1
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Kim J, Lee GE, Shin CG. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy. J Microbiol Biotechnol 2020; 30:1273-1281. [PMID: 32699199 PMCID: PMC9728412 DOI: 10.4014/jmb.2003.03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3067 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
3
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
4
|
Spannaus R, Miller C, Lindemann D, Bodem J. Purification of foamy viral particles. Virology 2017; 506:28-33. [PMID: 28314126 DOI: 10.1016/j.virol.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/18/2022]
Abstract
Foamy viruses are non-pathogenic retroviruses and represent a tool for vector development. For gene therapy applications and for analyses of viral protein composition infectious particles need to be purified, which has been difficult for foamy viruses in the past. Here, we describe a novel, simple, and fast purification method for prototype foamy viruses with high purity using size exclusion and affinity chromatography. More than 99,9% of the contaminating proteins were removed. The purified viruses were used to determine the amount of the incorporated Pol protein relative to Gag. The determined Gag to Pol PR-RT ratio of 30:1 confirmed previous studies suggesting FV virions encapsidate fewer number of Pol molecules than orthoretroviruses.
Collapse
Affiliation(s)
- Ralf Spannaus
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Christina Miller
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Dirk Lindemann
- Institut für Virologie, Technische Universität Dresden, Germany
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Germany.
| |
Collapse
|
5
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Hamann MV, Müllers E, Reh J, Stanke N, Effantin G, Weissenhorn W, Lindemann D. The cooperative function of arginine residues in the Prototype Foamy Virus Gag C-terminus mediates viral and cellular RNA encapsidation. Retrovirology 2014; 11:87. [PMID: 25292281 PMCID: PMC4198681 DOI: 10.1186/s12977-014-0087-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND One unique feature of the foamy virus (FV) capsid protein Gag is the absence of Cys-His motifs, which in orthoretroviruses are irreplaceable for multitude functions including viral RNA genome recognition and packaging. Instead, FV Gag contains glycine-arginine-rich (GR) sequences at its C-terminus. In case of prototype FV (PFV) these are historically grouped in three boxes, which have been shown to play essential functions in genome reverse transcription, virion infectivity and particle morphogenesis. Additional functions for RNA packaging and Pol encapsidation were suggested, but have not been conclusively addressed. RESULTS Here we show that released wild type PFV particles, like orthoretroviruses, contain various cellular RNAs in addition to viral genome. Unlike orthoretroviruses, the content of selected cellular RNAs in capsids of PFV vector particles was not altered by viral genome encapsidation. Deletion of individual GR boxes had only minor negative effects (2 to 4-fold) on viral and cellular RNA encapsidation over a wide range of cellular Gag to viral genome ratios examined. Only the concurrent deletion of all three PFV Gag GR boxes, or the substitution of multiple arginine residues residing in the C-terminal GR box region by alanine, abolished both viral and cellular RNA encapsidation (>50 to >3,000-fold reduced), independent of the viral production system used. Consequently, those mutants also lacked detectable amounts of encapsidated Pol and were non-infectious. In contrast, particle release was reduced to a much lower extent (3 to 20-fold). CONCLUSIONS Taken together, our data provides the first identification of a full-length PFV Gag mutant devoid in genome packaging and the first report of cellular RNA encapsidation into PFV particles. Our results suggest that the cooperative action of C-terminal clustered positively charged residues, present in all FV Gag proteins, is the main viral protein determinant for viral and cellular RNA encapsidation. The viral genome independent efficiency of cellular RNA encapsidation suggests differential packaging mechanisms for both types of RNAs. Finally, this study indicates that analogous to orthoretroviruses, Gag - nucleic acid interactions are required for FV capsid assembly and efficient particle release.
Collapse
Affiliation(s)
- Martin V Hamann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| | - Erik Müllers
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany. .,Present address: Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Juliane Reh
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| | - Nicole Stanke
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| | - Gregory Effantin
- Univ. Grenoble Alpes, UVHCI, F-38000, Grenoble, France. .,CNRS, UVHCI, F-38000, Grenoble, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, UVHCI, F-38000, Grenoble, France. .,CNRS, UVHCI, F-38000, Grenoble, France.
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Rethwilm A. Specific RNA-protein interactions in the replication of foamy viruses (FVs). Curr Opin Virol 2013; 3:676-83. [PMID: 24119459 DOI: 10.1016/j.coviro.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/25/2022]
Abstract
The FV pathway of replication is fundamentally different from what we know about the strategy employed by all known other retroviruses. This unique pathway involves some distinctive RNA-protein interactions, which range from nuclear RNA export to activation of reverse transcription late in the viral replication cycle. Some peculiarities of this replication strategy will be summarized here.
Collapse
Affiliation(s)
- Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany.
| |
Collapse
|
8
|
Structural and functional insights into foamy viral integrase. Viruses 2013; 5:1850-66. [PMID: 23872492 PMCID: PMC3738965 DOI: 10.3390/v5071850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Successful integration of retroviral DNA into the host chromosome is an essential step for viral replication. The process is mediated by virally encoded integrase (IN) and orchestrated by 3'-end processing and the strand transfer reaction. In vitro reaction conditions, such as substrate specificity, cofactor usage, and cellular binding partners for such reactions by the three distinct domains of prototype foamy viral integrase (PFV-IN) have been described well in several reports. Recent studies on the three-dimensional structure of the interacting complexes between PFV-IN and DNA, cofactors, binding partners, or inhibitors have explored the mechanistic details of such interactions and shown its utilization as an important target to develop anti-retroviral drugs. The presence of a potent, non-transferable nuclear localization signal in the PFV C-terminal domain extends its use as a model for investigating cellular trafficking of large molecular complexes through the nuclear pore complex and also to identify novel cellular targets for such trafficking. This review focuses on recent advancements in the structural analysis and in vitro functional aspects of PFV-IN.
