1
|
Kellner MJ, Monteil VM, Zelger P, Pei G, Jiao J, Onji M, Nayak K, Zilbauer M, Balkema-Buschmann A, Dorhoi A, Mirazimi A, Penninger JM. Bat organoids reveal antiviral responses at epithelial surfaces. Nat Immunol 2025:10.1038/s41590-025-02155-1. [PMID: 40399606 DOI: 10.1038/s41590-025-02155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/08/2025] [Indexed: 05/23/2025]
Abstract
Bats can host viruses of pandemic concern without developing disease. The mechanisms underlying their exceptional resilience to viral infections are largely unresolved, necessitating the development of physiologically relevant and genetically tractable research models. Here, we developed respiratory and intestinal organoids that recapitulated the cellular diversity of the in vivo epithelium present in Rousettus aegyptiacus, the natural reservoir for the highly pathogenic Marburg virus (MARV). In contrast to human counterparts, bat organoids and mucosal tissue exhibited elevated constitutive expression of innate immune effectors, including type I interferon-ε (IFNε) and IFN-stimulated genes (ISGs). Upon infection with diverse zoonotic viruses, including MARV, bat organoids strongly induced type I and III IFN responses, which conferred robust antiviral protection. Type III IFNλ3 additionally displayed virus-independent self-amplification, acting as an ISG to enhance antiviral immunity. Our organoid platform reveals key features of bat epithelial antiviral immunity that may inform therapeutic strategies for viral disease resilience.
Collapse
Affiliation(s)
- Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Vanessa M Monteil
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Patrick Zelger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jie Jiao
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Komal Nayak
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Matthias Zilbauer
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- National Veterinary Institute, Uppsala, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
2
|
Spector SN, Noval MG, Stapleford KA. Differential restriction of chikungunya virus in primary human cardiac endothelial cells occurs at multiple steps in the viral life cycle. PLoS Negl Trop Dis 2025; 19:e0012534. [PMID: 40063631 PMCID: PMC11918386 DOI: 10.1371/journal.pntd.0012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Arthropod-borne viruses (arboviruses) constitute a significant ongoing public health threat, as the mechanisms of pathogenesis remain incompletely understood. Cardiovascular symptomatology is emerging as an important manifestation of arboviral infection. We have recently studied the cardiac tropism implicated in cardiac infection in mice for the alphavirus chikungunya virus (CHIKV), and we therefore sought to evaluate the cardiac tropism of other emerging alphaviruses and arboviruses. Using human primary cardiac cells, we found that arboviruses from diverse viral families were able to replicate within these cells. Interestingly, we noted that while the closely related alphavirus Mayaro virus (MAYV) could replicate to high titers in primary human cardiac microvascular endothelial cells, pulmonary, and brain endothelial cells, the Indian Ocean Lineage of CHIKV (CHIKV-IOL) was restricted in all endothelial cells tested. Upon further investigation, we discovered that this restriction occurs at both entry and egress stages. Additionally, we observed that compared to CHIKV, MAYV may antagonize or evade the innate immune response more efficiently in human cardiac endothelial cells to increase infection. Overall, this study explores the tropism of arboviruses in human primary cardiac cells and characterizes the strain-specific restriction of CHIKV-IOL in human endothelial cells. Further work is needed to understand how the differential restriction of alphaviruses in human endothelial cells impacts pathogenesis in a living model, as well as the specific host factors responsible.
Collapse
Affiliation(s)
- Sophie N. Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Wang S, Mahalingam S, Merits A. Alphavirus nsP2: A Multifunctional Regulator of Viral Replication and Promising Target for Anti-Alphavirus Therapies. Rev Med Virol 2025; 35:e70030. [PMID: 40064592 PMCID: PMC11893376 DOI: 10.1002/rmv.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Alphaviruses are re-emerging vector-born pathogens that cause arthralgia or encephalitic diseases on a global scale. While a vaccine against chikungunya virus was recently approved, no vaccines currently exist for other alphaviruses, nor are there antiviral drugs for the treatment of alphavirus infections. Alphaviruses have positive-strand RNA genomes, and their RNA replication is coordinated by activities of the multifunctional nonstructural protein 2 (nsP2), a helicase-protease and a subunit of viral RNA replicase. We provide a comprehensive overview of nsP2 functions and inhibitors of its activities for their potential as effective antivirals. Furthermore, analysis of nsP2 activities suggests that it could be targeted to develop advanced live attenuated vaccines and strategies for controlling alphavirus transmission by mosquito vectors.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of BioengineeringUniversity of TartuTartuEstonia
| | - Suresh Mahalingam
- Institute for Biomedicine and GlycomicsGriffith UniversityGold CoastAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastAustralia
| | - Andres Merits
- Institute of BioengineeringUniversity of TartuTartuEstonia
| |
Collapse
|
4
|
Chamberlain J, Dowall SD, Smith J, Pearson G, Graham V, Raynes J, Hewson R. Attenuation of Chikungunya Virus by a Single Amino Acid Substitution in the nsP1 Component of a Non-Structural Polyprotein. Viruses 2025; 17:281. [PMID: 40007036 PMCID: PMC11860493 DOI: 10.3390/v17020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that, since its re-emergence in 2004, has become recognised as a major public health concern throughout many tropical and sub-tropical regions of the world. Amongst the insights gained from studies on other alphaviruses, several key determinants of virulence have been identified, including one present at the P3 position in the nsP1/nsP2 cleavage domain of the S.A.AR86 Sindbis (SINV) strain. This strain is associated with neurovirulence in adult mice; however, when a threonine-to-isoleucine substitution is engineered at this P3 position, an attenuated phenotype results. A reverse genetics system was developed to evaluate the phenotype that resulted from the substitution of alanine, present at the P3 position in the wild-type CHIKV clone, with valine. The A533V-mutant CHIKV induced milder disease symptoms in the C57BL/6 mouse model than the wild-type virus, in terms of severity of inflammation, length of viraemic period, and histological changes. Furthermore, the induction of type I IFN occurred more rapidly in both CHIKV-infected cell cultures and the mouse model with the mutant CHIKV.
Collapse
Affiliation(s)
- John Chamberlain
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Stuart D. Dowall
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Jack Smith
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Geoff Pearson
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - John Raynes
- Faculty Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Roger Hewson
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
- Faculty Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
5
|
Larkin CI, Dunn MD, Shoemaker JE, Klimstra WB, Faeder JR. A detailed kinetic model of Eastern equine encephalitis virus replication in a susceptible host cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628424. [PMID: 39764060 PMCID: PMC11703215 DOI: 10.1101/2024.12.13.628424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care. Although the general characteristics of EEEV infection within the host cell are well-studied, it remains unclear how these interactions lead to rapid production of progeny viral particles, limiting development of antiviral therapies. Here, we present a novel rule-based model that describes attachment, entry, uncoating, replication, assembly, and export of both infectious virions and virus-like particles within mammalian cells. Additionally, it quantitatively characterizes host ribosome activity in EEEV replication via a model parameter defining ribosome density on viral RNA. To calibrate the model, we performed experiments to quantify viral RNA, protein, and infectious particle production during acute infection. We used Bayesian inference to calibrate the model, discovering in the process that an additional constraint was required to ensure consistency with previous experimental observations of a high ratio between the amounts of full-length positive-sense viral genome and negative-sense template strand. Overall, the model recapitulates the experimental data and predicts that EEEV rapidly concentrates host ribosomes densely on viral RNA. Dense packing of host ribosomes was determined to be critical to establishing the characteristic positive to negative RNA strand ratio because of its role in governing the kinetics of transcription. Sensitivity analysis identified viral transcription as the critical step for infectious particle production, making it a potential target for future therapeutic development.
