1
|
de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans 2020; 49:16004-16033. [PMID: 33030464 DOI: 10.1039/d0dt02478c] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of the Covid-19 outbreak, this review brings together historical and current literature efforts towards the development of antiviral metallodrugs. Classical compounds such as CTC-96 and auranofin are discussed in depth, as pillars for future metallodrug development. From the recent literature, both cell-based results and biophysical assays against potential viral biomolecule targets are summarized here. The comprehension of the biomolecular targets and their interactions with coordination compounds are emphasized as fundamental strategies that will foment further development of metal-based antivirals. We also discuss other possible and unexplored methods for unveiling metallodrug interactions with biomolecules related to viral replication and highlight the specific challenges involved in the development of antiviral metallodrugs.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP - 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
2
|
Labenski V, Suerth JD, Barczak E, Heckl D, Levy C, Bernadin O, Charpentier E, Williams DA, Fehse B, Verhoeyen E, Schambach A. Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes. Biomaterials 2016; 97:97-109. [PMID: 27162078 DOI: 10.1016/j.biomaterials.2016.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/09/2016] [Accepted: 04/20/2016] [Indexed: 01/06/2023]
Abstract
Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering.
Collapse
Affiliation(s)
- Verena Labenski
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Elke Barczak
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany; Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Camille Levy
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Els Verhoeyen
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France; Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice, France
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Carrondo M, Panet A, Wirth D, Coroadinha AS, Cruz P, Falk H, Schucht R, Dupont F, Geny-Fiamma C, Merten OW, Hauser H. Integrated strategy for the production of therapeutic retroviral vectors. Hum Gene Ther 2011; 22:370-9. [PMID: 21043806 DOI: 10.1089/hum.2009.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2022] Open
Abstract
The broad application of retroviral vectors for gene delivery is still hampered by the difficulty to reproducibly establish high vector producer cell lines generating sufficient amounts of highly concentrated virus vector preparations of high quality. To enhance the process for producing clinically relevant retroviral vector preparations for therapeutic applications, we have integrated novel and state-of-the-art technologies in a process that allows rapid access to high-efficiency vector-producing cells and consistent production, purification, and storage of retroviral vectors. The process has been designed for various types of retroviral vectors for clinical application and to support a high-throughput process. New modular helper cell lines that permit rapid insertion of DNA encoding the therapeutic vector of interest at predetermined, optimal chromosomal loci were developed to facilitate stable and high vector production levels. Packaging cell lines, cultivation methods, and improved medium composition were coupled with vector purification and storage process strategies that yield maximal vector infectivity and stability. To facilitate GMP-grade vector production, standard of operation protocols were established. These processes were validated by production of retroviral vector lots that drive the expression of type VII collagen (Col7) for the treatment of a skin genetic disease, dystrophic epidermolysis bullosa. The potential efficacy of the Col7-expressing vectors was finally proven with newly developed systems, in particular in target primary keratinocyte cultures and three-dimensional skin tissues in organ culture.
Collapse
Affiliation(s)
- Manuel Carrondo
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, P-2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Visualizing the replication cycle of bunyamwera orthobunyavirus expressing fluorescent protein-tagged Gc glycoprotein. J Virol 2010; 84:8460-9. [PMID: 20573824 DOI: 10.1128/jvi.00902-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The virion glycoproteins Gn and Gc of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family and also of the Orthobunyavirus genus, are encoded by the medium (M) RNA genome segment and are involved in both viral attachment and entry. After their synthesis Gn and Gc form a heterodimer in the endoplasmic reticulum (ER) and transit to the Golgi compartment for virus assembly. The N-terminal half of the Gc ectodomain was previously shown to be dispensable for virus replication in cell culture (X. Shi, J. Goli, G. Clark, K. Brauburger, and R. M. Elliott, J. Gen. Virol. 90:2483-2492, 2009.). In this study, the coding sequence for a fluorescent protein, either enhanced green fluorescent protein (eGFP) or mCherry fluorescent protein, was fused to the N terminus of truncated Gc, and two recombinant BUNVs (rBUNGc-eGFP and rBUNGc-mCherry) were rescued by reverse genetics. The recombinant viruses showed bright autofluorescence under UV light and were competent for replication in various mammalian cell lines. rBUNGc-mCherry was completely stable over 10 passages, whereas internal, in-frame deletions occurred in the chimeric Gc-eGFP protein of rBUNGc-eGFP, resulting in loss of fluorescence between passages 5 and 7. Autofluorescence of the recombinant viruses allowed visualization of different stages of the infection cycle, including virus attachment to the cell surface, budding of virus particles in Golgi membranes, and virus-induced morphological changes to the Golgi compartment at later stages of infection. The fluorescent protein-tagged viruses will be valuable reagents for live-cell imaging studies to investigate virus entry, budding, and morphogenesis in real time.
