1
|
Olson AT, Child SJ, Geballe AP. Antagonism of Protein Kinase R by Large DNA Viruses. Pathogens 2022; 11:pathogens11070790. [PMID: 35890034 PMCID: PMC9319463 DOI: 10.3390/pathogens11070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Decades of research on vaccinia virus (VACV) have provided a wealth of insights and tools that have proven to be invaluable in a broad range of studies of molecular virology and pathogenesis. Among the challenges that viruses face are intrinsic host cellular defenses, such as the protein kinase R pathway, which shuts off protein synthesis in response to the dsRNA that accumulates during replication of many viruses. Activation of PKR results in phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α), inhibition of protein synthesis, and limited viral replication. VACV encodes two well-characterized antagonists, E3L and K3L, that can block the PKR pathway and thus enable the virus to replicate efficiently. The use of VACV with a deletion of the dominant factor, E3L, enabled the initial identification of PKR antagonists encoded by human cytomegalovirus (HCMV), a prevalent and medically important virus. Understanding the molecular mechanisms of E3L and K3L function facilitated the dissection of the domains, species-specificity, and evolutionary potential of PKR antagonists encoded by human and nonhuman CMVs. While remaining cognizant of the substantial differences in the molecular virology and replication strategies of VACV and CMVs, this review illustrates how VACV can provide a valuable guide for the study of other experimentally less tractable viruses.
Collapse
Affiliation(s)
- Annabel T. Olson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, 1100 Fairview Ave N Seattle, P.O. Box 19024, Seattle, WA 98109, USA; (A.T.O.); (S.J.C.)
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Stephanie J. Child
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, 1100 Fairview Ave N Seattle, P.O. Box 19024, Seattle, WA 98109, USA; (A.T.O.); (S.J.C.)
| | - Adam P. Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, 1100 Fairview Ave N Seattle, P.O. Box 19024, Seattle, WA 98109, USA; (A.T.O.); (S.J.C.)
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
2
|
Mouna L, Hernandez E, Bonte D, Brost R, Amazit L, Delgui LR, Brune W, Geballe AP, Beau I, Esclatine A. Analysis of the role of autophagy inhibition by two complementary human cytomegalovirus BECN1/Beclin 1-binding proteins. Autophagy 2016; 12:327-42. [PMID: 26654401 DOI: 10.1080/15548627.2015.1125071] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy is activated early after human cytomegalovirus (HCMV) infection but, later on, the virus blocks autophagy. Here we characterized 2 HCMV proteins, TRS1 and IRS1, which inhibit autophagy during infection. Expression of either TRS1 or IRS1 was able to block autophagy in different cell lines, independently of the EIF2S1 kinase, EIF2AK2/PKR. Instead, TRS1 and IRS1 interacted with the autophagy protein BECN1/Beclin 1. We mapped the BECN1-binding domain (BBD) of IRS1 and TRS1 and found it to be essential for autophagy inhibition. Mutant viruses that express only IRS1 or TRS1 partially controlled autophagy, whereas a double mutant virus expressing neither protein stimulated autophagy. A mutant virus that did not express IRS1 and expressed a truncated form of TRS1 in which the BBD was deleted, failed to control autophagy. However, this mutant virus had similar replication kinetics as wild-type virus, suggesting that autophagy inhibition is not critical for viral replication. In fact, using pharmacological modulators of autophagy and inhibition of autophagy by shRNA knockdown, we discovered that stimulating autophagy enhanced viral replication. Conversely, inhibiting autophagy decreased HCMV infection. Thus, our results demonstrate a new proviral role of autophagy for a DNA virus.
Collapse
Affiliation(s)
- Lina Mouna
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif sur Yvette , France
| | - Eva Hernandez
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif sur Yvette , France
| | - Dorine Bonte
- b CNRS UMR8200, Univ Paris-Sud, Institut Gustave Roussy , Villejuif , France
| | - Rebekka Brost
- c Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Larbi Amazit
- d INSERM UMR-S-1185, Faculty of Medicine , Univ Paris-Sud , Le Kremlin Bicêtre , France
| | - Laura R Delgui
- e Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET , Mendoza , Argentina
| | - Wolfram Brune
- c Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Adam P Geballe
- f Fred Hutchinson Cancer Research Center and University of Washington , Seattle , WA , USA
| | - Isabelle Beau
- d INSERM UMR-S-1185, Faculty of Medicine , Univ Paris-Sud , Le Kremlin Bicêtre , France
| | - Audrey Esclatine
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif sur Yvette , France
| |
Collapse
|
3
|
Human Cytomegalovirus pTRS1 and pIRS1 Antagonize Protein Kinase R To Facilitate Virus Replication. J Virol 2016; 90:3839-3848. [PMID: 26819306 DOI: 10.1128/jvi.02714-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication. IMPORTANCE To successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.
Collapse
|
4
|
Braggin JE, Child SJ, Geballe AP. Essential role of protein kinase R antagonism by TRS1 in human cytomegalovirus replication. Virology 2015; 489:75-85. [PMID: 26716879 DOI: 10.1016/j.virol.2015.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
Human cytomegalovirus (HCMV) lacking TRS1 and IRS1 (HCMV[ΔI/ΔT]) cannot replicate in cell culture. Although both proteins can block the protein kinase R (PKR) pathway, they have multiple other activities and binding partners. It remains unknown which functions are essential for HCMV replication. To investigate this issue, we first identified a TRS1 mutant that is unable to bind to PKR. Like HCMV[ΔI/ΔT], a recombinant HCMV containing this mutant (HCMV[TRS1-Mut 1]) did not replicate in wild-type cells. However, HCMV[ΔI/ΔT] did replicate in cells in which PKR expression was reduced by RNA interference. Moreover, HCMV[ΔI/ΔT] and HCMV[TRS1-Mut 1] replicated to similar levels as virus containing wild-type TRS1 in cell lines in which PKR expression was knocked out by CRISPR/Cas9-mediated genome editing. These results demonstrate that the sole essential function of TRS1 is to antagonize PKR and that its other activities do not substantially enhance HCMV replication, at least in cultured human fibroblasts.
