxes), the first of which has been shown to have nucleic acid binding properties in vitro. The role of these GR boxes in RNA packaging and Pol packaging was investigated with a series of Gag C-terminal truncation mutants. GR box 1 was found to be the major determinant of RNA packaging, but all three GR boxes were required to achieve wild-type levels of RNA packaging. In addition, Pol was packaged in the absence of GR box 3, but GR boxes 1 and 2 were required for efficient Pol packaging. Interestingly, the Gag truncation mutants demonstrated decreased Pol expression levels as well as defects in Pol cleavage. Thus, the C terminus of FV Gag was found to be responsible for RNA packaging, as well as being involved in the expression, cleavage, and incorporation of the Pol protein.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Gene Expression Regulation, Viral
- Gene Products, gag/biosynthesis
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, pol/biosynthesis
- Gene Products, pol/metabolism
- Humans
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion/genetics
- Spumavirus/genetics
- Spumavirus/physiology
- Virion/chemistry
- Virion/genetics
- Virion/metabolism
- Virus Assembly
Collapse
Affiliation(s)
- Carolyn R Stenbak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
30
|
Boyer PL, Stenbak CR, Clark PK, Linial ML, Hughes SH. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase. J Virol 2004; 78:6112-21. [PMID: 15163704 PMCID: PMC416499 DOI: 10.1128/jvi.78.12.6112-6121.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy virus (FV) replication, while related to that of orthoretroviruses, differs at a number of steps. Several of these differences involve the reverse transcriptase (RT). There appear to be fewer RTs present in FV than in orthoretroviruses; we previously proposed that the polymerase of FV RT was more active than orthoretroviral RTs to compensate for the numerical difference. Here we present further characterization of the RT of FV. The polymerase activity of FV RT was greater than that of human immunodeficiency virus type 1 RT in a variety of assays. We also examined the RNase H activity of FV RT, and we propose that FV RT has a basic loop in the RNase H domain. Although the sequence of the basic loop of FV RT is different from the basic loop of either Moloney leukemia virus RNase H or Escherichia coli RNase H, the FV RT basic loop appears to have a similar function.
Collapse
Affiliation(s)
- Paul L Boyer
- HIV Drug Resistance Program, National Cancer Institute-FCRDC, P.O. Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
31
|
Roy J, Rudolph W, Juretzek T, Gärtner K, Bock M, Herchenröder O, Lindemann D, Heinkelein M, Rethwilm A. Feline foamy virus genome and replication strategy. J Virol 2003; 77:11324-31. [PMID: 14557618 PMCID: PMC229293 DOI: 10.1128/jvi.77.21.11324-11331.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crucial aspects of the foamy virus (FV) replication strategy have so far only been investigated for the prototypic FV (PFV) isolate, which is supposed to be derived from nonhuman primates. To study whether the unusual features of this replication pathway also apply to more-distantly related FVs, we constructed feline FV (FFV) infectious molecular clones and vectors. It is shown by quantitative RNA and DNA PCR analysis that FFV virions contain more RNA than DNA. Full-length linear DNA was found in extracellular FFV by Southern blot analysis. Similar to PFV, azidothymidine inhibition experiments and the transfection of nucleic acids extracted from extracellular FFV indicated that DNA is the functional relevant FFV genome. Unlike PFV, no evidence was found indicating that FFV recycles its DNA into the nucleus.
Collapse
Affiliation(s)
- Jacqueline Roy
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Verschoor EJ, Langenhuijzen S, van den Engel S, Niphuis H, Warren KS, Heeney JL. Structural and evolutionary analysis of an orangutan foamy virus. J Virol 2003; 77:8584-7. [PMID: 12857929 PMCID: PMC165240 DOI: 10.1128/jvi.77.15.8584-8587.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 04/30/2003] [Indexed: 11/20/2022] Open
Abstract
The full-length proviral genome of a foamy virus infecting a Bornean orangutan was amplified, and its sequence was analyzed. Although the genome showed a clear resemblance to other published foamy virus genomes from apes and monkeys, phylogenetic analysis revealed that simian foamy virus SFVora was evolutionarily equidistant from foamy viruses from other hominoids and from those from Old World monkeys. This finding suggests an independent evolution within its host over a long period of time.
Collapse
Affiliation(s)
- Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|