Collapse
Affiliation(s)
- Caroline I. Larkin
- Joint Carnegie Mellon University - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason E. Shoemaker
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
6
|
Landers VD, Thomas M, Isom CM, Karki D, Sokoloski KJ. Capsid protein mediated evasion of IRAK1-dependent signalling is essential to Sindbis virus neuroinvasion and virulence in mice. Emerg Microbes Infect 2024; 13:2300452. [PMID: 38164715 PMCID: PMC10773654 DOI: 10.1080/22221751.2023.2300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
ABSTRACTAlphaviruses are arthropod-borne, single-stranded positive-sense RNA viruses that are recognized as rapidly emerging pathogens. Despite being exquisitely sensitive to the effects of the innate immune response alphaviruses can readily replicate, disseminate, and induce pathogenesis in immunologically competent hosts. Nonetheless, how alphaviruses evade the induction of an innate immune response prior to viral gene expression, or in non-permissive infections, is unknown. Previously we reported the identification of a novel host/pathogen interaction between the viral Capsid (CP) protein and the host IRAK1 protein. The CP/IRAK1 interaction was determined to negatively impact IRAK1-dependent PAMP detection in vitro, however, the precise importance of the CP/IRAK1 interaction to alphaviral infection remained unknown. Here we detail the identification of the CP/IRAK1 interaction determinants of the Sindbis virus (SINV) CP protein and examine the importance of the interaction to alphaviral infection and pathogenesis in vivo using an interaction deficient mutant of the model neurotropic strain of SINV. Importantly, these interaction determinants are highly conserved across multiple Old-World alphaviruses, including Ross River virus (RRV), Mayaro virus (MAYV), Chikungunya virus (CHIKV), and Semliki Forest virus (SFV). In the absence of a functional CP/IRAK1 interaction, SINV replication is significantly restricted and fails to disseminate from the primary site of inoculation due to the induction of a robust type-I Interferon response. Altogether these data indicate that the evasion of IRAK1-dependent signalling is critical to overcoming the host innate immune response and the in vivo data presented here demonstrate the importance of the CP/IRAK1 interaction to neurovirulence and pathogenesis.
Collapse
Affiliation(s)
- V Douglas Landers
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|
7
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog 2024; 20:e1012179. [PMID: 39331659 PMCID: PMC11463830 DOI: 10.1371/journal.ppat.1012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Dai Y, Wang B, Wang J, Wei X, Liu X, Che X, Li J, Lun Ng W, Wang LF, Li Y. Increased viral tolerance mediates by antiviral RNA interference in bat cells. Cell Rep 2024; 43:114581. [PMID: 39102336 DOI: 10.1016/j.celrep.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigate the antiviral RNA interference pathway in bat cells and discover that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs upon Sindbis virus infection that are missing in human cells. Disruption of Dicer function results in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors, such as retinoic acid-inducible gene I, with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Collapse
Affiliation(s)
- Yunpeng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Binbin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xing Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xu Che
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junxia Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Huang S, Girdner J, Nguyen LP, Sandoval C, Fregoso OI, Enard D, Li MMH. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a more potent restriction factor against alphaviruses. PLoS Pathog 2024; 20:e1011836. [PMID: 39207950 PMCID: PMC11361444 DOI: 10.1371/journal.ppat.1011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Host-virus conflicts have led to the rapid adaptation of host and viral proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP orthologs identified three positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified seven positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant is adjacent to the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a more potent ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - LeAnn P. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Carina Sandoval
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Melody M. H. Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Shi X, Sun K, Li L, Xian J, Wang P, Jia F, Xu F. Oncolytic Activity of Sindbis Virus with the Help of GM-CSF in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7195. [PMID: 39000311 PMCID: PMC11241666 DOI: 10.3390/ijms25137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Collapse
Affiliation(s)
- Xiangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyixin Sun
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Li
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingwen Xian
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Fan Jia
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Xu Y, Yi H, Kuang Q, Zheng X, Xu D, Gong L, Yang L, Xiang B. Nucleotide metabolism-related host proteins RNA polymerase II subunit and uridine phosphorylase 1 interacting with porcine epidemic diarrhea virus N proteins affect viral replication. Front Vet Sci 2024; 11:1417348. [PMID: 38933700 PMCID: PMC11200923 DOI: 10.3389/fvets.2024.1417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that targets pig intestines to cause disease. It is globally widespread and causes huge economic losses to the pig industry. PEDV N protein is the protein that constitutes the core of PEDV virus particles, and most of it is expressed in the cytoplasm, and a small part can also be expressed in the nucleus. However, the role of related proteins in host nucleotide metabolic pathways in regulating PEDV replication have not been fully elucidated. In this study, PEDV-N-labeled antibodies were co-immunoprecipitated and combined with LC-MS to screen for host proteins that interact with N proteins. Bioinformatics analyses showed that the selected host proteins were mainly enriched in metabolic pathways. Moreover, co-immunoprecipitation and confocal microscopy confirmed that the second-largest subunit of RNA polymerase II (RPB2) and uridine phosphorylase 1 (UPP1) interacted with the N protein. RPB2 is the main subunit of RNA polymerase II and plays an important role in eukaryotic transcription. UPP1 is an enzyme that catalyzes reversible phosphorylation of uridine to uracil and ribo-1-phosphate to promote catabolism and bio anabolism. RPB2 overexpression significantly promoted viral replication, whereas UPP1 overexpression significantly inhibited viral replication. Studies on interactions between the PEDV N and host proteins are helpful in elucidating the pathogenesis and immune escape mechanism of PEDV.
Collapse
Affiliation(s)
- Yifan Xu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Heyou Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiyuan Kuang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588743. [PMID: 38645187 PMCID: PMC11030350 DOI: 10.1101/2024.04.09.588743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
13
|
Ventoso I, Berlanga JJ, Toribio R, Díaz-López I. Translational Control of Alphavirus-Host Interactions: Implications in Viral Evolution, Tropism and Antiviral Response. Viruses 2024; 16:205. [PMID: 38399981 PMCID: PMC10893052 DOI: 10.3390/v16020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN.
Collapse
Affiliation(s)
- Iván Ventoso
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Juan José Berlanga
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA), 28049 Madrid, Spain;
| | | |
Collapse
|
14
|
Mou C, Meng H, Shi K, Huang Y, Liu M, Chen Z. GETV nsP2 plays a critical role in the interferon antagonism and viral pathogenesis. Cell Commun Signal 2023; 21:361. [PMID: 38110975 PMCID: PMC10729338 DOI: 10.1186/s12964-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-β by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Hui Meng
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, GX, China
| | - Yanmei Huang
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Meiqi Liu
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Dominguez F, Palchevska O, Frolova EI, Frolov I. Alphavirus-based replicons demonstrate different interactions with host cells and can be optimized to increase protein expression. J Virol 2023; 97:e0122523. [PMID: 37877718 PMCID: PMC10688356 DOI: 10.1128/jvi.01225-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.