Collapse
Affiliation(s)
- Jacquelyn E Braggin
- Department of Microbiology, University of Washington Seattle, WA 98115, United States; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| | - Stephanie J Child
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| | - Adam P Geballe
- Department of Microbiology, University of Washington Seattle, WA 98115, United States; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States.
| |
Collapse
|
5
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
6
|
Smith RM, Kosuri S, Kerry JA. Role of human cytomegalovirus tegument proteins in virion assembly. Viruses 2014; 6:582-605. [PMID: 24509811 PMCID: PMC3939473 DOI: 10.3390/v6020582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022] Open
Abstract
Like other herpesviruses, human cytomegalovirus (HCMV) contains a unique proteinaceous layer between the virion envelope and capsid, termed the tegument. Upon infection, the contents of the tegument layer are delivered to the host cell, along with the capsid and the viral genome, where they facilitate the initial stages of virus replication. The tegument proteins also play important roles in virion assembly and this dual nature makes them attractive potential targets for antiviral therapies. While our knowledge regarding tegument protein function during the initiation of infection has been the subject of intense study, their roles in assembly are much less well understood. In this review, we will focus on recent studies that highlight the functions of HCMV tegument proteins during assembly, and pose key questions for further investigation.
Collapse
Affiliation(s)
- Rebecca Marie Smith
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Srivenkat Kosuri
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Julie Anne Kerry
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
7
|
Amsler L, Verweij M, DeFilippis VR. The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus. J Mol Biol 2013; 425:4857-71. [PMID: 24013068 DOI: 10.1016/j.jmb.2013.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Abstract
Human cytomegalovirus (HCMV) is a member of the β-herpesvirus family that invariably occupies hosts for life despite a consistent multi-pronged antiviral immune response that targets the infection. This persistence is enabled by the large viral genome that encodes factors conferring a wide assortment of sophisticated, often redundant phenotypes that disable or otherwise manipulate impactful immune effector processes. The type I interferon system represents a first line of host defense against infecting viruses. The physiological reactions induced by secreted interferon act to effectively block replication of a broad spectrum of virus types, including HCMV. As such, the virus must exhibit counteractive mechanisms to these responses that involve their inhibition, tolerance, or re-purposing. The goal of this review is to describe the impact of the type I interferon system on HCMV replication and to showcase the number and diversity of strategies employed by the virus that allow infection of hosts in the presence of interferon-dependent activity.
Collapse
Affiliation(s)
- Lisi Amsler
- Vaccine and Gene Therapy Institute Oregon Health and Science University 505 NW 185th Ave. Beaverton, OR, USA, 97006
| | - Marieke Verweij
- Vaccine and Gene Therapy Institute Oregon Health and Science University 505 NW 185th Ave. Beaverton, OR, USA, 97006
| | - Victor R DeFilippis
- Vaccine and Gene Therapy Institute Oregon Health and Science University 505 NW 185th Ave. Beaverton, OR, USA, 97006
| |
Collapse
|
8
|
Bierle CJ, Semmens KM, Geballe AP. Double-stranded RNA binding by the human cytomegalovirus PKR antagonist TRS1. Virology 2013; 442:28-37. [PMID: 23601785 DOI: 10.1016/j.virol.2013.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/15/2013] [Accepted: 03/25/2013] [Indexed: 02/02/2023]
Abstract
Protein Kinase R (PKR) inhibits translation initiation following double-stranded RNA (dsRNA) binding and thereby represses viral replication. Human cytomegalovirus (HCMV) encodes two noncanonical dsRNA binding proteins, IRS1 and TRS1, and the expression of at least one of these PKR antagonists is essential for HCMV replication. In this study, we investigated the role of dsRNA binding by TRS1 in PKR inhibition. We found that purified TRS1 binds specifically to dsRNA with an affinity lower than that of PKR. Point mutants in the TRS1 dsRNA binding domain that were deficient in rescuing the replication of vaccinia virus lacking its PKR antagonist E3L were unable to bind to dsRNA but retained the ability bind to PKR. Thus TRS1 binding to dsRNA and to PKR are separable. Overall, our results are most consistent with a model in which TRS1 binds simultaneously to both dsRNA and PKR to inhibit PKR activation.
Collapse
Affiliation(s)
- Craig J Bierle
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98115, United States.
| | | | | |
Collapse
|
9
|
Strang BL, Bender BJ, Sharma M, Pesola JM, Sanders RL, Spector DH, Coen DM. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization. J Virol 2012; 86:11066-77. [PMID: 22855486 PMCID: PMC3457161 DOI: 10.1128/jvi.01379-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuri Sharma
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Sanders
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deborah H. Spector
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol 2011; 86:2571-84. [PMID: 22205736 DOI: 10.1128/jvi.05746-11] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human cytomegalovirus modulates macroautophagy in two opposite directions. First, HCMV stimulates autophagy during the early stages of infection, as evident by an increase in the number of autophagosomes and a rise in the autophagic flux. This stimulation occurs independently of de novo viral protein synthesis since UV-inactivated HCMV recapitulates the stimulatory effect on macroautophagy. At later time points of infection, HCMV blocks autophagy (M. Chaumorcel, S. Souquere, G. Pierron, P. Codogno, and A. Esclatine, Autophagy 4:1-8, 2008) by a mechanism that requires de novo viral protein expression. Exploration of the mechanisms used by HCMV to block autophagy unveiled a robust increase of the cellular form of Bcl-2 expression. Although this protein has an anti-autophagy effect via its interaction with Beclin 1, it is not responsible for the inhibition induced by HCMV, probably because of its phosphorylation by c-Jun N-terminal kinase. Here we showed that the HCMV TRS1 protein blocks autophagosome biogenesis and that a TRS1 deletion mutant is defective in autophagy inhibition. TRS1 has previously been shown to neutralize the PKR antiviral effector molecule. Although phosphorylation of eIF2α by PKR has been described as a stimulatory signal to induce autophagy, the PKR-binding domain of TRS1 is dispensable to its inhibitory effect. Our results show that TRS1 interacts with Beclin 1 to inhibit autophagy. We mapped the interaction with Beclin 1 to the N-terminal region of TRS1, and we demonstrated that the Beclin 1-binding domain of TRS1 is essential to inhibit autophagy.