Collapse
|
5
|
Brandtner EM, Kodajova P, Knapp E, Ertl R, Tabotta W, Salmons B, Günzburg WH, Hohenadl C. Quantification and characterization of autotransduction in retroviral vector producer cells. Hum Gene Ther 2008; 19:97-102. [PMID: 18072860 DOI: 10.1089/hum.2007.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene therapy has evolved into a tempting strategy for the management of cancer and other life-threatening diseases. Various approaches employ retroviral vectors to deliver the therapeutic gene. The profound knowledge about retrovirus biology allows the generation of increasingly advanced vector systems as well as an accurate assessment and management of potential safety risks. This study focuses on the genetic stability of retrovirus producer cells as a basic safety requirement and its compromise by autotransduction. It has been shown previously that protection of retroviral packaging systems by superinfection interference is not guaranteed. The current study provides insight into the extent of autotransduction and the time point at which it occurs, and examines strategies to antagonize it. Therefore, a reconstituting vector system was used that obviates transgene expression in virus producer cells by physically separating transgene and promoter. Just on infection two functional expression cassettes are reconstituted, causing highly efficient transgene expression in transduced cells. Equipped with an enhanced green fluorescent protein-encoding gene, this vector allowed accurate quantification of autotransduced cells, which were then isolated by fluorescence-activated cell sorting and further characterized. Sequencing of recloned integrated vector copies demonstrated that high transgene expression levels were strictly associated with the presence of reverse-transcribed vector copies. Envelope protein expression levels, however, were found to be equal in autotransduced and noninfected virus producer cells. Finally, the occurrence of autotransduction could be assigned to an early time point after transfection and was successfully blocked by azidothymidine treatment, yielding a stable and homogeneous population of noninfected retrovirus producer cells.
Collapse
|
6
|
Landázuri N, Le Doux JM. Amphotropic retrovirus transduction is inhibited by high doses of particle-associated envelope proteins. Biotechnol Bioeng 2008; 99:1205-15. [PMID: 17969146 DOI: 10.1002/bit.21676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using a panel of amphotropic murine leukemia virus packaging cell lines that differed only in their levels of envelope protein (gp70) expression, we examined the relationship between transduction and the number of envelope proteins per virus. We generated virus stocks that contained different levels of virus-associated envelope proteins, purified them from gp70 that was not associated with the viruses, quantified their titers, and measured the efficiency with which they transduced NIH 3T3, TE671, and HeLa cells. As expected, titers increased monotonically with viral envelope protein number. Titers are measured using highly dilute virus, however, and are often not predictive of gene transfer when high doses of virus are used, as is done in gene therapy protocols. Interestingly, when we used high doses of virus, we observed significantly different trends: gene transfer increased, reached a maximum, and then declined sharply as the number of envelope proteins per virus increased. The highest levels of gene transfer occurred when cells were transduced with a moderate dose of virus that contained low levels of envelope protein. Our results indicate that transduction is inhibited when viruses that contain large numbers of envelope proteins are used. This is most likely because each virus, when it binds to a cell, delivers a large payload of envelope proteins that occupy or inactivate multiple virus receptors, reducing or eliminating the susceptibility of the cell to being transduced by additional viruses. The implications of our findings for the design of improved retroviral vectors for human gene therapy are discussed.