Collapse
Affiliation(s)
- Francisco Dominguez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Frolova EI, Palchevska O, Dominguez F, Frolov I. Alphavirus-induced transcriptional and translational shutoffs play major roles in blocking the formation of stress granules. J Virol 2023; 97:e0097923. [PMID: 37902397 PMCID: PMC10688339 DOI: 10.1128/jvi.00979-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/01/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Our study highlights the mechanisms behind the cell's resistance to stress granule (SG) formation after infection with Old World alphaviruses. Shortly after infection, the replication of these viruses hinders the cell's ability to form SGs, even when exposed to chemical inducers such as sodium arsenite. This resistance is primarily attributed to virus-induced transcriptional and translational shutoffs, rather than interactions between the viral nsP3 and the key components of SGs, G3BP1/2, or the ADP-ribosylhydrolase activity of nsP3 macro domain. While interactions between G3BPs and nsP3 are essential for the formation of viral replication complexes, their role in regulating SG development appears to be small, if any. Cells harboring replicating viruses or replicons with lower abilities to inhibit transcription and/or translation, but expressing wild-type nsP3, retain the ability for SG development. Understanding these mechanisms of regulation of SG formation contributes to our knowledge of viral replication and the intricate relationships between alphaviruses and host cells.
Collapse
Affiliation(s)
- Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Francisco Dominguez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Huang S, Girdner J, Nguyen LP, Enard D, Li MM. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a super restriction factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567784. [PMID: 38045310 PMCID: PMC10690157 DOI: 10.1101/2023.11.20.567784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Virus-host conflicts have led to the rapid adaptation of viral and host proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP identified 3 positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified 7 positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant inhabits the space surrounding the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a super restrictor ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - LeAnn P Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Sandenon Seteyen AL, Guiraud P, Gasque P, Girard-Valenciennes E, Sélambarom J. In Vitro Analyses of the Multifocal Effects of Natural Alkaloids Berberine, Matrine, and Tabersonine against the O'nyong-nyong Arthritogenic Alphavirus Infection and Inflammation. Pharmaceuticals (Basel) 2023; 16:1125. [PMID: 37631040 PMCID: PMC10459185 DOI: 10.3390/ph16081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
O'nyong-nyong virus (ONNV) is a member of the reemerging arthritogenic alphaviruses that cause chronic debilitating polyarthralgia and/or polyarthritis via their tropism for the musculoskeletal system. Thus, the discovery of dual antiviral and anti-inflammatory drugs is a great challenge in this field. We investigated the effects of the common plant-derived alkaloids berberine (isoquinoline), matrine (quinolizidine), and tabersonine (indole) at a non-toxic concentration (10 μM) on a human fibroblast cell line (HS633T) infected by ONNV (MOI 1). Using qRT-PCR analyses, we measured the RNA levels of the gene coding for the viral proteins and for the host cell immune factors. These alkaloids demonstrated multifocal effects by the inhibition of viral replication, as well as the regulation of the type-I interferon antiviral signaling pathway and the inflammatory mediators and pathways. Berberine and tabersonine proved to be the more valuable compounds. The results supported the proposal that these common alkaloids may be useful scaffolds for drug discovery against arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Anne-Laure Sandenon Seteyen
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, 97400 Saint-Denis, France
| | - Jimmy Sélambarom
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
| |
Collapse
|
19
|
Crawford JM, Buechlein AM, Moline DA, Rusch DB, Hardy RW. Host Derivation of Sindbis Virus Influences Mammalian Type I Interferon Response to Infection. Viruses 2023; 15:1685. [PMID: 37632027 PMCID: PMC10458878 DOI: 10.3390/v15081685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Arboviruses are defined by their ability to replicate in both mosquito vectors and mammalian hosts. There is good evidence that arboviruses "prime" their progeny for infection of the next host, such as via differential glycosylation of their outer glycoproteins or packaging of host ribosomal subunits. We and others have previously shown that mosquito-derived viruses more efficiently infect mammalian cells than mammalian-derived viruses. These observations are consistent with arboviruses acquiring host-specific adaptations, and we hypothesized that a virus derived from either the mammalian host or mosquito vector elicits different responses when infecting the mammalian host. Here, we perform an RNA-sequencing analysis of the transcriptional response of Human Embryonic Kidney 293 (HEK-293) cells to infection with either mosquito (Aedes albopictus, C7/10)- or mammalian (Baby Hamster Kidney, BHK-21)-derived Sindbis virus (SINV). We show that the C7/10-derived virus infection leads to a more robust transcriptional response in HEK-293s compared to infection with the BHK-derived virus. Surprisingly, despite more efficient infection, we found an increase in interferon-β (IFN-β) and interferon-stimulated gene (ISG) transcripts in response to the C7/10-derived virus infection versus the BHK-derived virus infection. However, translation of interferon-stimulated genes was lower in HEK-293s infected with the C7/10-derived virus, starkly contrasting with the transcriptional response. This inhibition of ISG translation is reflective of a more rapid overall shut-off of host cell translation following infection with the C7/10-derived virus. Finally, we show that the C7/10-derived virus infection of HEK-293 cells leads to elevated levels of phosphorylated eukaryotic translation elongation factor-2 (eEF2), identifying a potential mechanism leading to the more rapid shut-off of host translation. We postulate that the rapid shut-off of host translation in mammalian cells infected with the mosquito-derived virus acts to counter the IFN-β-stimulated transcriptional response.
Collapse
Affiliation(s)
- John M. Crawford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (J.M.C.); (D.A.M.)
| | - Aaron M. Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; (A.M.B.); (D.B.R.)
| | - Davis A. Moline
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (J.M.C.); (D.A.M.)
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; (A.M.B.); (D.B.R.)
| | - Richard W. Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (J.M.C.); (D.A.M.)
| |
Collapse
|
20
|
Boruah AP, Thakur KT. Arthropod-borne encephalitis: an overview for the clinician and emerging considerations. Postgrad Med J 2023; 99:826-833. [PMID: 37130817 PMCID: PMC10464853 DOI: 10.1136/pmj-2022-142002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
The rapid spread of arboviral infections in recent years has continually established arthropod-borne encephalitis to be a pressing global health concern. Causing a wide range of clinical presentations ranging from asymptomatic infection to fulminant neurological disease, the hallmark features of arboviral infection are important to clinically recognise. Arboviral infections may cause severe neurological presentations such as meningoencephalitis, epilepsy, acute flaccid paralysis and stroke. While the pathogenesis of arboviral infections is still being investigated, shared neuroanatomical pathways among these viruses may give insight into future therapeutic targets. The shifting infection transmission patterns and evolving distribution of arboviral vectors are heavily influenced by global climate change and human environmental disruption, therefore it is of utmost importance to consider this potential aetiology when assessing patients with encephalitic presentations.
Collapse
Affiliation(s)
- Abhilasha Pankaj Boruah
- Department of Neurology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kiran T Thakur
- Department of Neurology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
21
|
Palchevska O, Dominguez F, Frolova EI, Frolov I. Alphavirus-induced transcriptional and translational shutoffs play major roles in blocking the formation of stress granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547824. [PMID: 37461699 PMCID: PMC10349968 DOI: 10.1101/2023.07.05.547824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Alphavirus infections cause multiple alterations in the intracellular environment that can have both positive and negative effects on viral replication. The Old World alphaviruses, such as Sindbis (SINV), chikungunya (CHIKV), and Semliki Forest viruses, hinder the ability of vertebrate cells to form stress granules (SGs). Previously, this inhibitory function was attributed to the hypervariable domain (HVD) of nsP3, which sequesters the key components of SGs, G3BP1 and G3BP2, and to the nsP3 macro domain. The macro domain possesses ADP-ribosylhydrolase activity, which can diminish the ADP-ribosylation of G3BP1 during viral replication. However, our recent findings do not support the prevailing notions. We demonstrate that the interactions between SINV- or CHIKV-specific nsP3s and G3BPs, and the ADP-ribosylhydrolase activity are not major contributors to the inhibitory process, at least when nsP3 is expressed at biologically relevant levels. Instead, the primary factors responsible for suppressing SG formation are virus-induced transcriptional and translational shutoffs that rapidly develop within the first few hours post infection. Poorly replicating SINV variants carrying mutated nsP3 HVD still inhibit SG development even in the presence of NaAs. Conversely, SINV mutants lacking transcription and/or translation inhibitory functions lose their ability to inhibit SGs, despite expressing high levels of wt nsP3. Moreover, we found that stable cell lines expressing GFP-nsP3 fusions retain the capacity to form SGs when exposed to sodium arsenite. However, our results do not rule out a possibility that additional virus-induced changes in cell biology may contribute to the suppression of SG formation.
