1
|
Seo SH, Choi JA, Kim MS, Yang E, Choi S, Seo DW, Song M. Enhanced replication of a hepatitis A virus vaccine strain via adaptation in Vero cells. Clin Exp Vaccine Res 2025; 14:10-22. [PMID: 39927228 PMCID: PMC11799578 DOI: 10.7774/cevr.2025.14.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose Hepatitis A virus (HAV) production has been limited by its slow replication rate and reliance on diploid cell lines like MRC-5, which present challenges in scalability, passage limitations, and serum-free culture conditions. This study aimed to develop an HAV vaccine strain with enhanced replication capacity. Materials and Methods We generated a reverse genetically modified HAV vaccine strain (RG-HAV) and adapted it to Vero cells through sequential culturing. Replication rates of RG-HAV and a commercially used strain, HM-175, were compared in Vero and MRC-5 cells. Nucleotide sequences, including coding and non-coding regions like the internal ribosomal entry site (IRES), were analyzed. Structural assessments included 3-dimensional modeling of IRES and relative codon deoptimization analysis of the capsid. Immunogenicity was evaluated by measuring HAV-specific antibody responses in mice. Results Vero-adapted RG-HAV achieved a 30-fold increase in production yield compared to initial transfection. In Vero cells, RG-HAV peaked at 15 days post-infection, compared to 20 days for HM-175. In MRC-5 cells, RG-HAV and HM-175 reached peak production at 10 and 15 days, respectively. RG-HAV produced over 5-fold more HAV in Vero cells and 8-fold more in MRC-5 cells than HM-175. Sequence analysis revealed nine amino acid differences in RG-HAV structural proteins and five nucleotide changes in the type III IRES region, potentially enhancing IRES functionality. Immunization with inactivated RG-HAV with alum hydroxide induced HAV-specific antibody responses in mice. Conclusion RG-HAV offers enhanced replication and production yields, supporting its potential in advancing HAV vaccine development.
Collapse
Affiliation(s)
- Sang Hwan Seo
- Science Unit, International Vaccine Institute, Seoul, Korea
| | - Jung-ah Choi
- Science Unit, International Vaccine Institute, Seoul, Korea
| | - Mi Sun Kim
- Science Unit, International Vaccine Institute, Seoul, Korea
| | - Eunji Yang
- Science Unit, International Vaccine Institute, Seoul, Korea
| | - Sumin Choi
- Gyeongbuk Institute for Bio Industry, Andong, Korea
| | - Dong Won Seo
- Gyeongbuk Institute for Bio Industry, Andong, Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, Korea
| |
Collapse
|
2
|
Sadic M, Schneider WM, Katsara O, Medina GN, Fisher A, Mogulothu A, Yu Y, Gu M, de los Santos T, Schneider RJ, Dittmann M. DDX60 selectively reduces translation off viral type II internal ribosome entry sites. EMBO Rep 2022; 23:e55218. [PMID: 36256515 PMCID: PMC9724679 DOI: 10.15252/embr.202255218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
Collapse
Affiliation(s)
| | | | | | - Gisselle N Medina
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,National Bio and Agro‐Defense Facility (NBAF), ARSUSDAManhattanKSUSA
| | | | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yingpu Yu
- The Rockefeller UniversityNew YorkNYUSA
| | | | | | | | | |
Collapse
|
3
|
Bleasel MD, Peterson GM. Emetine Is Not Ipecac: Considerations for Its Use as Treatment for SARS-CoV2. Pharmaceuticals (Basel) 2020; 13:E428. [PMID: 33261173 PMCID: PMC7760625 DOI: 10.3390/ph13120428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Emetine is a potent antiviral that acts on many viruses in the low-nM range, with several studies in animals and humans demonstrating antiviral activity. Historically, emetine was used to treat patients with Spanish influenza, in the last stages of the pandemic in the early 1900s. Some of these patients were "black" with cyanosis. Emetine rapidly reversed the cyanosis and other symptoms of this disease in 12-24 h. However, emetine also has been shown to have anti-inflammatory properties and it appears it is these anti-inflammatory properties that were responsible for the effects seen in patients with Spanish influenza. Emetine, in the past, has also been used in 10s to 100s of millions of people at a dose of ~60 mg daily to treat amoebiasis. Based on viral inhibition data we can calculate a likely SARS-CoV2 antiviral dose of ~1/10th the amoebiasis dose, which should dramatically reduce the risk of any side effects. While there are no anti-inflammatory dose response data available, based on the potential mode of action, the anti-inflammatory actions may also occur at low doses. This paper also examines the toxicity of emetine seen in clinical practice and that seen in the laboratory, and discusses the methods of administration aimed at reducing side effects if higher doses were found to be necessary. While emetine is a "pure drug" as it is extracted from ipecac, some of the differences between emetine and ipecac are also discussed.