Collapse
|
9
|
The foamy virus Gag proteins: what makes them different? Viruses 2013; 5:1023-41. [PMID: 23531622 PMCID: PMC3705263 DOI: 10.3390/v5041023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Gag proteins play an important role in many stages of the retroviral replication cycle. They orchestrate viral assembly, interact with numerous host cell proteins, engage in regulation of viral gene expression, and provide the main driving force for virus intracellular trafficking and budding. Foamy Viruses (FV), also known as spumaviruses, display a number of unique features among retroviruses. Many of these features can be attributed to their Gag proteins. FV Gag proteins lack characteristic orthoretroviral domains like membrane-binding domains (M domains), the major homology region (MHR), and the hallmark Cys-His motifs. In contrast, they contain several distinct domains such as the essential Gag-Env interaction domain and the glycine and arginine rich boxes (GR boxes). Furthermore, FV Gag only undergoes limited maturation and follows an unusual pathway for nuclear translocation. This review summarizes the known FV Gag domains and motifs and their functions. In particular, it provides an overview of the unique structural and functional properties that distinguish FV Gag proteins from orthoretroviral Gag proteins.
Collapse
|
10
|
Foamy virus assembly with emphasis on pol encapsidation. Viruses 2013; 5:886-900. [PMID: 23518575 PMCID: PMC3705302 DOI: 10.3390/v5030886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/02/2022] Open
Abstract
Foamy viruses (FVs) differ from all other genera of retroviruses (orthoretroviruses) in many aspects of viral replication. In this review, we discuss FV assembly, with special emphasis on Pol incorporation. FV assembly takes place intracellularly, near the pericentriolar region, at a site similar to that used by betaretroviruses. The regions of Gag, Pol and genomic RNA required for viral assembly are described. In contrast to orthoretroviral Pol, which is synthesized as a Gag-Pol fusion protein and packaged through Gag-Gag interactions, FV Pol is synthesized from a spliced mRNA lacking all Gag sequences. Thus, encapsidation of FV Pol requires a different mechanism. We detail how WT Pol lacking Gag sequences is incorporated into virus particles. In addition, a mutant in which Pol is expressed as an orthoretroviral-like Gag-Pol fusion protein is discussed. We also discuss temporal regulation of the protease, reverse transcriptase and integrase activities of WT FV Pol.
Collapse
|
11
|
Prototype foamy virus protease activity is essential for intraparticle reverse transcription initiation but not absolutely required for uncoating upon host cell entry. J Virol 2013; 87:3163-76. [PMID: 23283957 DOI: 10.1128/jvi.02323-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) are unique among retroviruses in performing genome reverse transcription (RTr) late in replication, resulting in an infectious DNA genome, and also in their unusual Pol biosynthesis and encapsidation strategy. In addition, FVs display only very limited Gag and Pol processing by the viral protease (PR) during particle morphogenesis and disassembly, both thought to be crucial for viral infectivity. Here, we report the generation of functional prototype FV (PFV) particles from mature or partially processed viral capsid and enzymatic proteins with infectivity levels of up to 20% of the wild type. Analysis of protein and nucleic acid composition, as well as infectivity, of virions generated from different Gag and Pol combinations (including both expression-optimized and authentic PFV open reading frames [ORFs]) revealed that precursor processing of Gag, but not Pol, during particle assembly is essential for production of infectious virions. Surprisingly, when processed Gag (instead of Gag precursor) was provided together with PR-deficient Pol precursor during virus production, infectious, viral DNA-containing particles were obtained, even when different vector or proviral expression systems were used. Although virion infectivity was reduced to 0.5 to 2% relative to that of the respective parental constructs, this finding overturns the current dogma in the FV literature that viral PR activity is absolutely essential at some point during target cell entry. Furthermore, it demonstrates that viral PR-mediated Gag precursor processing during particle assembly initiates intraparticle RTr. Finally, it shows that reverse transcriptase (RT) and integrase are enzymatically active in the Pol precursor within the viral capsid, thus enabling productive host cell infection.
Collapse
|
12
|
The prototype foamy virus protease is active independently of the integrase domain. Retrovirology 2012; 9:41. [PMID: 22574974 PMCID: PMC3407527 DOI: 10.1186/1742-4690-9-41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/10/2012] [Indexed: 11/18/2022] Open
Abstract
Background Recently, contradictory results on foamy virus protease activity were published. While our own results indicated that protease activity is regulated by the viral RNA, others suggested that the integrase is involved in the regulation of the protease. Results To solve this discrepancy we performed additional experiments showing that the protease-reverse transcriptase (PR-RT) exhibits protease activity in vitro and in vivo, which is independent of the integrase domain. In contrast, Pol incorporation, and therefore PR activity in the viral context, is dependent on the integrase domain. To further analyse the regulation of the protease, we incorporated Pol in viruses by expressing a GagPol fusion protein, which supported near wild-type like infectivity. A GagPR-RT fusion, lacking the integrase domain, also resulted in wild-type like Gag processing, indicating that the integrase is dispensable for viral Gag maturation. Furthermore, we demonstrate with a trans-complementation assays that the PR in the context of the PR-RT protein supports in trans both, viral maturation and infectivity. Conclusion We provide evidence that the FV integrase is required for Pol encapsidation and that the FV PR activity is integrase independent. We show that an active PR can be encapsidated in trans as a GagPR-RT fusion protein.