Collapse
|
11
|
Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine. J Biomed Biotechnol 2011; 2012:428498. [PMID: 22187535 PMCID: PMC3236503 DOI: 10.1155/2012/428498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/24/2011] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.
Collapse
|
12
|
Abstract
Human cytomegalovirus UL103 encodes a tegument protein that is conserved across herpesvirus subgroups. Mutant viruses lacking this gene product exhibit dramatically reduced accumulation of cell-free virus progeny and poor cell-to-cell spread. Given that viral proteins and viral DNA accumulate with normal kinetics in cells infected with mutant virus, UL103 appears to function during the late phase of replication, playing a critical role in egress of capsidless dense bodies and virions. Few dense bodies were observed in the extracellular space in mutant virus-infected cells in the presence or absence of the DNA encapsidation inhibitor 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)benzimidazole. Upon reversal of encapsidation inhibition, UL103 had a striking impact on accumulation of cell-free virus, but not on accumulation of cell-associated virus. Thus, UL103 plays a novel and important role during maturation, regulating virus particle and dense body egress from infected cells.
Collapse
|
13
|
Sauer A, Wang JB, Hahn G, McVoy MA. A human cytomegalovirus deleted of internal repeats replicates with near wild type efficiency but fails to undergo genome isomerization. Virology 2010; 401:90-5. [PMID: 20211481 PMCID: PMC2849842 DOI: 10.1016/j.virol.2010.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/28/2009] [Accepted: 02/10/2010] [Indexed: 01/30/2023]
Abstract
The class E genome of human cytomegalovirus (HCMV) contains long and short segments that invert due to recombination between flanking inverted repeats, causing the genome to isomerize into four distinct isomers. To determine if isomerization is important for HCMV replication, one copy of each repeat was deleted. The resulting virus replicated in cultured human fibroblasts with only a slight growth impairment. Restriction and Southern analyses confirmed that its genome is locked in the prototypic arrangement and unable to isomerize. We conclude that efficient replication of HCMV in fibroblasts does not require (i) the ability to undergo genome isomerization, (ii) genes that lie partially within the deleted repeats, or (iii) diploidy of genes that lie wholly within repeats. The simple genomic structure of this virus should facilitate studies of genome circularization, latency or persistence, and concatemer packaging as such studies are hindered by the complexities imposed by isomerization.
Collapse
Affiliation(s)
- Anne Sauer
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Jian Ben Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Gabriele Hahn
- Institut für Laboratoriumsmedizin, Abteilung Mikrobiologie, Klinikum Ingolstadt, Krumenauerstr. 25, 85049 Ingolstadt, Germany
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| |
Collapse
|
14
|
Strang BL, Geballe AP, Coen DM. Association of human cytomegalovirus proteins IRS1 and TRS1 with the viral DNA polymerase accessory subunit UL44. J Gen Virol 2010; 91:2167-75. [PMID: 20444996 PMCID: PMC3052514 DOI: 10.1099/vir.0.022640-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple proteins interacting with DNA polymerases orchestrate DNA replication. Human cytomegalovirus (HCMV) encodes a DNA polymerase that includes the presumptive processivity factor UL44. UL44 is structurally homologous to the eukaryotic DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous proteins. Previous proteomic analysis has identified the HCMV protein IRS1 as a candidate protein interacting with UL44. Nuclease-resistant reciprocal co-immunoprecipitation of UL44 with IRS1 and with TRS1, which has an amino terminus identical to that of IRS1, was observed from lysate of cells infected with viruses expressing epitope-tagged UL44, epitope-tagged IRS1 or epitope-tagged TRS1. Western blotting of protein immunoprecipitated from infected cell lysate indicated that epitope-tagged IRS1 and TRS1 do not associate simultaneously with UL44. Glutathione S-transferase pull-down experiments indicated that IRS1 and TRS1 interact with UL44 via a region that is identical in both proteins. Taken together, these data suggest that IRS1 and TRS1 may compete for association with UL44 and may affect UL44 function differentially.
Collapse
Affiliation(s)
- Blair L Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Cepeda V, Esteban M, Fraile-Ramos A. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol 2009; 12:386-404. [PMID: 19888988 DOI: 10.1111/j.1462-5822.2009.01405.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human cytomegalovirus (HCMV) has been shown to complete its final envelopment on cytoplasmic membranes prior to its secretion to the extracellular medium. However, the nature of these membranes has not been characterized. It is thought that HCMV acquires its final envelope from the trans-Golgi network (TGN), though we and others have previously reported a role for endocytic membranes. Here we studied the localization of cellular markers in HCMV-infected cells and in isolated viruses. Immunofluorescence staining indicated that HCMV induces the recruitment of TGN and endosomal markers to the virus factory. Immuno-gold labelling of isolated viral particles and electron microscopy demonstrated the incorporation of TGN46, endosomal markers early endosomal antigen 1, annexin I, transferrin receptor and CD63, and the cation-independent mannose 6-phosphate receptor, which traffics between the TGN and endosomes into the viral envelope. Virus immunoprecipitation assays demonstrated that virions containing TGN46 and CD63 were infectious. This study reconciles the apparent controversy regarding the nature of the HCMV assembly site and suggests that HCMV has the ability to generate a novel membrane compartment containing markers for both TGN and endosomes, or that the membranes that HCMV uses for its envelope may be vesicles in transit between the TGN and endosomes.