Collapse
Affiliation(s)
- Natalia Landázuri
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
7
|
Schucht R, Coroadinha AS, Zanta-Boussif MA, Verhoeyen E, Carrondo MJT, Hauser H, Wirth D. A New Generation of Retroviral Producer Cells: Predictable and Stable Virus Production by Flp-Mediated Site-Specific Integration of Retroviral Vectors. Mol Ther 2006; 14:285-92. [PMID: 16697259 DOI: 10.1016/j.ymthe.2005.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 11/18/2022] Open
Abstract
We developed a new strategy that provides well-defined high-titer producer cells for recombinant retroviruses in a minimum amount of time. The strategy involves the targeted integration of the retroviral vector into a chromosomal locus with favorable properties. For proof of concept we established a novel HEK293-based retroviral producer cell line, called Flp293A, with a single-copy retroviral vector integrated at a selected chromosomal locus. The vector was flanked by noninteracting Flp-recombinase recognition sites and was exchanged for different retroviral vectors via Flp-mediated cassette exchange. All analyzed cell clones showed correct integration and identical titers for each of the vectors, confirming that the expression characteristics from the parental cell were preserved. Titers up to 2.5 x 10(7) infectious particles/10(6) cells were obtained. Also, high-titer producer cells for a therapeutic vector that encodes the 8.9-kb collagen VII cDNA in a marker-free cassette were obtained within 3 weeks without screening. Thus, we provide evidence that the precise integration of viral vectors into a favorable chromosomal locus leads to high and predictable virus production. This method is compatible with other retroviral vectors, including self-inactivating vectors and marker-free vectors. Further, it provides a tool for evaluation of different retroviral vector designs.
Collapse
Affiliation(s)
- R Schucht
- Department of Gene Regulation and Differentiation, German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Murphy SL, Chung-Landers M, Honczarenko M, Gaulton GN. Linkage of reduced receptor affinity and superinfection to pathogenesis of TR1.3 murine leukemia virus. J Virol 2006; 80:4601-9. [PMID: 16611920 PMCID: PMC1472024 DOI: 10.1128/jvi.80.9.4601-4609.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TR1.3 is a Friend murine leukemia virus (MLV) that induces selective syncytium induction (SI) of brain capillary endothelial cells (BCEC), intracerebral hemorrhage, and death. Syncytium induction by TR1.3 has been mapped to a single tryptophan-to-glycine conversion at position 102 of the envelope glycoprotein (Env102). The mechanism of SI by TR1.3 was examined here in comparison to the non-syncytium-inducing, nonpathogenic MLV FB29, which displays an identical BCEC tropism. Envelope protein expression and stability on both infected cells and viral particles were not statistically different for TR1.3 and FB29. However, affinity measurements derived using purified envelope receptor binding domain (RBD) revealed a reduction of >1 log in the K(D) of TR1.3 RBD relative to FB29 RBD. Whole-virus particles pseudotyped with TR1.3 Env similarly displayed a markedly reduced binding avidity compared to FB29-pseudotyped viral particles. Lastly, decreased receptor affinity of TR1.3 Env correlated with the failure to block superinfection following acute and chronic infection by TR1.3. These results definitively show that acquisition of a SI phenotype can be directly linked to amino acid changes in retroviral Env that decrease receptor affinity, thereby emphasizing the importance of events downstream of receptor binding in the cell fusion process and pathology.
Collapse
Affiliation(s)
- Samuel L Murphy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 354 BRB II/III, 421 Curie Blvd., Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | |
Collapse
|
9
|
May T, Hauser H, Wirth D. Current status of transcriptional regulation systems. Cytotechnology 2006; 50:109-19. [PMID: 19003074 DOI: 10.1007/s10616-006-9007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2006] [Indexed: 10/24/2022] Open
Abstract
Many attempts have been undertaken to control transgene activity in mammalian cells. This is of importance for both applied biotechnology and basic research activities. State of the art regulatory systems use elements for transgene regulation which are unrelated to host regulatory networks and thus do not interfere with endogenous activities. Most of these regulation systems consist of transregulators and transregulator responding promoter elements that are derived from non mammalian origin. Apart from the tetracycline (Tet) regulated system which is most widely used for conditional gene expression at the moment, a number of new systems were created. These systems have been significantly refined and their performance makes them suitable for regulating transgenes not only in cellular systems but also in transgenic animals and for human therapeutic use.