Collapse
|
13
|
Foamy virus Pol protein expressed as a Gag-Pol fusion retains enzymatic activities, allowing for infectious virus production. J Virol 2012; 86:5992-6001. [PMID: 22491447 DOI: 10.1128/jvi.06979-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FV) synthesize Pol from a spliced pol mRNA independently of Gag, unlike orthoretroviruses, which synthesize Pol as a Gag-Pol protein that coassembles with Gag. We found that prototype FV (PFV) mutants expressing Gag and Pol only as a Gag-Pol protein without the spliced Pol contain protease activity equivalent to that of wild-type (WT) Pol. Regardless of the presence or absence of the spliced Pol, the PFV Gag-Pol proteins can assemble into virus-like particles (VLPs), in contrast to the orthoretroviral Gag-Pol proteins, which cannot form VLPs. However, the PFV Gag-Pol VLPs have aberrant morphologies and are not infectious. In the absence of the spliced Pol, coexpression of a PFV Gag-Pol protein with Gag can produce infectious virions. Our results suggest that enzymes encoded by PFV pol (protease, reverse transcriptase, and integrase) are enzymatically active if they are synthesized as part of a Gag-Pol protein.
Collapse
|
14
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Yu SF, Lujan P, Jackson DL, Emerman M, Linial ML. The DEAD-box RNA helicase DDX6 is required for efficient encapsidation of a retroviral genome. PLoS Pathog 2011; 7:e1002303. [PMID: 22022269 PMCID: PMC3192847 DOI: 10.1371/journal.ppat.1002303] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022] Open
Abstract
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging. Foamy viruses are complex retroviruses that infect non-human primates, cats, cows, and horses. Humans are not natural hosts but can acquire primate foamy viruses as zoonotic infections. During foamy virus assembly process, viral RNAs and Gag capsid proteins are targeted to a discrete intra-cytoplasmic site where viral particles are assembled. One key step in this process is to effectively incorporate the virus genome into particles. For retroviruses, encapsidation of viral genomic RNA is known to initiate when specific packaging sequences within the viral RNA are recognized by the nucleocapsid domain of the Gag polypeptide. However, the contribution of host factors to the assembly process is largely unknown. In this study, we find that after foamy virus infection some of the cellular DEAD-box RNA helicase DDX6 specifically re-localizes to the viral assembly site, and is needed for efficient packaging of viral RNA into particles. Our data suggest that the ATP hydrolysis and RNA unwinding activities of DDX6 function in remodeling the structure of viral RNA and/or RNA-Gag ribonucleoprotein to facilitate its incorporation into particles. Our work provides the first report of an evolutionarily conserved host protein involved in the assembly of retrovirus genomes into particles.
Collapse
Affiliation(s)
- Shuyuarn F. Yu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Phillip Lujan
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dana L. Jackson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Maxine L. Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Park J, Mergia A. Preparation of simian foamy virus type-1 vectors. Cold Spring Harb Protoc 2011; 2011:2011/9/pdb.prot065516. [PMID: 21880822 DOI: 10.1101/pdb.prot065516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that offer opportunities for efficient and safe gene transfer in various cell types from different species. These viruses have unique replication mechanisms that are distinct from other retroviruses, which may give an advantage to FV-mediated gene transfer. This protocol describes a method for simian foamy virus type-1 (SFV-1) vector preparation and concentration. A transient transfection of vector and packaging constructs allows generation of the SFV-1 vector with titers of 10(7)/mL. The vectors can be further concentrated by 100-200-fold without significant loss of vector titer.
Collapse
|
17
|
Swiersy A, Wiek C, Reh J, Zentgraf H, Lindemann D. Orthoretroviral-like prototype foamy virus Gag-Pol expression is compatible with viral replication. Retrovirology 2011; 8:66. [PMID: 21843316 PMCID: PMC3196705 DOI: 10.1186/1742-4690-8-66] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/15/2011] [Indexed: 01/31/2023] Open
Abstract
Background Foamy viruses (FVs) unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. Results Several Prototype FV (PFV) Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85PR-RT and p40IN Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71Gag resulted in a significant copackaging of these proteins. Conclusions Non-particle associated PFV Pol appears to be naturally released from infected cells by a yet unknown mechanism. The absence of particle-associated Pol precursor suggests its rapid processing upon particle incorporation. Analysis of different PFV Gag-Pol fusion constructs demonstrates that orthoretroviral-like Pol expression is compatible with FV replication in principal as long as fusion protein processing is possible. Furthermore, unlike orthoretroviruses, PFV particle release and infectivity tolerate larger differences in relative cellular Gag/Pol levels.
Collapse
Affiliation(s)
- Anka Swiersy
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
18
|
Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses 2011; 3:561-85. [PMID: 21994746 PMCID: PMC3185757 DOI: 10.3390/v3050561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 01/12/2023] Open
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.