Collapse
Affiliation(s)
- Martin D. Bleasel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
- School of Health Sciences, Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia
| |
Collapse
|
4
|
Multidecade Mortality and a Homolog of Hepatitis C Virus in Bald Eagles (Haliaeetus leucocephalus), the National Bird of the USA. Sci Rep 2019; 9:14953. [PMID: 31628350 PMCID: PMC6802099 DOI: 10.1038/s41598-019-50580-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
The bald eagle (Haliaeetus leucocephalus) once experienced near-extinction but has since rebounded. For decades, bald eagles near the Wisconsin River, USA, have experienced a lethal syndrome with characteristic clinical and pathological features but unknown etiology. Here, we describe a novel hepacivirus-like virus (Flaviviridae: Hepacivirus) identified during an investigation of Wisconsin River eagle syndrome (WRES). Bald eagle hepacivirus (BeHV) belongs to a divergent clade of avian viruses that share features with members of the genera Hepacivirus and Pegivirus. BeHV infected 31.9% of eagles spanning 4,254 km of the coterminous USA, with negative strand viral RNA demonstrating active replication in liver tissues. Eagles from Wisconsin were approximately 10-fold more likely to be infected than eagles from elsewhere. Eagle mitochondrial DNA sequences were homogeneous and geographically unstructured, likely reflecting a recent population bottleneck, whereas BeHV envelope gene sequences showed strong population genetic substructure and isolation by distance, suggesting localized transmission. Cophylogenetic analyses showed no congruity between eagles and their viruses, supporting horizontal rather than vertical transmission. These results expand our knowledge of the Flaviviridae, reveal a striking pattern of decoupled host/virus coevolution on a continental scale, and highlight knowledge gaps about health and conservation in even the most iconic of wildlife species.
Collapse
|
5
|
McKnight KL, Lemon SM. Hepatitis A Virus Genome Organization and Replication Strategy. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033480. [PMID: 29610147 DOI: 10.1101/cshperspect.a033480] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the genus Hepatovirus of the family Picornaviridae It is an ancient virus with a long evolutionary history and multiple features of its capsid structure, genome organization, and replication cycle that distinguish it from other mammalian picornaviruses. HAV proteins are produced by cap-independent translation of a single, long open reading frame under direction of an inefficient, upstream internal ribosome entry site (IRES). Genome replication occurs slowly and is noncytopathic, with transcription likely primed by a uridylated protein primer as in other picornaviruses. Newly produced quasi-enveloped virions (eHAV) are released from cells in a nonlytic fashion in a unique process mediated by interactions of capsid proteins with components of the host cell endosomal sorting complexes required for transport (ESCRT) system.
Collapse
Affiliation(s)
- Kevin L McKnight
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
6
|
Cevik O, Li D, Baljinnyam E, Manvar D, Pimenta EM, Waris G, Barnes BJ, Kaushik-Basu N. Interferon regulatory factor 5 (IRF5) suppresses hepatitis C virus (HCV) replication and HCV-associated hepatocellular carcinoma. J Biol Chem 2017; 292:21676-21689. [PMID: 29079574 DOI: 10.1074/jbc.m117.792721] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major risk factor for the development of chronic liver disease. The disease typically progresses from chronic HCV to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and death. Chronic inflammation associated with HCV infection is implicated in cirrhosis and HCC, but the molecular players and signaling pathways contributing to these processes remain largely unknown. Interferon regulatory factor 5 (IRF5) is a molecule of interest in HCV-associated HCC because it has critical roles in virus-, Toll-like receptor (TLR)-, and IFN-induced signaling pathways. IRF5 is also a tumor suppressor, and its expression is dysregulated in several human cancers. Here, we present first evidence that IRF5 expression and signaling are modulated during HCV infection. Using HCV infection of human hepatocytes and cells with autonomously replicating HCV RNA, we found that levels of IRF5 mRNA and protein expression were down-regulated. Of note, reporter assays indicated that IRF5 re-expression inhibited HCV protein translation and RNA replication. Gene expression analysis revealed significant differences in the expression of cancer pathway mediators and autophagy proteins rather than in cytokines between IRF5- and empty vector-transfected HCV replicon cells. IRF5 re-expression induced apoptosis via loss in mitochondrial membrane potential, down-regulated autophagy, and inhibited hepatocyte cell migration/invasion. Analysis of clinical HCC specimens supports a pathologic role for IRF5 in HCV-induced HCC, as IRF5 expression was down-regulated in livers from HCV-positive versus HCV-negative HCC patients or healthy donor livers. These results identify IRF5 as an important suppressor of HCV replication and HCC pathogenesis.