Collapse
Affiliation(s)
- Victoria Cepeda
- Cell Biology of Herpesvirus Laboratory, Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autonoma, Madrid 28049, Spain
| | | | | |
Collapse
|
16
|
Dauber B, Wolff T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses 2009; 1:523-44. [PMID: 21994559 PMCID: PMC3185532 DOI: 10.3390/v1030523] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022] Open
Abstract
The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology & Immunology, University of Alberta, 632 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| | - Thorsten Wolff
- P15, Robert Koch-Institute/Nordufer 20, 13353 Berlin, Germany
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| |
Collapse
|
17
|
Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proc Natl Acad Sci U S A 2009; 106:16823-8. [PMID: 19805380 DOI: 10.1073/pnas.0901521106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several different families of DNA viruses encode proteins that inactivate the cellular retinoblastoma tumor suppressor protein (pRb), which normally functions to bind E2F transcription factors and restrict expression of genes necessary for cellular processes including DNA replication. Human cytomegalovirus (HCMV) UL97, a protein kinase functionally orthologous to cellular cyclin-dependent kinases, phosphorylates pRb on inactivating residues during HCMV infection. To assess if such phosphorylation is biologically relevant, we tested whether the human papillomavirus type 16 E7 protein, which inactivates pRb family proteins by direct binding and destabilization, could substitute for UL97 during HCMV infection. In the absence of UL97, expression of wild-type E7 protein, but not a mutant E7 unable to bind pRb family proteins, restored E2F-responsive cellular gene expression, late viral gene expression, and viral DNA synthesis to levels normally observed during wild-type virus infection of quiescent cells. UL97-null mutants exhibited more pronounced defects in virus production and DNA synthesis in quiescent cells as compared to serum-fed, cycling cells. E7 expression substantially enhanced infectious virus production in quiescent cells, but did not complement the defects observed during UL97-null virus infection of cycling cells. Thus, a primary role of UL97 is to inactivate pRb family proteins during infection of quiescent cells, and this inactivation likely abets virus replication by induction of cellular E2F-responsive genes. Our findings have implications for human cytomegalovirus disease and for drugs that target UL97.
Collapse
|
18
|
The endoplasmic reticulum chaperone BiP/GRP78 is important in the structure and function of the human cytomegalovirus assembly compartment. J Virol 2009; 83:11421-8. [PMID: 19741001 DOI: 10.1128/jvi.00762-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that the endoplasmic reticulum (ER) chaperone BiP functions in human cytomegalovirus (HCMV) assembly and egress. Here, we show that BiP localizes in two cytoplasmic structures in infected cells. Antibodies to the extreme C terminus, which includes BiP's KDEL ER localization sequence, detect BiP in regions of condensed ER near the periphery of the cell. Antibodies to the full length, N terminus, or larger portion of the C terminus detect BiP in the assembly compartment. This inability of C-terminal antibodies to detect BiP in the assembly compartment suggests that BiP's KDEL sequence is occluded in the assembly compartment. Depletion of BiP causes the condensed ER and assembly compartments to dissociate, indicating that BiP is important for their integrity. BiP and pp28 are in association in the assembly compartment, since antibodies that detect BiP in the assembly compartment coimmunoprecipitate pp28 and vice versa. In addition, BiP and pp28 copurify with other assembly compartment components on sucrose gradients. BiP also coimmunoprecipitates TRS1. Previous data show that cells infected with a TRS1-deficient virus have cytoplasmic and assembly compartment defects like those seen when BiP is depleted. We show that a fraction of TRS1 purifies with the assembly compartment. These findings suggest that BiP and TRS1 share a function in assembly compartment maintenance. In summary, BiP is diverted from the ER to associate with pp28 and TRS1, contributing to the integrity and function of the assembly compartment.
Collapse
|
19
|
Murine cytomegalovirus capsid assembly is dependent on US22 family gene M140 in infected macrophages. J Virol 2009; 83:7449-56. [PMID: 19458005 DOI: 10.1128/jvi.00325-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages are an important target cell for infection with cytomegalovirus (CMV). A number of viral genes that either are expressed specifically in this cell type or function to optimize CMV replication in this host cell have now been identified. Among these is the murine CMV (MCMV) US22 gene family member M140, a nonessential early gene whose deletion (RVDelta140) leads to significant impairment in virus replication in differentiated macrophages. We have now determined that the defect in replication is at the stage of viral DNA encapsidation. Although the rate of RVDelta140 genome replication and extent of DNA cleavage were comparable to those for revertant virus, deletion of M140 resulted in a significant reduction in the number of viral capsids in the nucleus, and the viral DNA remained sensitive to DNase treatment. These data are indicative of incomplete virion assembly. Steady-state levels of both the major capsid protein (M86) and tegument protein M25 were reduced in the absence of the M140 protein (pM140). This effect may be related to the localization of pM140 to an aggresome-like, microtubule organizing center-associated structure that is known to target misfolded and overexpressed proteins for degradation. It appears, therefore, that pM140 indirectly influences MCMV capsid formation in differentiated macrophages by regulating the stability of viral structural proteins.
Collapse
|
20
|
Marshall EE, Bierle CJ, Brune W, Geballe AP. Essential role for either TRS1 or IRS1 in human cytomegalovirus replication. J Virol 2009; 83:4112-20. [PMID: 19211736 PMCID: PMC2668495 DOI: 10.1128/jvi.02489-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
Viral infections often produce double-stranded RNA (dsRNA), which in turn triggers potent antiviral responses, including the global repression of protein synthesis mediated by protein kinase R (PKR) and 2'-5' oligoadenylate synthetase (OAS). As a consequence, many viruses have evolved genes, such as those encoding dsRNA-binding proteins, which counteract these pathways. Human cytomegalovirus (HCMV) encodes two related proteins, pTRS1 and pIRS1, which bind dsRNA and can prevent activation of the PKR and OAS pathways. HCMV mutants lacking either IRS1 or TRS1 replicate at least moderately well in cell culture. However, as we demonstrate in the present study, an HCMV mutant lacking both IRS1 and TRS1 (HCMV[DeltaI/DeltaT]) has a severe replication defect. Infection with HCMV[DeltaI/DeltaT] results in a profound inhibition of overall and viral protein synthesis, as well as increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha). The vaccinia virus E3L gene can substitute for IRS1 or TRS1, enabling HCMV replication. Despite the accumulation of dsRNA in HCMV-infected cells, the OAS pathway remains inactive, even in HCMV[DeltaI/DeltaT]-infected cells. These results suggest that PKR-mediated phosphorylation of eIF2alpha is the dominant dsRNA-activated pathway responsible for inhibition of protein synthesis and HCMV replication in the absence of both IRS1 and TRS1 and that the requirement for evasion of the PKR pathway likely explains the necessity for IRS1 or TRS1 for productive infection.
Collapse
Affiliation(s)
- Emily E Marshall
- Departments of Microbiology, University of Washington, Seattle, Washington 98115, USA
| | | | | | | |
Collapse
|
21
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
22
|
Abstract
SUMMARY Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.