Collapse
Affiliation(s)
- Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany; E-Mail:
| |
Collapse
|
19
|
Regulation of foamy virus protease activity by viral RNA: a novel and unique mechanism among retroviruses. J Virol 2011; 85:4462-9. [PMID: 21325405 DOI: 10.1128/jvi.02211-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) synthesize the Pol precursor protein from a specific transcript. Thus, in contrast to what was found for orthoretroviruses, e.g., human immunodeficiency virus, no Gag-Pol precursor protein is synthesized. Foamy viral Pol consists of a protease (PR) domain, a reverse transcriptase domain, and an integrase domain and is processed into a mature protease-reverse transcriptase (PR-RT) fusion protein and the integrase. Protease activity has to be strictly regulated in order to avoid premature Gag and Pol processing before virus assembly. We have demonstrated recently that FV protease is an inactive monomer with a very weak dimerization tendency and postulated protease activation through dimerization. Here, we identify a specific protease-activating RNA motif (PARM) located in the pol region of viral RNA which stimulates PR activity in vitro and in vivo, revealing a novel and unique mechanism of retroviral protease activation. This mechanism is strikingly different to that of orthoretroviruses, where the protease can be activated even in the absence of viral RNA during the assembly of virus-like particles. Although it has been shown that the integrase domain is important for Pol uptake, activation of the foamy virus protease is integrase independent. We show that at least two foamy virus PR-RT molecules bind to the PARM and only RNAs containing the PARM result in significant activation of the protease. DNA harboring the PARM is not capable of protease activation. Structure determination of the PARM by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE) revealed a distinct RNA folding, important for protease activation and thus virus maturation.
Collapse
|
20
|
Foamy retrovirus integrase contains a Pol dimerization domain required for protease activation. J Virol 2010; 85:1655-61. [PMID: 21123385 DOI: 10.1128/jvi.01873-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike orthoretroviruses, foamy retroviruses (FV) synthesize Pol independently of Gag. The FV Pol precursor is cleaved only once between reverse transcriptase (RT) and integrase (IN) by the protease (PR), resulting in a PR-RT and an IN protein. Only the Pol precursor, not the cleaved subunits, is packaged into virions. Like orthoretroviral PRs, FV PR needs to dimerize to be active. Previously, we showed that a Pol mutant lacking IN has defects in PR activity and Pol packaging into virions. We now show that introduction of a leucine zipper (zip) dimerization motif in an IN truncation mutant can restore PR activity, leading to Pol processing in cells. However, these zip mutants neither cleave Gag nor incorporate Pol into virions. We propose that IN is required for Pol dimerization, which is necessary for the creation of a functional PR active site.
Collapse
|
21
|
Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis. J Virol 2010; 85:1452-63. [PMID: 21106749 DOI: 10.1128/jvi.01731-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.
Collapse
|
22
|
Abstract
One of the most fascinating areas in retrovirology is the study of foamy viruses (FVs), because these viruses appear to do everything that is common to all other retroviruses differently. FVs have found a completely new way to propagate their genome. And they do this extremely successfully because most of wild non-human primates, felines, bovines, equines, and small ruminants are likely to be non-pathogenically infected. The success of FVs can also be viewed from a different angle, since they replicate very conservatively and do not need to shape their genotypic and phenotypic makeup every now and then. The elucidation of the underlying basic mechanisms of the FV replication strategy is the topic of this review.
Collapse
|
23
|
Gärtner K, Wiktorowicz T, Park J, Mergia A, Rethwilm A, Scheller C. Accuracy estimation of foamy virus genome copying. Retrovirology 2009; 6:32. [PMID: 19348676 PMCID: PMC2678077 DOI: 10.1186/1742-4690-6-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/06/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Foamy viruses (FVs) are the most genetically stable viruses of the retrovirus family. This is in contrast to the in vitro error rate found for recombinant FV reverse transcriptase (RT). To investigate the accuracy of FV genome copying in vivo we analyzed the occurrence of mutations in HEK 293T cell culture after a single round of reverse transcription using a replication-deficient vector system. Furthermore, the frequency of FV recombination by template switching (TS) and the cross-packaging ability of different FV strains were analyzed. RESULTS We initially sequenced 90,000 nucleotides and detected 39 mutations, corresponding to an in vivo error rate of approximately 4 x 10-4 per site per replication cycle. Surprisingly, all mutations were transitions from G to A, suggesting that APOBEC3 activity is the driving force for the majority of mutations detected in our experimental system. In line with this, we detected a late but significant APOBEC3G and 3F mRNA by quantitative PCR in the cells. We then analyzed 170,000 additional nucleotides from experiments in which we co-transfected the APOBEC3-interfering foamy viral bet gene and observed a significant 50% drop in G to A mutations, indicating that APOBEC activity indeed contributes substantially to the foamy viral replication error rate in vivo. However, even in the presence of Bet, 35 out of 37 substitutions were G to A, suggesting that residual APOBEC activity accounted for most of the observed mutations. If we subtract these APOBEC-like mutations from the total number of mutations, we calculate a maximal intrinsic in vivo error rate of 1.1 x 10-5 per site per replication. In addition to the point mutations, we detected one 49 bp deletion within the analyzed 260000 nucleotides.Analysis of the recombination frequency of FV vector genomes revealed a 27% probability for a template switching (TS) event within a 1 kilobase (kb) region. This corresponds to a 98% probability that FVs undergo at least one additional TS event per replication cycle. We also show that a given FV particle is able to cross-transfer a heterologous FV genome, although at reduced efficiency than the homologous vector. CONCLUSION Our results indicate that the copying of the FV genome is more accurate than previously thought. On the other hand recombination among FV genomes appears to be a frequent event.