Collapse
Affiliation(s)
- Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | | | - Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
22
|
Li J, Gao X, Liu X, Wu T, Song H, Gao W, Jia H, Li Y, Zhang Z. The host transcriptome change involved in the inhibitory effect of exogenous interferon-γ on Getah virus replication. Front Microbiol 2023; 14:1214281. [PMID: 37448574 PMCID: PMC10337660 DOI: 10.3389/fmicb.2023.1214281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Getah virus (GETV) has become a growing potential threat to the global livestock industry and public health. However, little is known about the viral pathogenesis and immune escape mechanisms, leading to ineffective control measures. Methods In this study, the antiviral activity of exogenous interferons (IFNs) was assessed by using western blotting (WB), real-time quantitative PCR (RT-qPCR) and indirect immunofluorescence assay (IFA). The comparative transcriptomics among mock- and GETV-infected (MOI = 0.1) ST cells with or without IFN-γ was performed by RNA-seq, and then the transcriptome profiling of GETV-infected ST cells and key pathways and putative factors involved in inhibitory effect of IFN-γ on GETV replication were analyzed by bioinformatics methods and RT-qPCR. Results The results showed that treatment with IFN-γ could suppress GETV replication, and the inhibitory effect lasted for at least 48 h, while the exogenous IFN-α/ω and IFN-λ3 treatments failed to inhibit the viral infection and early replication in vitro. Furthermore, the blueprint of virus-host interaction was plotted by RNA-seq and RT-qPCR, showing systemic activation of inflammatory, apoptotic, and antiviral pathways in response to GETV infection, indicating viral hijacking and inhibition of innate host immunity such as IFN-I/III responses. Last and most importantly, activation of the JAK-STAT signaling pathway and complement and coagulation cascades may be a primary driver for IFN-γ-mediated inhibition of GETV replication. Discussion These findings revealed that GETV possessed the capability of viral immune escape and indicated that IFN-γ aided in the prevention and control of GETV, implying the potential molecular mechanism of suppression of GETV by IFN-γ, all of which warrant emphasis or further clarification.
Collapse
Affiliation(s)
- Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weisong Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Lin G, Zhang Y. Mutations in the non-structural protein coding region regulate gene expression from replicon RNAs derived from Venezuelan equine encephalitis virus. Biotechnol Lett 2023:10.1007/s10529-023-03379-7. [PMID: 37266878 DOI: 10.1007/s10529-023-03379-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.
Collapse
Affiliation(s)
- Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
24
|
Yao Z, Ramachandran S, Huang S, Jami-Alahmadi Y, Wohlschlegel JA, Li MMH. Chikungunya virus glycoproteins transform macrophages into productive viral dissemination vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542714. [PMID: 37398144 PMCID: PMC10312455 DOI: 10.1101/2023.05.29.542714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite their role as innate sentinels, macrophages are cellular reservoirs for chikungunya virus (CHIKV), a highly pathogenic arthropod-borne alphavirus that has caused unprecedented epidemics worldwide. Here, we took interdisciplinary approaches to elucidate the CHIKV determinants that subvert macrophages into virion dissemination vessels. Through comparative infection using chimeric alphaviruses and evolutionary selection analyses, we discovered for the first time that CHIKV glycoproteins E2 and E1 coordinate efficient virion production in macrophages with the domains involved under positive selection. We performed proteomics on CHIKV-infected macrophages to identify cellular proteins interacting with the precursor and/or mature forms of viral glycoproteins. We uncovered two E1-binding proteins, signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 (eIF3k), with novel inhibitory activities against CHIKV production. These results highlight how CHIKV E2 and E1 have been evolutionarily selected for viral dissemination likely through counteracting host restriction factors, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Nguyen LP, Aldana KS, Yang E, Yao Z, Li MMH. Alphavirus Evasion of Zinc Finger Antiviral Protein (ZAP) Correlates with CpG Suppression in a Specific Viral nsP2 Gene Sequence. Viruses 2023; 15:830. [PMID: 37112813 PMCID: PMC10145277 DOI: 10.3390/v15040830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Certain re-emerging alphaviruses, such as chikungunya virus (CHIKV), cause serious disease and widespread epidemics. To develop virus-specific therapies, it is critical to understand the determinants of alphavirus pathogenesis and virulence. One major determinant is viral evasion of the host interferon response, which upregulates antiviral effectors, including zinc finger antiviral protein (ZAP). Here, we demonstrated that Old World alphaviruses show differential sensitivity to endogenous ZAP in 293T cells: Ross River virus (RRV) and Sindbis virus (SINV) are more sensitive to ZAP than o'nyong'nyong virus (ONNV) and CHIKV. We hypothesized that the more ZAP-resistant alphaviruses evade ZAP binding to their RNA. However, we did not find a correlation between ZAP sensitivity and binding to alphavirus genomic RNA. Using a chimeric virus, we found the ZAP sensitivity determinant lies mainly within the alphavirus non-structural protein (nsP) gene region. Surprisingly, we also did not find a correlation between alphavirus ZAP sensitivity and binding to nsP RNA, suggesting ZAP targeting of specific regions in the nsP RNA. Since ZAP can preferentially bind CpG dinucleotides in viral RNA, we identified three 500-bp sequences in the nsP region where CpG content correlates with ZAP sensitivity. Interestingly, ZAP binding to one of these sequences in the nsP2 gene correlated to sensitivity, and we confirmed that this binding is CpG-dependent. Our results demonstrate a potential strategy of alphavirus virulence by localized CpG suppression to evade ZAP recognition.
Collapse
Affiliation(s)
- LeAnn P. Nguyen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelly S. Aldana
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Avraham R, Melamed S, Achdout H, Erez N, Israeli O, Barlev-Gross M, Pasmanik-Chor M, Paran N, Israely T, Vitner EB. Antiviral activity of glucosylceramide synthase inhibitors in alphavirus infection of the central nervous system. Brain Commun 2023; 5:fcad086. [PMID: 37168733 PMCID: PMC10165247 DOI: 10.1093/braincomms/fcad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.