Collapse
|
23
|
Abstract
HCMV lytic DNA replication is complex and highly regulated. The cis-acting lytic origin of DNA replication (oriLyt) contains multiple repeat motifs that comprise two main functional domains. The first is a bidirectional promoter element that is responsive to UL84 and IE2. The second appears to be an RNA/DNA hybrid region that is a substrate for UL84. UL84 is required for oriLyt-dependent DNA replication along with the six core proteins, UL44 (DNA processivity factor), UL54 (DNA polymerase), UL70 (primase), UL105 (helicase), UL102 (primase-associated factor) and UL57 (single-stranded DNA-binding protein). UL84 is an early protein that shuttles from the nucleus to the cytoplasm, binds RNA, suppresses the transcriptional activation function of IE2, has UTPase activity and is proposed to be a member of the DExH/D box family of proteins. UL84 is a key factor that may act in concert with the other core replication proteins to initiate lytic replication by altering the conformation of an RNA stem loop structure within oriLyt. In addition, new data suggests that UL84 interacts with at least one member of the viral replication proteins and several cellular encoded proteins.
Collapse
Affiliation(s)
- G S Pari
- University of Nevada, Reno, School of Medicine, Reno NV 89557, USA.
| |
Collapse
|
24
|
Lorz K, Hofmann H, Berndt A, Tavalai N, Mueller R, Schlötzer-Schrehardt U, Stamminger T. Deletion of open reading frame UL26 from the human cytomegalovirus genome results in reduced viral growth, which involves impaired stability of viral particles. J Virol 2007; 80:5423-34. [PMID: 16699023 PMCID: PMC1472153 DOI: 10.1128/jvi.02585-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that open reading frame (ORF) UL26 of human cytomegalovirus, a member of the US22 multigene family of betaherpesviruses, encodes a novel tegument protein, which is imported into cells in the course of viral infection. Moreover, we demonstrated that pUL26 contains a strong transcriptional activation domain and is capable of stimulating the major immediate-early (IE) enhancer-promoter. Since this suggested an important function of pUL26 during the initiation of the viral replicative cycle, we sought to ascertain the relevance of pUL26 by construction of a viral deletion mutant lacking the UL26 ORF using the bacterial artificial chromosome mutagenesis procedure. The resulting deletion virus was verified by PCR, enzyme restriction, and Southern blot analyses. After infection of human foreskin fibroblasts, the UL26 deletion mutant showed a small-plaque phenotype and replicated to significantly lower titers than wild-type or revertant virus. In particular, we noticed a striking decrease of infectious titers 7 days postinfection in a multistep growth experiment, whereas the release of viral DNA from infected cells was not impaired. A further investigation of this aspect revealed a significantly diminished stability of viral particles derived from the UL26 deletion mutant. Consistent with this, we observed that the tegument composition of the deletion mutant deviates from that of the wild-type virus. We therefore hypothesize that pUL26 plays a role not only in the onset of IE gene transcription but also in the assembly of the viral tegument layer in a stable and correct manner.
Collapse
Affiliation(s)
- Kerstin Lorz
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Sweet C, Ball K, Morley PJ, Guilfoyle K, Kirby M. Mutations in the temperature-sensitive murine cytomegalovirus (MCMV) mutantstsm5 andtsm30: A study of genes involved in immune evasion, DNA packaging and processing, and DNA replication. J Med Virol 2007; 79:285-99. [PMID: 17245727 DOI: 10.1002/jmv.20797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A murine cytomegalovirus (MCMV) temperature-sensitive (ts) mutant, tsm5, of the K181 (Birmingham) strain, showed approximately 10-fold and approximately 10,000-fold reductions in yields at the permissive (33 degrees C) and non-permissive temperature (40 degrees C), respectively. It did not replicate to detectable levels in any tissue of 1-week-old Balb/c mice for up to 21 days following i.p. inoculation with 4 x 10(3) pfu although it did replicate, albeit with considerably delayed kinetics, in SCID mice. tsm5 expressed all kinetic classes of transcript (immediate-early, early and late) both in vitro at the non-permissive temperature and in vivo. To identify mutations contributing to this phenotype, chimaeric viruses produced from overlapping cosmids generated from tsm5 and the Smith strain of MCMV were examined. A virus, Smith/tsm5DGIK, comprising the central conserved region of the tsm5 genome, was not attenuated at 33 or 37 degrees C but was ts at 40 degrees C, although not to the same extent as tsm5. In contrast to tsm5, this chimaeric virus replicated to similar levels as parental viruses in adult BALB/c mice. These results suggested that genes contributing to reduced replication at 33 degrees C and lack of replication in vivo are located at the ends of the tsm5 genome while those contributing to the ts phenotype are located in the central conserved region of the genome. Sequencing of some immune evasion genes known to be located at the 3' or 5' ends of the MCMV genome showed that no mutations were present in ORFs m04, m06, M33, M37, m38.5, m144, m152, or m157 although mutations were found in M27 (A658S) and M36Ex1 (V54I). tsm5 made few capsids at 40 degrees C and these lacked DNA. DNA synthesis was significantly reduced in tsm5-infected cells at 40 degrees C although DNA cleavage occurred with close to wt efficiency. Sequencing of the herpesvirus conserved cis-acting elements, pac1 and pac2, and genes involved in DNA packaging and cleavage located in the central core region of the genome identified few point mutations. Two were identified that alter the encoded protein in tsm5 ORFs M98 (P324S) and M56 (G439R). Furthermore, a point mutation (C890Y) was identified in M70, the primase. Another mutant, tsm30, which is also defective in DNA packaging and processing, has a point mutation in M52 (D494N). Thus, a number of mutations have been identified in tsm5 that suggests that it is defective in genes involved in immune evasion, DNA replication and DNA encapsidation.