Collapse
Affiliation(s)
- Kathleen Gärtner
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Jeonghae Park
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ayalew Mergia
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Carsten Scheller
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| |
Collapse
|
24
|
Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A. Generation of an improved foamy virus vector by dissection of cis-acting sequences. J Gen Virol 2009; 90:481-487. [PMID: 19141459 DOI: 10.1099/vir.0.006312-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to other retroviruses, foamy viruses (FVs) generate their Pol protein precursor independently of the Gag protein from a spliced mRNA. The exact mechanism of Pol protein incorporation into the viral capsid is poorly understood. Previously, we showed that Pol encapsidation critically depends on the packaging of (pre-) genomic RNA and identified two distinct signals within the cis-acting sequences (CASI and CASII), Pol encapsidation sequences (PESI and PESII), which are required for Pol capsid incorporation. Here, we investigated whether the presence of PESI and PESII in an FV vector is sufficient for Pol encapsidation and whether the rather extended CASII element can be shortened without loss of functionality. Our results indicate that (i) the presence of PESI and II are not sufficient for Pol encapsidation, (ii) prototype FV vectors with a shortened CASII element retain Pol incorporation and full functionality, in particular upon transducing fibroblasts and primary human mesenchymal stem cells, (iii) the presence of the central poly purine tract significantly increased the transduction rates of FV vectors and (iv) Pol encapsidation and RNA packaging can be clearly separated. In essence, we designed a new FV vector that bears approximately 850 bp less of CAS than previously established vectors and is fully functional when analysed to transduce cell lines and primary human cells.
Collapse
Affiliation(s)
- Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Katrin Peters
- University of California, International Laboratory of Molecular Biology for Tropical Disease Agents, School of Veterinary Medicine, Davis, USA.,Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Nicole Armbruster
- Universität Würzburg, Orthopaedic Center for Musculoskeletal Research, Orthopaedic Clinic König-Ludwig-Haus, Würzburg, Germany.,Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Andre F Steinert
- Universität Würzburg, Orthopaedic Center for Musculoskeletal Research, Orthopaedic Clinic König-Ludwig-Haus, Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| |
Collapse
|
25
|
The C terminus of foamy retrovirus Gag contains determinants for encapsidation of Pol protein into virions. J Virol 2008; 82:10803-10. [PMID: 18715914 DOI: 10.1128/jvi.00812-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Foamy viruses (FV) differ from orthoretroviruses in many aspects of their replication cycle. A major difference is in the mode of Pol expression, regulation, and encapsidation into virions. Orthoretroviruses synthesize Pol as a Gag-Pol fusion protein so that Pol is encapsidated into virus particles through Gag assembly domains. However, as FV express Pol independently of Gag from a spliced mRNA, packaging occurs through a distinct mechanism. FV genomic RNA contains cis-acting sequences that are required for Pol packaging, suggesting that Pol binds to RNA for its encapsidation. However, it is not known whether Gag is directly involved in Pol packaging. Previously our laboratory showed that sequences flanking the three glycine-arginine-rich (GR) boxes at the C terminus of FV Gag contain domains important for RNA packaging and Pol expression, cleavage, and packaging. We have now shown that both deletion and substitution mutations in the first GR box (GR1) prevented neither the assembly of particles with wild-type density nor packaging of RNA genomes but led to a defect in Pol packaging. Site-directed mutagenesis of GR1 indicated that the clustered positively charged amino acids in GR1 play important roles in Pol packaging. Our results suggest that GR1 contains a Pol interaction domain and that a Gag-Pol complex is formed and binds to RNA for incorporation into virions.
Collapse
|
26
|
Abstract
Foamy virus Pol precursor protein processing by the viral protease occurs at only one site, releasing a protease-reverse transcriptase and an integrase protein. To examine whether the cleavage of the Pol precursor protein is necessary for enzymatic activities and efficient viral replication, several mutations were generated around the cleavage site. All cleavage site mutants synthesize wild-type levels of Pol precursor protein. Mutants containing more than two amino acid substitutions around the cleavage site exhibit no detectable Pol processing. The Pol cleavage site is not required for the production of infectious particles in a single round of infection, but is important for subsequent rounds of viral infection. Mutations around the cleavage site affected the enzymatic activities of the protease and reverse transcriptase and prevented replication after two rounds of infection. Interestingly, Pol encapsidation is significantly reduced in some of the mutants.