Collapse
Affiliation(s)
- Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Einat B Vitner
- Correspondence to: Einat B. Vitner Department of Infectious Diseases Israel Institute for Biological Research P.O.B 19, 7410001 Ness-Ziona, Israel E-mail:
| |
Collapse
|
27
|
Abstract
Alphaviruses contain many human and animal pathogens, such as CHIKV, SINV, and VEEV. Accumulating evidence indicates that innate immunity plays an important role in response to alphaviruses infection. In parallel, alphaviruses have evolved many strategies to evade host antiviral innate immunity. In the current review, we focus on the underlying mechanisms employed by alphaviruses to evade cGAS-STING, IFN, transcriptional host shutoff, translational host shutoff, and RNAi. Dissecting the detailed antiviral immune evasion mechanisms by alphaviruses will enhance our understanding of the pathogenesis of alphaviruses and may provide more effective strategies to control alphaviruses infection.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Yang E, Huang S, Jami-Alahmadi Y, McInerney GM, Wohlschlegel JA, Li MMH. Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes. PLoS Pathog 2022; 18:e1010743. [PMID: 36067236 PMCID: PMC9481182 DOI: 10.1371/journal.ppat.1010743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
The tripartite motif (TRIM) family of E3 ubiquitin ligases is well known for its roles in antiviral restriction and innate immunity regulation, in addition to many other cellular pathways. In particular, TRIM25-mediated ubiquitination affects both carcinogenesis and antiviral response. While individual substrates have been identified for TRIM25, it remains unclear how it regulates diverse processes. Here we characterized a mutation, R54P, critical for TRIM25 catalytic activity, which we successfully utilized to "trap" substrates. We demonstrated that TRIM25 targets proteins implicated in stress granule formation (G3BP1/2), nonsense-mediated mRNA decay (UPF1), nucleoside synthesis (NME1), and mRNA translation and stability (PABPC4). The R54P mutation abolishes TRIM25 inhibition of alphaviruses independently of the host interferon response, suggesting that this antiviral effect is a direct consequence of ubiquitination. Consistent with that, we observed diminished antiviral activity upon knockdown of several TRIM25-R54P specific interactors including NME1 and PABPC4. Our findings highlight that multiple substrates mediate the cellular and antiviral activities of TRIM25, illustrating the multi-faceted role of this ubiquitination network in modulating diverse biological processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gerald M. McInerney
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cheng Y, Medina A, Yao Z, Basu M, Natekar JP, Lang J, Sanchez E, Nkembo MB, Xu C, Qian X, Nguyen PTT, Wen Z, Song H, Ming GL, Kumar M, Brinton MA, Li MMH, Tang H. Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. Cell Rep 2022; 39:110885. [PMID: 35649379 PMCID: PMC9230077 DOI: 10.1016/j.celrep.2022.110885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Physiological blood-tissue barriers play a critical role in separating the circulation from immune-privileged sites and denying access to blood-borne viruses. The mechanism of virus restriction by these barriers is poorly understood. We utilize induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (iBMECs) to study virus-blood-brain barrier (BBB) interactions. These iPSC-derived cells faithfully recapitulate a striking difference in in vivo neuroinvasion by two alphavirus isolates and are selectively permissive to neurotropic flaviviruses. A model of cocultured iBMECs and astrocytes exhibits high transendothelial electrical resistance and blocks non-neurotropic flaviviruses from getting across the barrier. We find that iBMECs constitutively express an interferon-induced gene, IFITM1, which preferentially restricts the replication of non-neurotropic flaviviruses. Barrier cells from blood-testis and blood-retinal barriers also constitutively express IFITMs that contribute to the viral resistance. Our application of a renewable human iPSC-based model for studying virus-BBB interactions reveals that intrinsic immunity at the barriers contributes to virus exclusion.
Collapse
Affiliation(s)
- Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Zhenlan Yao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Jianshe Lang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Egan Sanchez
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mezindia B Nkembo
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuyu Qian
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phuong T T Nguyen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
30
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
31
|
Mayaro Virus Non-Structural Protein 2 Circumvents the Induction of Interferon in Part by Depleting Host Transcription Initiation Factor IIE Subunit 2. Cells 2021; 10:cells10123510. [PMID: 34944018 PMCID: PMC8700540 DOI: 10.3390/cells10123510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.
Collapse
|
32
|
Alphavirus Virulence Determinants. Pathogens 2021; 10:pathogens10080981. [PMID: 34451445 PMCID: PMC8401390 DOI: 10.3390/pathogens10080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses are important pathogens that continue to cause outbreaks of disease in humans and animals worldwide. Diseases caused by alphavirus infections include acute symptoms of fever, rash, and nausea as well as chronic arthritis and severe-to-fatal conditions including myocarditis and encephalitis. Despite their prevalence and the significant public health threat they pose, there are currently no effective antiviral treatments or vaccines against alphaviruses. Various genetic determinants of alphavirus virulence, including genomic RNA elements and specific protein residues and domains, have been described by researchers to play key roles in the development of disease, the immune response to infection, and virus transmissibility. Here, we focus on the determinants that are currently described in the literature. Understanding how these molecular determinants shape viral infections can lead to new strategies for the development of therapies and vaccines to combat these viruses.
Collapse
|
33
|
Facile method for delivering chikungunya viral replicons into mosquitoes and mammalian cells. Sci Rep 2021; 11:12321. [PMID: 34112897 PMCID: PMC8192953 DOI: 10.1038/s41598-021-91830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Reverse genetics is an important tool in the elucidation of viral replication and the development of countermeasures; however, these methods are impeded by laborious and inefficient replicon delivery methods. This paper demonstrates the use of a baculovirus to facilitate the efficient delivery of autonomous CHIKV replicons into mosquito and mammalian cells in vitro as well as adult mosquitoes in vivo. The efficacy of this approach was verified via co-localization among an eGFP reporter, nsP1, and dsRNA as well as through the inhibition of an RNA-dependent RNA polymerase (RdRp) null mutation (DDAA) in nsP4, or the treatment of a known antiviral compound (6-azauridine). We also investigated the correlation between CHIKV replicon-launched eGFP expression and the effectiveness of CHIKV replicon variants in inducing IFN-β expression in human cell lines. This delivery method based on a single vector is applicable to mosquito and mammalian cells in seeking to decipher the mechanisms underlying CHIKV replication, elucidate virus-host interactions, and develop antivirals. This study presents an effective alternative to overcome many of the technological issues related to the study and utilization of autonomous arbovirus replicons.
Collapse
|
34
|
The Alphaviral Capsid Protein Inhibits IRAK1-Dependent TLR Signaling. Viruses 2021; 13:v13030377. [PMID: 33673546 PMCID: PMC7997285 DOI: 10.3390/v13030377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein–protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein–protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host–pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid–IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid–IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein–protein interactions, establish the capsid–IRAK1 interaction as a common alphavirus host–pathogen interface, and delineate the molecular consequences of the capsid–IRAK1 interaction on IRAK1-dependent signaling.
Collapse
|
35
|
Abstract
Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease. Alphaviruses are positive-sense RNA viruses that utilize a 5′ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5′ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis.
Collapse
|
36
|
Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Suhrbier A, Weaver SC, Texeira MM, Mahalingam S. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. THE LANCET. INFECTIOUS DISEASES 2020; 21:e123-e133. [PMID: 33160445 DOI: 10.1016/s1473-3099(20)30491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Mosquito-borne viruses, or arboviruses, have been part of the infectious disease landscape for centuries, and are often, but not exclusively, endemic to equatorial and subtropical regions of the world. The past two decades saw the re-emergence of arthritogenic alphaviruses, a genus of arboviruses that includes several members that cause severe arthritic disease. Recent outbreaks further highlight the substantial public health burden caused by these viruses. Arthritogenic alphaviruses are often reported in the context of focused outbreaks in specific regions (eg, Caribbean, southeast Asia, and Indian Ocean) and cause debilitating acute disease that can extend to chronic manifestations for years after infection. These viruses are classified among several antigenic complexes, span a range of hosts and mosquito vectors, and can be distributed along specific geographical locations. In this Review, we highlight key features of alphaviruses that are known to cause arthritic disease in humans and outline the present findings pertaining to classification, immunogenicity, pathogenesis, and experimental approaches aimed at limiting disease manifestations. Although the most prominent alphavirus outbreaks in the past 15 years featured chikungunya virus, and a large body of work has been dedicated to understanding chikungunya disease mechanisms, this Review will instead focus on other arthritogenic alphaviruses that have been identified globally and provide a comprehensive appraisal of present and future research directions.