Collapse
Affiliation(s)
- Tobias May
- Department of Gene Regulation and Differentiation, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, Braunschweig, D-38124, Germany
| | | | | |
Collapse
|
10
|
Spitzer D, Unsinger J, Mao D, Wu X, Molina H, Atkinson JP. In vivo correction of complement regulatory protein deficiency with an inhibitor targeting the red blood cell membrane. THE JOURNAL OF IMMUNOLOGY 2006; 175:7763-70. [PMID: 16301687 DOI: 10.4049/jimmunol.175.11.7763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because of the complement system's involvement in many human diseases and potential complications associated with its systemic blockade, site-specific regulation of this effector system is an attractive concept. We report on further developments of such an approach using a single-chain Ab fragment as a vehicle to deliver complement regulatory proteins to a defined cell type. In a model system in which RBCs deficient in complement receptor 1-related gene/protein y (Crry) are rapidly cleared after injection into wild-type animals by a complement-dependent mechanism, we selectively reconstituted these cells with N- and C-terminally targeted recombinant forms of Crry. Transfusion of Crry-coated knockout RBCs into C57BL/6 mice extended their in vivo half-life from <5 min to approximately 2 days. Maintenance of protective levels of Crry (by a combined treatment of donor and recipient RBCs) led to nearly normal RBC survival. Uniform in vitro and in vivo coating of the RBCs and the more efficient complement inhibitory capacity of C-terminally tagged Crry were other interesting features of this experimental system. These results suggest the possibility of using the single-chain Ab fragment-mediated targeting concept of complement regulatory proteins to restrict complement inhibition to the site of its excessive activation.
Collapse
Affiliation(s)
- Dirk Spitzer
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
To override the diffusion-limited adsorption step of viral infection, we magnetically synchronized cell attachment. Human immunodeficiency virus type 1-based lentivirus preparations were rendered magnetically reactive by association with magnetite nanoparticles, 50 nm in diameter. Application of a magnetic field resulted in immediate redistribution of the viral inoculum to the cell-associated state and completion of the productive adsorption process within 1 min. Independent of adsorption time, viral concentration, and diffusion rate, infection subsequently progressed by the receptor-mediated entry mechanism. Synchronization of this rate-limiting step of infection may now be applied to analyze isolated events in the viral replication sequence.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Virology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel.
| | | | | |
Collapse
|
12
|
Sliva K, Erlwein O, Bittner A, Schnierle BS. Murine leukemia virus (MLV) replication monitored with fluorescent proteins. Virol J 2004; 1:14. [PMID: 15610559 PMCID: PMC544597 DOI: 10.1186/1743-422x-1-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/20/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV) has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. RESULTS We inserted the coding sequences for green fluorescent protein (GFP) into the proline-rich region (PRR) of the ecotropic envelope protein (Env) and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP) and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. CONCLUSIONS Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.
Collapse
Affiliation(s)
- Katja Sliva
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany
| | - Otto Erlwein
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany
| | - Alexandra Bittner
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany
| | - Barbara S Schnierle
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| |
Collapse
|
13
|
Kolokoltsov AA, Davey RA. Rapid and sensitive detection of retrovirus entry by using a novel luciferase-based content-mixing assay. J Virol 2004; 78:5124-32. [PMID: 15113894 PMCID: PMC400325 DOI: 10.1128/jvi.78.10.5124-5132.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel assay that permits measurement of entry of murine leukemia virus and pseudotypes with greater sensitivity and more rapidly than previously possible. To achieve this, we encapsulated a sensitive reporter enzyme, luciferase, directly into fully infectious, intact viral particles. The enzyme is specifically targeted to the viral lumen, as a C-terminal fusion on the viral envelope protein. Only when the incorporated luciferase is released from the viral lumen and gains access to its substrates is light emitted and readily detected. When cells are perfused with luciferin, quantitative measurements of entry can be made in real time on live cells. Uniquely, the amount of cell-bound virus can be determined in the same assay by addition of detergent to expose the luciferase. We demonstrate that virus carrying a mutation in the fusion peptide binds normally to cells but is unable to infect them and gives no entry signal. Using this assay, we show that inhibitors of endosomal acidification inhibit signal from vesicular stomatitis virus pseudotypes but not murine leukemia virus, consistent with a pH-independent mode of entry for the latter virus. Additionally, the fusion kinetics are rapid, with a half-life of 25 min after a delay of 10 to 15 min. The future use of this assay will permit a detailed examination of the entry mechanism of viruses and provide a convenient platform to discover novel entry inhibitors. The design also permits packaging of potential therapeutic protein cargoes into functional virus particles and their specific delivery to cellular targets.
Collapse
Affiliation(s)
- Andrey A Kolokoltsov
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | |
Collapse
|