Collapse
Affiliation(s)
- Jacqueline Roy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | |
Collapse
|
27
|
Mannigel I, Stange A, Zentgraf H, Lindemann D. Correct capsid assembly mediated by a conserved YXXLGL motif in prototype foamy virus Gag is essential for infectivity and reverse transcription of the viral genome. J Virol 2007; 81:3317-26. [PMID: 17229703 PMCID: PMC1866044 DOI: 10.1128/jvi.01866-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike other retrovirus Gag proteins, the prototype foamy virus (PFV) p71(g)(ag) protein is not processed into mature matrix (MA), capsid (CA), and nucleocapsid (NC) subunits. Little information about sequence motifs involved in FV capsid assembly and release is available. The recent analysis of candidate L-domain motifs in PFV Gag identified an evolutionarily conserved YXXL sequence motif with a potential function in capsid assembly. Here we provide support for the hypothesis that this motif does not function like a conventional L domain, by demonstrating that, unlike the PFV Gag PSAP L-domain motif, it cannot be functionally replaced by heterologous L-domain sequences. Furthermore, mutation of individual amino acids Y(464), I(466), L(467), and L(469), but not E(465), to alanine led to reduced particle release and production of noninfectious, aberrant capsid structures, although relative structural protein incorporation and processing were not affected. In contrast, mutation of G(468) to alanine resulted in an intermediate, temperature-sensitive phenotype characterized by reduced particle release and reduced infectivity. Despite similar relative RNA genome incorporation for all mutants, analysis and quantification of particle-associated viral nucleic acids demonstrated defects in genomic reverse transcription for all the noninfectious mutants, a process that, unlike that of orthoretroviruses, in the case of FVs takes place in the virus-producing cell. In correlation with the reduced infectivity, the G(468)A mutant displayed an intermediate level of genomic reverse transcription. Taken together, these results demonstrate that the conserved YXXLGL motif in PFV Gag is involved in correct capsid assembly, which in turn is essential for reverse transcription of the FV genome.
Collapse
Affiliation(s)
- Ingrid Mannigel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
28
|
Stanke N, Stange A, Lüftenegger D, Zentgraf H, Lindemann D. Ubiquitination of the prototype foamy virus envelope glycoprotein leader peptide regulates subviral particle release. J Virol 2006; 79:15074-83. [PMID: 16306578 PMCID: PMC1316034 DOI: 10.1128/jvi.79.24.15074-15083.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Foamy virus (FV) particle egress is unique among retroviruses because of its essential requirement for Gag and Env coexpression for budding and particle release. The FV glycoprotein undergoes a highly unusual biosynthesis resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM), derived from a precursor protein by posttranslational proteolysis mediated by furin or furinlike proteases. Previously at least three LP products of different molecular weights were detected in purified FV particles. Here we demonstrate that the higher-molecular-weight forms gp28LP and gp38LP are ubiquitinated variants of the major gp18LP cleavage product, which has a type II membrane topology. Furthermore, we show that all five lysine residues located within the N-terminal 60-amino-acid cytoplasmic domain of gp18LP can potentially be ubiquitinated, however, there seems to be a preference for using the first three. Inactivation of ubiquitination sites individually resulted in no obvious phenotype. However, simultaneous inactivation of the first three or all five ubiquitination sites in gp18LP led to a massive increase in subviral particles released by these mutant glycoproteins that were readily detectable by electron microscopy analysis upon expression of the ubiquitination-deficient glycoprotein by itself or in a proviral context. Surprisingly, only the quintuple ubiquitination mutant showed a two- to threefold increase in single-cycle infectivity assays, whereas all other mutants displayed infectivities similar to that of the wild type. Taken together, these data suggest that the balance between viral and subviral particle release of FVs is regulated by ubiquitination of the glycoprotein LP.
Collapse
Affiliation(s)
- Nicole Stanke
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus," Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
29
|
Bastone P, Bravo IG, Löchelt M. Feline foamy virus-mediated marker gene transfer: identification of essential genetic elements and influence of truncated and chimeric proteins. Virology 2006; 348:190-9. [PMID: 16443252 DOI: 10.1016/j.virol.2005.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/22/2005] [Accepted: 12/16/2005] [Indexed: 11/16/2022]
Abstract
Retroviral vectors derived from foamy or spumaretroviruses are considered promising tools for targeted gene delivery and vaccination purposes. In order to fully exploit this potential, we identified essential cis-acting sequences on the feline foamy virus (FFV) genome by constructing and analyzing a series of FFV-based replication-deficient vector genomes. Cis-acting sequences essentially required for marker gene transfer were found to be localized at two sites on the FFV genome: (i) in the 5'-untranslated region and close to the gag ATG and (ii) in the central part of the pol gene. The presence of two cis-acting sequences and their relative location on the FFV genome are similar but not identical to the functionally corresponding elements described for simian and primate foamy viruses.
Collapse
Affiliation(s)
- Patrizia Bastone
- Department Genome Modifications and Carcinogenesis, Focus Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Lehmann-Che J, Giron ML, Delelis O, Löchelt M, Bittoun P, Tobaly-Tapiero J, de Thé H, Saïb A. Protease-dependent uncoating of a complex retrovirus. J Virol 2005; 79:9244-53. [PMID: 15994819 PMCID: PMC1168774 DOI: 10.1128/jvi.79.14.9244-9253.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although retrovirus egress and budding have been partly unraveled, little is known about early stages of the replication cycle. In particular, retroviral uncoating, a process during which incoming retroviral cores are altered to allow the integration of the viral genome into host chromosomes, is poorly understood. To get insights into these early events of the retroviral cycle, we have used foamy complex retroviruses as a model. In this report, we show that a protease-defective foamy retrovirus is noninfectious, although it is still able to bud and enter target cells efficiently. Similarly, a retrovirus mutated in an essential viral protease-dependent cleavage site in the central part of Gag is noninfectious. Following entry, wild-type and mutant retroviruses are able to traffic along microtubules towards the microtubule-organizing center (MTOC). However, whereas nuclear import of Gag and of the viral genome was observed for the wild-type virus as early as 8 hours postinfection, incoming capsids and genome from mutant viruses remained at the MTOC. Interestingly, a specific viral protease-dependent Gag cleavage product was detected only for the wild-type retrovirus early after infection, demonstrating that cleavage of Gag by the viral protease at this stage of the virus life cycle is absolutely required for productive infection, an unprecedented observation among retroviruses.