Collapse
Affiliation(s)
- Ali Zaid
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Services, Bloemfontein, South Africa; Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Xiang Liu
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Yee Suan Poo
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro M Texeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
37
|
Uncovering the Roles of miR-214 in Hepatitis E Virus Replication. J Mol Biol 2020; 432:5322-5342. [PMID: 32735806 DOI: 10.1016/j.jmb.2020.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Viral pathogenesis is a complex event and its regulation involve dynamic interactions with various host factors, of which microRNAs are the key players. In the current study, we have identified the functional importance of an interplay between hepatitis E virus (HEV) and miR-214. Computational analysis indicated that miR-214 binding site is significantly conserved among HEV and related RNA viruses. Intact miR-214 binding site is imperative for HEV replication. miR-214 is an essential host factor for HEV replication. Herein, we demonstrate that miR-214 interacts directly with HEV RNA to enhance HEV replication and HEV genome translation. Augmented translation results in increased levels of HEV ORF2, which is a factor responsible for upregulation of miR-214. HEV usurps host cellular machinery for improving viral fitness and elevates miR-214 expression for amplifying the expression of proviral host factor intracellular active thrombin. This is because miR-214 represses the expression of the negative regulator of thrombin, i.e., protein C. Another viral factor, HEV ORF3, also contributes to the enhancement of intracellular active thrombin. Furthermore, miR-214 directly targets antiviral host factor 2'-5'-oligoadenylate synthetase. Conclusively, we identified a novel mechanism of positive regulation of HEV replication. miR-214 interacts directly with HEV genome and fine-tunes host factors expression. This results in outweighing the proviral factors on the proviral-antiviral axis probably for generating virus supportive environment.
Collapse
|
38
|
Identification of Natural Molecular Determinants of Ross River Virus Type I Interferon Modulation. J Virol 2020; 94:JVI.01788-19. [PMID: 31996431 DOI: 10.1128/jvi.01788-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/24/2020] [Indexed: 02/08/2023] Open
Abstract
Ross River virus (RRV) belongs to the genus Alphavirus and is prevalent in Australia. RRV infection can cause arthritic symptoms in patients and may include rash, fever, arthralgia, and myalgia. Type I interferons (IFN) are the primary antiviral cytokines and trigger activation of the host innate immune system to suppress the replication of invading viruses. Alphaviruses are able to subvert the type I IFN system, but the mechanisms used are ill defined. In this study, seven RRV field strains were analyzed for induction of and sensitivity to type I IFN. The sensitivities of these strains to human IFN-β varied significantly and were highest for the RRV 2548 strain. Compared to prototype laboratory strain RRV-T48, RRV 2548 also induced higher type I IFN levels both in vitro and in vivo and caused milder disease. To identify the determinants involved in type I IFN modulation, the region encoding the nonstructural proteins (nsPs) of RRV 2548 was sequenced, and 42 amino acid differences from RRV-T48 were identified. Using fragment swapping and site-directed mutagenesis, we discovered that substitutions E402A and R522Q in nsP1 as well as Q619R in nsP2 were responsible for increased sensitivity of RRV 2548 to type I IFN. In contrast, substitutions A31T, N219T, S580L, and Q619R in nsP2 led to induction of higher levels of type I IFN. With exception of E402A, all these variations are common for naturally occurring RRV strains. However, they are different from all known determinants of type I IFN modulation reported previously in nsPs of alphaviruses.IMPORTANCE By identifying natural Ross River virus (RRV) amino acid determinants for type I interferon (IFN) modulation, this study gives further insight into the mechanism of type I IFN modulation by alphaviruses. Here, the crucial role of type I IFN in the early stages of RRV disease pathogenesis is further demonstrated. This study also provides a comparison of the roles of different parts of the RRV nonstructural region in type I IFN modulation, highlighting the importance of nonstructural protein 1 (nsP1) and nsP2 in this process. Three substitutions in nsP1 and nsP2 were found to be independently associated with enhanced type I IFN sensitivity, and four independent substitutions in nsP2 were important in elevated type I IFN induction. Such evidence has clear implications for RRV immunobiology, persistence, and pathology. The identification of viral proteins that modulate type I IFN may also have importance for the pathogenesis of other alphaviruses.
Collapse
|
39
|
Naturally Occurring and Engineered Alphaviruses Sensitive to Double-Stranded-RNA-Activated Protein Kinase Show Restricted Translation in Mammalian Cells, Increased Sensitivity to Interferon, and Marked Oncotropism. J Virol 2020; 94:JVI.01630-19. [PMID: 31723025 DOI: 10.1128/jvi.01630-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Alphaviruses are insect-borne viruses that alternate between replication in mosquitoes and vertebrate species. Adaptation of some alphaviruses to vertebrate hosts has involved the acquisition of an RNA structure (downstream loop [DLP]) in viral subgenomic mRNAs that confers translational resistance to protein kinase (PKR)-mediated eIF2α phosphorylation. Here, we found that, in addition to promoting eIF2-independent translation of viral subgenomic mRNAs, presence of the DLP structure also increased the resistance of alphavirus to type I interferon (IFN). Aura virus (AURAV), an ecologically isolated relative of Sindbis virus (SV) that is poorly adapted to replication in vertebrate cells, displayed a nonfunctional DLP structure and dramatic sensitivity to type I IFN. Our data suggest that an increased resistance to IFN emerged during translational adaptation of alphavirus mRNA to vertebrate hosts, reinforcing the role that double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays as both a constitutive and IFN-induced antiviral effector. Interestingly, a mutant SV lacking the DLP structure (SV-ΔDLP) and AURAV both showed a marked oncotropism for certain tumor cell lines that have defects in PKR expression and/or activation. AURAV selectively replicated in and killed some cell lines derived from human hepatocarcinoma (HCC) that lacked PKR response to infection or poly(I·C) transfection. The oncolytic activities of SV-ΔDLP and AURAV were also confirmed using tumor xenografts in mice, showing tumor regression activities comparable to wild-type SV. Our data show that translation of alphavirus subgenomic mRNAs plays a central role in IFN susceptibility and cell tropism, suggesting an unanticipated oncolytic potential that some naive arboviruses may have in virotherapy.IMPORTANCE Interferons (IFNs) induce the expression of a number of antiviral genes that protect the cells of vertebrates against viruses and other microbes. The susceptibility of cells to viruses greatly depends on the level and activity of these antiviral effectors but also on the ability of viruses to counteract this antiviral response. Here, we found that the level of one of the main IFN effectors in the cell, the dsRNA-activated protein kinase (PKR), greatly determines the permissiveness of cells to alphaviruses that lack mechanisms to counteract its activation. These naive viruses also showed a hypersensitivity to IFN, suggesting that acquisition of IFN resistance (even partial) has probably been involved in expanding the host range of alphaviruses in the past. Interestingly, some of these naive viruses showed a marked oncotropism for some tumor cell lines derived from human hepatocarcinoma (HCC), opening the possibility of their use in oncolytic therapy to treat human tumors.