Collapse
Affiliation(s)
- Clive Sweet
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | |
Collapse
|
26
|
Child SJ, Hanson LK, Brown CE, Janzen DM, Geballe AP. Double-stranded RNA binding by a heterodimeric complex of murine cytomegalovirus m142 and m143 proteins. J Virol 2006; 80:10173-80. [PMID: 17005694 PMCID: PMC1617283 DOI: 10.1128/jvi.00905-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/12/2006] [Indexed: 11/20/2022] Open
Abstract
In response to viral infection, cells activate a variety of antiviral responses, including several that are triggered by double-stranded (ds) RNA. Among these are the protein kinase R and oligoadenylate synthetase/RNase L pathways, both of which result in the shutoff of protein synthesis. Many viruses, including human cytomegalovirus, encode dsRNA-binding proteins that prevent the activation of these pathways and thereby enable continued protein synthesis and viral replication. We have extended these analyses to another member of the beta subfamily of herpesviruses, murine cytomegalovirus (MCMV), and now report that products of the m142 and m143 genes together bind dsRNA. Coimmunoprecipitation experiments demonstrate that these two proteins interact in infected cells, consistent with their previously reported colocalization. Jointly, but not individually, the proteins rescue replication of a vaccinia virus mutant with a deletion of the dsRNA-binding protein gene E3L (VVDeltaE3L). Like the human cytomegalovirus dsRNA-binding protein genes TRS1 and IRS1, m142 and m143 are members of the US22 gene family. We also found that two other members of the MCMV US22 family, M23 and M24, encode dsRNA-binding proteins, but they do not rescue VVDeltaE3L replication. These results reveal that MCMV, like many other viruses, encodes dsRNA-binding proteins, at least two of which can inhibit dsRNA-activated antiviral pathways. However, unlike other well-studied examples, the MCMV proteins appear to act in a heterodimeric complex.
Collapse
Affiliation(s)
- Stephanie J Child
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, MS C2-023, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
27
|
Feng X, Schröer J, Yu D, Shenk T. Human cytomegalovirus pUS24 is a virion protein that functions very early in the replication cycle. J Virol 2006; 80:8371-8. [PMID: 16912288 PMCID: PMC1563874 DOI: 10.1128/jvi.00399-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.
Collapse
Affiliation(s)
- Xuyan Feng
- Department of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
28
|
Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, Fortunato EA. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol 2006; 80:8390-401. [PMID: 16912290 PMCID: PMC1563868 DOI: 10.1128/jvi.00505-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection of primary fibroblasts with human cytomegalovirus (HCMV) causes a rapid stabilization of the cellular protein p53. p53 is a major effector of the cellular damage response, and activation of this transcription factor can lead either to cell cycle arrest or to apoptosis. Viruses employ many tactics to avoid p53-mediated effects. One method HCMV uses to counteract p53 is sequestration into its viral replication centers. In order to determine whether or not HCMV benefits from this sequestration, we infected a p53(-/-) fibroblast line. We find that although these cells are permissive for viral infection, several parameters are substantially altered compared to wild-type (wt) fibroblasts. p53(-/-) cells show delayed and decreased accumulation of infectious viral particles compared to control fibroblasts, with the largest difference of 100-fold at 72 h post infection (p.i.) and peak titers decreased by approximately 10- to 20-fold at 144 h p.i. Viral DNA accumulation is also delayed and somewhat decreased in p53(-/-) cells; however, on average, levels of DNA are not more than fivefold lower than wt at any time p.i. and thus cannot account entirely for the observed differences in titers. In addition, there are delays in the expression of several key viral proteins, including the early replication protein UL44 and some of the late structural proteins, pp28 (UL99) and MCP (UL86). UL44 localization also indicates delayed formation and maturation of the replication centers throughout the course of infection. Localization of the major tegument protein pp65 (UL83) is also altered in these p53(-/-) cells. Partial reconstitution of the p53(-/-) cells with a wt copy of p53 returns all parameters toward wt, while reconstitution with mutant p53 does not. Taken together, our data suggest that wt p53 enhances the ability of HCMV to replicate and produce high concentrations of infectious virions in permissive cells.
Collapse
Affiliation(s)
- N C Casavant
- Department of Microbiology, Molecular Biology and Biochemistry and The Center for Reproductive Biology, University of Idaho, Moscow, 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hakki M, Marshall EE, De Niro KL, Geballe AP. Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 2006; 80:11817-26. [PMID: 16987971 PMCID: PMC1642616 DOI: 10.1128/jvi.00957-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
30
|
Gaspar M, Shenk T. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci U S A 2006; 103:2821-6. [PMID: 16477038 PMCID: PMC1413835 DOI: 10.1073/pnas.0511148103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway.
Collapse
Affiliation(s)
- Miguel Gaspar
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Cassady KA. Human cytomegalovirus TRS1 and IRS1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection. J Virol 2005; 79:8707-15. [PMID: 15994764 PMCID: PMC1168740 DOI: 10.1128/jvi.79.14.8707-8715.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) attachment and entry stimulates the expression of cellular interferon-inducible genes, many of which target important cellular functions necessary for viral replication. Double-stranded RNA-dependent host protein kinase (PKR) is an interferon-inducible gene product that limits viral replication by inhibiting protein translation in the infected cell. It was anticipated that HCMV encodes gene products that facilitate the evasion of this PKR-mediated antiviral response. Using a deltagamma1 34.5 herpes simplex virus type 1 (HSV-1) recombinant that triggers PKR-mediated protein synthesis shutoff, experiments identified an HCMV gene product expressed in the initial hours of infection that allows continued protein synthesis in the infected cell. Recombinant HSV-1 viruses expressing either the HCMV TRS1 or IRS1 protein demonstrate that either of these HCMV gene products allows the deltagamma1 34.5 recombinant viruses to evade PKR-mediated protein shutoff and maintain late viral protein synthesis.