Collapse
|
31
|
Cartellieri M, Rudolph W, Herchenröder O, Lindemann D, Rethwilm A. Determination of the relative amounts of Gag and Pol proteins in foamy virus particles. Retrovirology 2005; 2:44. [PMID: 16004609 PMCID: PMC1185564 DOI: 10.1186/1742-4690-2-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/08/2005] [Indexed: 11/10/2022] Open
Abstract
We determined the relative ratios of Gag and Pol molecules in highly purified virions of spumaretroviruses or foamy viruses (FVs) using monoclonal antibodies and bacterially expressed reference proteins. We found that the cleaved p68Gag moiety dominates in infectious FVs. Furthermore, approximate mean ratios in FV are 16:1 (pr71Gag plus p68Gag:p85RT),12:1 (p68Gag:p85RT), and 10:1 (pr71Gag plus p68Gag:p40IN). Thus, the results indicate that FVs have found a way to incorporate approximately as much Pol protein into their capsids as orthoretroviruses, despite a completely different Pol expression strategy.
Collapse
Affiliation(s)
- Marc Cartellieri
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | - Wolfram Rudolph
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
| | - Ottmar Herchenröder
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
| | - Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät, Technische, Universität Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| |
Collapse
|
32
|
Peters K, Wiktorowicz T, Heinkelein M, Rethwilm A. RNA and protein requirements for incorporation of the Pol protein into foamy virus particles. J Virol 2005; 79:7005-13. [PMID: 15890940 PMCID: PMC1112116 DOI: 10.1128/jvi.79.11.7005-7013.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5' long terminal repeat and one at the 3' end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins.
Collapse
Affiliation(s)
- Katrin Peters
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
33
|
Stenbak CR, Linial ML. Role of the C terminus of foamy virus Gag in RNA packaging and Pol expression. J Virol 2004; 78:9423-30. [PMID: 15308736 PMCID: PMC506921 DOI: 10.1128/jvi.78.17.9423-9430.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/14/2004] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FV) are complex retroviruses that possess several unique features that distinguish them from all other retroviruses. FV Gag and Pol proteins are expressed independently of one another, and both proteins undergo single cleavage events. Thus, the mature FV Gag protein does not consist of the matrix, capsid, and nucleocapsid (NC) proteins found in orthoretroviruses, and the putative NC domain of FV Gag lacks the hallmark Cys-His motifs or I domains. As there is no Gag-Pol fusion protein, the mechanism of Pol packaging is different but unknown. FV RNA packaging is not well understood either. The C terminus of FV Gag has three glycine-arginine motifs (GR boxes), the first of which has been shown to have nucleic acid binding properties in vitro. The role of these GR boxes in RNA packaging and Pol packaging was investigated with a series of Gag C-terminal truncation mutants. GR box 1 was found to be the major determinant of RNA packaging, but all three GR boxes were required to achieve wild-type levels of RNA packaging. In addition, Pol was packaged in the absence of GR box 3, but GR boxes 1 and 2 were required for efficient Pol packaging. Interestingly, the Gag truncation mutants demonstrated decreased Pol expression levels as well as defects in Pol cleavage. Thus, the C terminus of FV Gag was found to be responsible for RNA packaging, as well as being involved in the expression, cleavage, and incorporation of the Pol protein.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Gene Expression Regulation, Viral
- Gene Products, gag/biosynthesis
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, pol/biosynthesis
- Gene Products, pol/metabolism
- Humans
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion/genetics
- Spumavirus/genetics
- Spumavirus/physiology
- Virion/chemistry
- Virion/genetics
- Virion/metabolism
- Virus Assembly
Collapse
Affiliation(s)
- Carolyn R Stenbak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
34
|
Boyer PL, Stenbak CR, Clark PK, Linial ML, Hughes SH. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase. J Virol 2004; 78:6112-21. [PMID: 15163704 PMCID: PMC416499 DOI: 10.1128/jvi.78.12.6112-6121.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy virus (FV) replication, while related to that of orthoretroviruses, differs at a number of steps. Several of these differences involve the reverse transcriptase (RT). There appear to be fewer RTs present in FV than in orthoretroviruses; we previously proposed that the polymerase of FV RT was more active than orthoretroviral RTs to compensate for the numerical difference. Here we present further characterization of the RT of FV. The polymerase activity of FV RT was greater than that of human immunodeficiency virus type 1 RT in a variety of assays. We also examined the RNase H activity of FV RT, and we propose that FV RT has a basic loop in the RNase H domain. Although the sequence of the basic loop of FV RT is different from the basic loop of either Moloney leukemia virus RNase H or Escherichia coli RNase H, the FV RT basic loop appears to have a similar function.