Collapse
|
40
|
Rogers KJ, Jones-Burrage S, Maury W, Mukhopadhyay S. TF protein of Sindbis virus antagonizes host type I interferon responses in a palmitoylation-dependent manner. Virology 2020; 542:63-70. [PMID: 32056669 DOI: 10.1016/j.virol.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
Abstract
Sindbis virus (SINV) produces the small membrane protein TF from the 6K gene via a (-1) programmed ribosomal frameshifting. While several groups have shown that TF-deficient virus exhibits reduced virulence, the mechanism(s) by which this occurs remain unknown. Here, we demonstrate a role for TF in antagonizing the host interferon response. Using wild-type and type 1 interferon receptor-deficient mice and primary cells derived from these animals, we show that TF controls the induction of the host interferon response at early times during infection. Loss of TF production leads to elevated interferon and a concurrent reduction in viral loads with a loss of pathogenicity. Palmitoylation of TF has been shown to be important for particle assembly and morphology. We find that palmitoylation of TF also contributes to the ability of TF to antagonize host interferon responses as dysregulated palmitoylation of TF reduces virulence in a manner similar to loss of TF.
Collapse
Affiliation(s)
- K J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - S Jones-Burrage
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - W Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - S Mukhopadhyay
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
41
|
Macromolecular Synthesis Shutoff Resistance by Myeloid Cells Is Critical to IRF7-Dependent Systemic Interferon Alpha/Beta Induction after Alphavirus Infection. J Virol 2019; 93:JVI.00872-19. [PMID: 31578290 DOI: 10.1128/jvi.00872-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition.IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.
Collapse
|
42
|
Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses 2019; 11:v11100961. [PMID: 31635238 PMCID: PMC6832425 DOI: 10.3390/v11100961] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses comprise many (re-)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form the important first line of defence against these viruses. Given their genetic flexibility, these viruses have therefore developed multiple strategies to evade the innate immune response in order to optimize their replication capacity. Already many molecular mechanisms of innate immune evasion by +ssRNA viruses have been identified. However, research addressing the effect of host innate immune evasion on the pathology caused by viral infections is less prevalent in the literature, though very relevant and interesting. Since interferons have been implicated in inflammatory diseases and immunopathology in addition to their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. Therefore, this review discusses what is currently known about the role of interferons and host immune evasion in the pathogenesis of emerging coronaviruses, alphaviruses and flaviviruses.
Collapse
Affiliation(s)
- Tessa Nelemans
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
43
|
Characterization of Novel Splice Variants of Zinc Finger Antiviral Protein (ZAP). J Virol 2019; 93:JVI.00715-19. [PMID: 31118263 DOI: 10.1128/jvi.00715-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Given the unprecedented scale of the recent Ebola and Zika viral epidemics, it is crucial to understand the biology of host factors with broad antiviral action in order to develop novel therapeutic approaches. Here, we look into one such factor: zinc finger antiviral protein (ZAP) inhibits a variety of RNA and DNA viruses. Alternative splicing results in two isoforms that differ at their C termini: ZAPL (long) encodes a poly(ADP-ribose) polymerase (PARP)-like domain that is missing in ZAPS (short). Previously, it has been shown that ZAPL is more antiviral than ZAPS, while the latter is more induced by interferon (IFN). In this study, we discovered and confirmed the expression of two additional splice variants of human ZAP: ZAPXL (extralong) and ZAPM (medium). We also found two haplotypes of human ZAP. Since ZAPL and ZAPS have differential activities, we hypothesize that all four ZAP isoforms have evolved to mediate distinct antiviral and/or cellular functions. By taking a gene-knockout-and-reconstitution approach, we have characterized the antiviral, translational inhibition, and IFN activation activities of individual ZAP isoforms. Our work demonstrates that ZAPL and ZAPXL are more active against alphaviruses and hepatitis B virus (HBV) than ZAPS and ZAPM and elucidates the effects of splice variants on the action of a broad-spectrum antiviral factor.IMPORTANCE ZAP is an IFN-induced host factor that can inhibit a wide range of viruses, and there is great interest in fully characterizing its antiviral mechanism. This is the first study that defines the antiviral capacities of individual ZAP isoforms in the absence of endogenous ZAP expression and, hence, cross talk with other isoforms. Our data demonstrate that ZAP is expressed as four different forms: ZAPS, ZAPM, ZAPL, and ZAPXL. The longer ZAP isoforms better inhibit alphaviruses and HBV, while all isoforms equally inhibit Ebola virus transcription and replication. In addition, there is no difference in the abilities of ZAP isoforms to enhance the induction of type I IFN expression. Our results show that the full spectrum of ZAP activities can change depending on the virus target and the relative levels of basal expression and induction by IFN or infection.
Collapse
|
44
|
The Mosquito Immune System and the Life of Dengue Virus: What We Know and Do Not Know. Pathogens 2019; 8:pathogens8020077. [PMID: 31200426 PMCID: PMC6631187 DOI: 10.3390/pathogens8020077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/10/2023] Open
Abstract
Flaviviruses are largely transmitted to humans by their arthropod vectors such as mosquitoes or ticks. The dengue virus (DENV) is one of the members of the family Flaviviridae and is the causative agent of dengue fever. In the mosquito vector, DENV enters through viremic blood meal and replicates in the mid-gut. Newly formed virion particles circulate to various mosquito organs and get transmitted to the next host in subsequent bites. Aedes aegypti and Aedes albopictus have intricate immune control to allow DENV production at a sub-pathogenic level. In the mosquito, antimicrobial peptides (AMP) and RNA inference (RNAi) are the two main antiviral strategies used against DENV. Apart from innate immunity, mosquito resident microbes play a significant role in modulating DENV replication. In this review, we discuss different immune mechanisms and preventive strategies that act against DENV in two of its vectors: Aedes aegypti and Aedes albopictus.
Collapse
|
45
|
Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol 2019; 4:914-924. [PMID: 30936491 PMCID: PMC6554024 DOI: 10.1038/s41564-019-0421-x] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN signalling and viral evasion mechanisms form an immensely complex network that differs across species. In this Review, we begin by highlighting some of the advances that have been made towards understanding the complexity of differential IFN signalling inputs and outputs that contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN signalling on host tropism, and we offer perspectives on the future of research into IFN signalling complexity and viral evasion across species.
Collapse
Affiliation(s)
- Emily V Mesev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
46
|
Meshram CD, Lukash T, Phillips AT, Akhrymuk I, Frolova EI, Frolov I. Lack of nsP2-specific nuclear functions attenuates chikungunya virus replication both in vitro and in vivo. Virology 2019; 534:14-24. [PMID: 31163352 DOI: 10.1016/j.virol.2019.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Chikungunya virus (CHIKV) is an important arthritogenic human pathogen that is already circulating in both hemispheres. In the present study, we substituted VLoop, located on the surface of nsP2, by other amino acid sequences. These modifications had deleterious effects on viral nuclear functions and made CHIKV incapable of interfering with the induction of type I interferon and the antiviral response in both mouse and human cells. Importantly, the identified mutations have no significant effects on the synthesis of virus-specific RNAs and viral structural proteins. The designed mutants induced a few orders of magnitude lower viremia but remained highly immunogenic in mice. Thus, the proposed modifications of nsP2 can additionally improve the safety of the attenuated strain CHIKV 181/25. Furthermore, defined mutations in the macro domain of another nonstructural protein, nsP3, additionally reduce cytopathogenicity of nsP2 mutants in human cells, and can be potentially applied for CHIKV attenuation.