Collapse
Affiliation(s)
- Kevin A Cassady
- UAB Department of Pediatrics, 1600 6th Avenue South, CHB-118C, Birmingham, AL 35233, USA.
| |
Collapse
|
32
|
White EA, Spector DH. Exon 3 of the human cytomegalovirus major immediate-early region is required for efficient viral gene expression and for cellular cyclin modulation. J Virol 2005; 79:7438-52. [PMID: 15919900 PMCID: PMC1143685 DOI: 10.1128/jvi.79.12.7438-7452.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early (IE) proteins share an 85-amino-acid N-terminal domain specified by exons 2 and 3 of the major IE region, UL122-123. We have constructed IE Delta30-77, a recombinant virus that lacks the majority of IE exon 3 and consequently expresses smaller forms of both IE1 72- and IE2 86-kDa proteins. The mutant virus is viable but growth impaired at both high and low multiplicities of infection and exhibits a kinetic defect that is not rescued by growth in fibroblasts expressing IE1 72-kDa protein. The kinetics of mutant IE2 protein accumulation in IE Delta30-77 virus-infected cells are approximately normal compared to wild-type virus-infected cells, but the IE Delta30-77 virus is delayed in expression of early viral genes, including UL112-113 and UL44, and does not sustain expression of mutant IE1 protein as the infection progresses. Additionally, cells infected with IE Delta30-77 exhibit altered expression of cellular proteins compared to wild-type HCMV-infected cells. PML is not dispersed but is retained at ND10 sites following infection with IE Delta30-77 mutant virus. While the deletion mutant retains the ability to mediate the stabilization of cyclin B1, cdc6, and geminin in infected cells, its capacity to upregulate the expression of cyclin E has been reduced. These data indicate that the activity of one or both of the HCMV major IE proteins is required in vivo for the modulation of cell cycle proteins observed in cells infected with wild-type HCMV.
Collapse
Affiliation(s)
- Elizabeth A White
- Dept. of Cellular and Molecular Medicine, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | | |
Collapse
|
33
|
Hanson LK, Dalton BL, Cageao LF, Brock RE, Slater JS, Kerry JA, Campbell AE. Characterization and regulation of essential murine cytomegalovirus genes m142 and m143. Virology 2005; 334:166-77. [PMID: 15780867 DOI: 10.1016/j.virol.2005.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/13/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
US22 gene family members m142 and m143 are essential for replication of murine cytomegalovirus (MCMV). Their transcripts are produced with immediate-early kinetics, but little else is known about these viral genes. Unlike their transcripts, the m142 and m143 gene products (pm142, pm143) were not expressed until early times post-infection, with levels increasing over the course of infection. Both pm142 and pm143 were predominantly cytoplasmic, but cellular fractionation studies confirmed that the proteins were present in the nucleus as well. In addition, pm142 was detected within the virion. Both the m142 and m143 promoters were strongly upregulated by viral infection or by MCMV IE1. However, UV-inactivated virus and IE3 upregulated only the m142 promoter. When tested for transcriptional transactivating activity, neither m142 nor m143 demonstrated significant activity, either alone or in combination with the major immediate-early gene products. This failure to transactivate, along with their essential nature, makes m142 and m143 unique among the immediate-early genes of the US22 gene family.
Collapse
Affiliation(s)
- Laura K Hanson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hakki M, Geballe AP. Double-stranded RNA binding by human cytomegalovirus pTRS1. J Virol 2005; 79:7311-8. [PMID: 15919885 PMCID: PMC1143672 DOI: 10.1128/jvi.79.12.7311-7318.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 02/28/2005] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes rescue replication of vaccinia virus (VV) that has a deletion of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). Like E3L, these HCMV genes block the activation of key interferon-induced, double-stranded RNA (dsRNA)-activated antiviral pathways. We investigated the hypothesis that the products of these HCMV genes act by binding to dsRNA. pTRS1 expressed by cell-free translation or by infection of mammalian cells with HCMV or recombinant VV bound to dsRNA. Competition experiments revealed that pTRS1 preferentially bound to dsRNA compared to double-stranded DNA or single-stranded RNA. 5'- and 3'-end deletion analyses mapped the TRS1 dsRNA-binding domain to amino acids 74 through 248, a region of identity to pIRS1 that contains no homology to known dsRNA-binding proteins. Deletion of the majority of this region (Delta86-246) completely abrogated dsRNA binding. To determine the role of the dsRNA-binding domain in the rescue of VVDeltaE3L replication, wild-type or deletion mutants of TRS1 were transfected into HeLa cells, which were then infected with VVDeltaE3L. While full-length TRS1 rescued VVDeltaE3L replication, deletion mutants affecting a carboxy-terminal region of TRS1 that is not required for dsRNA binding failed to rescue VVDeltaE3L. Analyses of stable cell lines revealed that the carboxy-terminal domain is necessary to prevent the shutoff of protein synthesis and the phosphorylation of eIF2alpha after VVDeltaE3L infection. Thus, pTRS1 contains an unconventional dsRNA-binding domain at its amino terminus, but a second function involving the carboxy terminus is also required for countering host cell antiviral responses.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, MS C2-023, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
35
|
Schierling K, Buser C, Mertens T, Winkler M. Human cytomegalovirus tegument protein ppUL35 is important for viral replication and particle formation. J Virol 2005; 79:3084-96. [PMID: 15709028 PMCID: PMC548451 DOI: 10.1128/jvi.79.5.3084-3096.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tegument proteins ppUL35 and ppUL82 (pp71) of human cytomegalovirus (HCMV) physically interact and cooperatively activate the major immediate-early transcription. While an HCMV mutant lacking UL82 displayed a multiplicity of infection (MOI)-dependent growth, the biological significance of ppUL35 has not been addressed so far. We generated a mutant virus with a deletion of the UL35 gene. Using an MOI of 0.1, the progeny virus yield of this mutant was reduced by a factor of 1,000; however, when infected at a low MOI (0.01), the gene was essential. Characterization of the replication cycle showed that the mutant virus had two defects: when virus inoculum was standardized by the amount of viral DNA, a reduced immediate-early gene expression was observed, leading to a strongly delayed expression of lytic genes. A second defect was apparent in the virus assembly, as fewer enveloped particles and no dense bodies were present in cells infected with the mutant virus. However, the particles produced by wild-type and mutant viruses did not show significant ultrastructural differences. These results suggest an important role for ppUL35 in immediate-early gene expression and virus assembly.