Collapse
Affiliation(s)
- Paul L Boyer
- HIV Drug Resistance Program, National Cancer Institute-FCRDC, P.O. Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
35
|
Juretzek T, Holm T, Gärtner K, Kanzler S, Lindemann D, Herchenröder O, Picard-Maureau M, Rammling M, Heinkelein M, Rethwilm A. Foamy virus integration. J Virol 2004; 78:2472-7. [PMID: 14963145 PMCID: PMC369232 DOI: 10.1128/jvi.78.5.2472-2477.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It had been suggested that during integration of spumaretroviruses (foamy viruses) the right (U5) end of the cDNA is processed, while the left (U3) remains uncleaved. We confirmed this hypothesis by sequencing two-long terminal repeat (LTR) circle junctions of unintegrated DNA. Based on an infectious foamy virus molecular clone, a set of constructs harboring mutations at the 5' end of the U3 region in the 3' LTR was analyzed for particle export, reverse transcription, and replication. Following transient transfection some mutants were severely impaired in generating infectious virus, while others replicated almost like the wild type. The replication competence of the mutants was unrelated to the cleavability of the newly created U3 end. This became obvious with two mutants both belonging to the high-titer type. One mutant containing a dinucleotide artificially transferred from the right to the left end was trimmed upon integration, while another one with an unrelated dinucleotide in that place was not. The latter construct in particular showed that the canonical TG motif at the beginning of the provirus is not essential for foamy virus integration.
Collapse
Affiliation(s)
- Thomas Juretzek
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Picard-Maureau M, Kreppel F, Lindemann D, Juretzek T, Herchenröder O, Rethwilm A, Kochanek S, Heinkelein M. Foamy virus–adenovirus hybrid vectors. Gene Ther 2004; 11:722-8. [PMID: 14724670 DOI: 10.1038/sj.gt.3302216] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To confer adenovirus vectors (AdV), the feature of integration into the host cell genome hybrid vectors were characterized in vitro, which express vectors derived from the prototypic foamy virus (FV) in the backbone of a high-capacity AdV. FVs constitute a subfamily of retroviruses with a distinct replication pathway and no known pathogenicity. In the absence of envelope glycoprotein, the prototypic FV behaves like a retrotransposon, while it behaves like an exogenous retrovirus in its presence. Two principle types of vectors, which either allows the intracellular (HC-FAD-7) or, in addition, the extracellular (HC-FAD-2) pathway were constructed. In both chimeras the expression of the FV vector was controlled by the tetracycline-regulatable system. Hybrids were produced close to 10(10) infectious units/ml. By Southern blotting, the functionality of the hybrid vectors to generate host cell genomic integrants was shown. However, the efficiency of HC-FAD-7 to establish stable transgene expression was rather low, while around 70% of cells were stably transduced in secondary round following primary transduction with HC-FAD-2 at an MOI of 100. Given the benign characteristics of high-capacity adenovirus and FV vectors, hybrids based on HC-FAD-2 are probably suited for an in vivo application.
Collapse
Affiliation(s)
- M Picard-Maureau
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Haasnoot PCJ, Bol JF, Olsthoorn RCL. A plant virus replication system to assay the formation of RNA pseudotriloop motifs in RNA-protein interactions. Proc Natl Acad Sci U S A 2003; 100:12596-600. [PMID: 14569004 PMCID: PMC240663 DOI: 10.1073/pnas.2135413100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pseudotriloop is formed by transloop base pairing between the first (5') and the fifth nucleotide in a hexanucleotide RNA loop ("hexaloop") to subtend a triloop of nucleotides 2-4. This structure has been found in hairpins involved in the regulation of iron metabolism in mammalian cells and in transcription of plant virus subgenomic RNA. Several hexaloop hairpins, including HIV-transactivation-responsive element and hepatitis B virus , potentially adopt a pseudotriloop conformation. Here we show that an RNA plant virus whose replication depends on a conventional triloop hairpin can be used to verify the existence of pseudotriloop structures in vivo. Our data suggest that the pseudotriloop may represent a common motif in RNA-protein recognition.
Collapse
Affiliation(s)
| | | | - René C. L. Olsthoorn
- To whom correspondence should be addressed at the present address: Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2333 CC Leiden, The Netherlands. E-mail:
| |
Collapse
|
38
|
Abstract
Gene therapy is a promising novel treatment for a variety of human diseases. Successful application of gene therapy requires the availability of vehicles with the ability to efficiently deliver and express genes. Viral vectors are efficient means of transferring a gene of interest into target cells. Current available vehicles for gene transfer are either inefficient or potentially unsafe for human gene therapy applications. Foamy viruses offer a fresh alternative vector system for gene transfer with the potential to overcome the concerns of the current vectors. Foamy viruses are nonpathogenic and have a broad host range with the ability to infect various types of cells from different species. Foamy virus replication is distinct and may provide an edge for foamy virus vector usage over other retroviral vectors. These features offer the foamy vectors unique opportunities to deliver several genes into a number of different cell types in vivo safely and efficiently. The principal problems for the design of foamy virus vectors have been solved, and several foamy virus vectors that efficiently transduce a variety of cell types are available. This chapter reviews specific features of foamy virus vector systems and recent advances in the development and use of these vectors.
Collapse
Affiliation(s)
- A Mergia
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
39
|
Abstract
Foamy virus (FV) replication is distinct from that of all other retroviruses in many respects, including viral assembly. In fact, the viral assembly pathway is rather similar to that of hepadnaviruses such as hepatitis B virus. Foamy virus Gag does not contain landmark retroviral assembly domains such as the major homology region, Cys-His boxes, or a defined M domain. Like hepadnaviruses, the FV Gag protein is not cleaved and contains arginine-rich regions at the carboxyl terminus. In addition, egress of FV particles requires presence of the envelope glycoproteins. Finally, the cis-acting sequences in the FV genome required for genome incorporation, although poorly defined, differ in location from other retroviruses.
Collapse
Affiliation(s)
- M L Linial
- Division of Basic Sciences A3-015, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.
| | | |
Collapse
|