Collapse
Affiliation(s)
- Chetan D Meshram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tetyana Lukash
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron T Phillips
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ivan Akhrymuk
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
47
|
Law LMJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM, MacDonald MR. ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog 2019; 15:e1007798. [PMID: 31116799 PMCID: PMC6548403 DOI: 10.1371/journal.ppat.1007798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 06/04/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
Cellular antiviral programs encode molecules capable of targeting multiple steps in the virus lifecycle. Zinc-finger antiviral protein (ZAP) is a central and general regulator of antiviral activity that targets pathogen mRNA stability and translation. ZAP is diffusely cytoplasmic, but upon infection ZAP is targeted to particular cytoplasmic structures, termed stress granules (SGs). However, it remains unclear if ZAP’s antiviral activity correlates with SG localization, and what molecular cues are required to induce this localization event. Here, we use Sindbis virus (SINV) as a model infection and find that ZAP’s localization to SGs can be transient. Sometimes no apparent viral infection follows ZAP SG localization but ZAP SG localization always precedes accumulation of SINV non-structural protein, suggesting virus replication processes trigger SG formation and ZAP recruitment. Data from single-molecule RNA FISH corroborates this finding as the majority of cells with ZAP localization in SGs contain low levels of viral RNA. Furthermore, ZAP recruitment to SGs occurred in ZAP-expressing cells when co-cultured with cells replicating full-length SINV, but not when co-cultured with cells replicating a SINV replicon. ZAP recruitment to SGs is functionally important as a panel of alanine ZAP mutants indicate that the anti-SINV activity is correlated with ZAP’s ability to localize to SGs. As ZAP is a central component of the cellular antiviral programs, these data provide further evidence that SGs are an important cytoplasmic antiviral hub. These findings provide insight into how antiviral components are regulated upon virus infection to inhibit virus spread. Organisms encode immune programs, present in most somatic cells, to combat pathogens. The components of these antiviral programs are both constitutively expressed and highly upregulated upon pathogen recognition. Interestingly, a broadly acting antiviral factor is the zinc-finger antiviral protein (ZAP). ZAP is a primarily cytoplasmic protein that upon various cellular stresses, such as virus infection, can localize to specific cytoplasmic complexes termed stress granules (SGs). SGs are hubs that regulate mRNA stability and translation. Here, we show that SG localization is (i) correlated with ZAP’s antiviral function, (ii) most likely triggered during the early stages of virus replication, and (iii) a highly dynamic and transient process. Collectively, our data highlight the genetic and dynamic components of ZAP-mediated antiviral activity.
Collapse
Affiliation(s)
- Lok Man John Law
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Brandon S. Razooky
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Melody M. H. Li
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Shihyun You
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Andrea Jurado
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Charles M. Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Margaret R. MacDonald
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
48
|
Li Y, Teague B, Zhang Y, Su Z, Porter E, Dobosh B, Wagner T, Irvine DJ, Weiss R. In vitro evolution of enhanced RNA replicons for immunotherapy. Sci Rep 2019; 9:6932. [PMID: 31061426 PMCID: PMC6502795 DOI: 10.1038/s41598-019-43422-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Self-replicating (replicon) RNA is a promising new platform for gene therapy, but applications are still limited by short persistence of expression in most cell types and low levels of transgene expression in vivo. To address these shortcomings, we developed an in vitro evolution strategy and identified six mutations in nonstructural proteins (nsPs) of Venezuelan equine encephalitis (VEE) replicon that promoted subgenome expression in cells. Two mutations in nsP2 and nsP3 enhanced transgene expression, while three mutations in nsP3 regulated this expression. Replicons containing the most effective mutation combinations showed enhanced duration and cargo gene expression in vivo. In comparison to wildtype replicon, mutants expressing IL-2 injected into murine B16F10 melanoma showed 5.5-fold increase in intratumoral IL-2 and 2.1-fold increase in infiltrating CD8 T cells, resulting in significantly slowed tumor growth. Thus, these mutant replicons may be useful for improving RNA therapeutics for vaccination, cancer immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Yingzhong Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brian Teague
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zhijun Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ely Porter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brian Dobosh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tyler Wagner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA. .,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
49
|
Src Family Kinase Inhibitors Block Translation of Alphavirus Subgenomic mRNAs. Antimicrob Agents Chemother 2019; 63:AAC.02325-18. [PMID: 30917980 PMCID: PMC6496153 DOI: 10.1128/aac.02325-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Based upon the results of this study, we treated CHIKV-infected cells with kinase inhibitors targeting the Src family kinase (SFK)–phosphatidylinositol 3-kinase (PI3K)–AKT–mTORC signaling pathways. Treatment of cells with SFK inhibitors blocked the replication of CHIKV as well as multiple other alphaviruses, including Mayaro virus, O’nyong-nyong virus, Ross River virus, and Venezuelan equine encephalitis virus. Dissecting the effect of SFK inhibition on alphavirus replication, we found that viral structural protein levels were significantly reduced, but synthesis of viral genomic and subgenomic RNAs was unaffected. By measuring the association of viral RNA with polyribosomes, we found that the SFK inhibitor dasatinib blocks alphavirus subgenomic RNA translation. Our results demonstrate a role for SFK signaling in alphavirus subgenomic RNA translation and replication. Targeting host factors involved in alphavirus replication represents an innovative, perhaps paradigm-shifting, strategy for exploring the replication of CHIKV and other alphaviruses while promoting antiviral therapeutic development.
Collapse
|
50
|
Novel Mutations in nsP2 Abolish Chikungunya Virus-Induced Transcriptional Shutoff and Make the Virus Less Cytopathic without Affecting Its Replication Rates. J Virol 2019; 93:JVI.02062-18. [PMID: 30487275 DOI: 10.1128/jvi.02062-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Alphavirus infections are characterized by global inhibition of cellular transcription and rapid induction of a cytopathic effect (CPE) in cells of vertebrate origin. Transcriptional shutoff impedes the cellular response to alphavirus replication and prevents establishment of an antiviral state. Chikungunya virus (CHIKV) is a highly pathogenic alphavirus representative, and its nonstructural protein 2 (nsP2) plays critical roles in both inhibition of transcription and CPE development. Previously, we have identified a small peptide in Sindbis virus (SINV) nsP2 (VLoop) that determined the protein's transcriptional inhibition function. It is located in the surface-exposed loop of the carboxy-terminal domain of nsP2 and exhibits high variability between members of different alphavirus serocomplexes. In this study, we found that SINV-specific mutations could not be directly applied to CHIKV. However, by using a new selection approach, we identified a variety of new VLoop variants that made CHIKV and its replicons incapable of inhibiting cellular transcription and dramatically less cytopathic. Importantly, the mutations had no negative effect on RNA and viral replication rates. In contrast to parental CHIKV, the developed VLoop mutants were unable to block induction of type I interferon. Consequently, they were cleared from interferon (IFN)-competent cells without CPE development. Alternatively, in murine cells that have defects in type I IFN production or signaling, the VLoop mutants established persistent, noncytopathic replication. The mutations in nsP2 VLoop may be used for development of new vaccine candidates against alphavirus infections and vectors for expression of heterologous proteins.IMPORTANCE Chikungunya virus is an important human pathogen which now circulates in both the Old and New Worlds. As in the case of other Old World alphaviruses, CHIKV nsP2 not only has enzymatic functions in viral RNA replication but also is a critical inhibitor of the antiviral response and one of the determinants of CHIKV pathogenesis. In this study, we have applied a new strategy to select a variety of CHIKV nsP2 mutants that no longer exhibited transcription-inhibitory functions. The designed CHIKV variants became potent type I interferon inducers and acquired a less cytopathic phenotype. Importantly, they demonstrated the same replication rates as the parental CHIKV. Mutations in the same identified peptide of nsP2 proteins derived from other Old World alphaviruses also abolished their nuclear functions. Such mutations can be further exploited for development of new attenuated alphaviruses.
Collapse
|