Collapse
Affiliation(s)
- Karina Schierling
- Abteilung Virologie, Universitätsklinikum Ulm, Albert Einstein Allee 11, D-89081 Ulm, Germany.
| | | | | | | |
Collapse
|
36
|
Adamo JE, Schröer J, Shenk T. Human cytomegalovirus TRS1 protein is required for efficient assembly of DNA-containing capsids. J Virol 2004; 78:10221-9. [PMID: 15367587 PMCID: PMC516402 DOI: 10.1128/jvi.78.19.10221-10229.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human cytomegalovirus tegument protein, pTRS1, appears to function at several discrete stages of the virus replication cycle. We previously demonstrated that pTRS1 acts during the late phase of infection to facilitate the production of infectious virions. We now have more precisely identified the late pTRS1 function by further study of a mutant virus lacking the TRS1 region, ADsubTRS1. We observed a significant reduction in the production of capsids, especially DNA-containing C-capsids, in mutant virus-infected cells. ADsubTRS1 exhibited normal cleavage of DNA concatemers, so the defect in C-capsid production must occur after DNA cleavage and before DNA is stably inserted into a capsid. Further, the normal virus-induced morphological reorganization of the nucleus did not occur after infection with the pTRS1-deficient mutant.
Collapse
Affiliation(s)
- Joan E Adamo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
37
|
White EA, Clark CL, Sanchez V, Spector DH. Small internal deletions in the human cytomegalovirus IE2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J Virol 2004; 78:1817-30. [PMID: 14747546 PMCID: PMC369462 DOI: 10.1128/jvi.78.4.1817-1830.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86-kDa protein is a key viral transactivator and an important regulator of HCMV infections. We used the HCMV genome cloned as a bacterial artificial chromosome (BAC) to construct four HCMV mutants with disruptions in regions of IE2 86 that are predicted to be important for its transactivation and autoregulatory functions. Three of these mutants have mutations that remove amino acids 356 to 359, 427 to 435, and 505 to 511, which disrupts a region of IE2 86 implicated in the activation of HCMV early promoters, a predicted zinc finger domain, and a putative helix-loop-helix motif, respectively, while the fourth carries three arginine-to-alanine substitution mutations in the region of amino acids 356 to 359. The resulting recombinant viruses are not viable, and by using quantitative real-time reverse transcription-PCR and immunofluorescence we have determined the location of the block in their replicative cycles. The IE2 86 Delta 356-359 mutant is able to support early gene expression, as indicated by the presence of UL112-113 transcripts and UL112-113 and UL44 proteins in cells transfected with the mutant BAC. This mutant does not express late genes and behaves nearly indistinguishably from the IE2 86R356/7/9A substitution mutant. Both exhibit detectable upregulation of major immediate-early transcripts at early times. The IE2 86 Delta 427-435 and IE2 86 Delta 505-511 recombinant viruses do not activate the early genes examined and are defective in repression of the major immediate-early promoter. These two mutants also induce the expression of selected delayed early (UL89) and late genes at early times in the infection. We conclude that these three regions of IE2 86 are necessary for productive infections and for differential control of downstream viral gene expression.
Collapse
Affiliation(s)
- Elizabeth A White
- Molecular Biology Section and Center for Molecular Genetics, University of California-San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
38
|
Child SJ, Hakki M, De Niro KL, Geballe AP. Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol 2004; 78:197-205. [PMID: 14671101 PMCID: PMC303427 DOI: 10.1128/jvi.78.1.197-205.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection with human cytomegalovirus (HCMV), cellular protein synthesis continues even as viral proteins are being synthesized in abundance. Thus, HCMV may have a mechanism for counteracting host cell antiviral pathways that act by shutting off translation. Consistent with this view, HCMV infection of human fibroblasts rescues the replication of a vaccinia virus mutant lacking the double-stranded RNA-binding protein gene E3L (VVdeltaE3L). HCMV also prevents the phosphorylation of the eukaryotic translation initiation factor eIF-2alpha, the activation of RNase L, and the shutoff of viral and cellular protein synthesis that otherwise result from VVdeltaE3L infection. To identify the HCMV gene(s) responsible for these effects, we prepared a library of VVdeltaE3L recombinants containing HCMV genomic fragments. By infecting nonpermissive cells with this library and screening for VV gene expression and replication, we isolated a virus containing a 2.8-kb HCMV fragment that rescues replication of VVdeltaE3L. The fragment comprises the 3' end of the J1S open reading frame through the entire TRS1 gene. Analyses of additional VVdeltaE3L recombinants revealed that the protein encoded by TRS1, pTRS1, as well as the closely related IRS1 gene, rescues VVdeltaE3L replication and prevent the shutoff of protein synthesis, the phosphorylation of eIF-2alpha, and activation of RNase L. These results demonstrate that TRS1 and IRS1 are able to counteract critical host cell antiviral response pathways.
Collapse
Affiliation(s)
- Stephanie J Child
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
39
|
Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE. Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 2003; 100:14976-81. [PMID: 14657367 PMCID: PMC299866 DOI: 10.1073/pnas.2136652100] [Citation(s) in RCA: 404] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Six strains of human cytomegalovirus have been sequenced, including two laboratory strains (AD169 and Towne) that have been extensively passaged in fibroblasts and four clinical isolates that have been passaged to a limited extent in the laboratory (Toledo, FIX, PH, and TR). All of the sequenced viral genomes have been cloned as infectious bacterial artificial chromosomes. A total of 252 ORFs with the potential to encode proteins have been identified that are conserved in all four clinical isolates of the virus. Multiple sequence alignments revealed substantial variation in the amino acid sequences encoded by many of the conserved ORFs.
Collapse
Affiliation(s)
- Eain Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 80544, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu D, Silva MC, Shenk T. Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S A 2003; 100:12396-401. [PMID: 14519856 PMCID: PMC218769 DOI: 10.1073/pnas.1635160100] [Citation(s) in RCA: 338] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus has a complex double-stranded DNA genome of approximately 240,000 bp that contains approximately 150 ORFs likely to encode proteins, most of whose functions are not well understood. We have used an infectious bacterial artificial chromosome to introduce 413 defined insertion and substitution mutations into the human cytomegalovirus AD169 genome by random and site-directed transposon mutagenesis. Mutations were produced in all unique ORFs with a high probability of encoding proteins for which mutants have not been previously documented and in many previously characterized ORFs. The growth of selected mutants was assayed in cultured human fibroblasts, and we now recognize 41 essential, 88 nonessential, and 27 augmenting ORFs. Most essential and augmenting genes are located in the central region, and nonessential genes generally cluster near the ends of the viral genome.
Collapse
Affiliation(s)
- Dong Yu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|