Collapse
Affiliation(s)
- Ozge Cevik
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.,the Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey 58140
| | - Dan Li
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, New Jersey 07103.,the Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Erdene Baljinnyam
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | - Dinesh Manvar
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | - Erica M Pimenta
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, New Jersey 07103
| | - Gulam Waris
- the Rosalind Franklin University of Medicine and Science, Chicago, Illinois 60064, and
| | - Betsy J Barnes
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, .,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, New Jersey 07103.,the Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Neerja Kaushik-Basu
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, .,the Infectious Diseases and Microbiology Integrated Review Group, National Institutes of Health Center for Scientific Review, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 2014; 160:1-16. [PMID: 25377637 DOI: 10.1007/s00705-014-2278-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV. To examine host-FMDV interactions and viral pathogenesis from a structural perspective, the structures of viral structural and non-structural proteins are reviewed in the context of their relevance for virus assembly and dissociation, formation of capsid-like particles and virus-receptor complexes, and viral penetration and uncoating. Moreover, possibilities for devising novel antiviral treatments are discussed.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | |
Collapse
|
8
|
Jheng JR, Ho JY, Horng JT. ER stress, autophagy, and RNA viruses. Front Microbiol 2014; 5:388. [PMID: 25140166 PMCID: PMC4122171 DOI: 10.3389/fmicb.2014.00388] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR), which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell's response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host's defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan
| | - Jin-Yuan Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan ; Research Center for Emerging Viral Infections, Chang Gung University Kweishan, Taiwan ; Department of Medical Research, Chang Gung Memorial Hospital Kweishan, Taiwan
| |
Collapse
|
9
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Burks JM, Zwieb C, Müller F, Wower IK, Wower J. In silico analysis of IRES RNAs of foot-and-mouth disease virus and related picornaviruses. Arch Virol 2011; 156:1737-47. [PMID: 21681504 DOI: 10.1007/s00705-011-1043-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/26/2011] [Indexed: 02/05/2023]
Abstract
Foot-and-mouth disease virus (FMDV) uses an internal ribosome entry site (IRES), a highly structured segment of its genomic RNA, to hijack the translational apparatus of an infected host. Computational analysis of 162 type II picornavirus IRES RNA sequences yielded secondary structures that included only base pairs supported by comparative or experimental evidence. The deduced helical sections provided the foundation for a hypothetical three-dimensional model of FMDV IRES RNA. The model was further constrained by incorporation of data derived from chemical modification and enzymatic probing of IRES RNAs as well as high-resolution information about IRES RNA-bound proteins.
Collapse
Affiliation(s)
- Jody M Burks
- Department of Animal Sciences, Auburn University, 210 Upchurch Hall, Auburn, AL 36849-5415, USA
| | | | | | | | | |
Collapse
|
11
|
Romero-López C, Díaz-González R, Barroso-delJesus A, Berzal-Herranz A. Inhibition of hepatitis C virus replication and internal ribosome entry site-dependent translation by an RNA molecule. J Gen Virol 2009; 90:1659-1669. [PMID: 19264618 DOI: 10.1099/vir.0.008821-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) protein synthesis is mediated by a highly conserved internal ribosome entry site (IRES), mostly located at the 5' untranslatable region (UTR) of the viral genome. The translation mechanism is different from that used by cellular cap-mRNAs, making IRESs an attractive target site for new antiviral drugs. The present work characterizes a chimeric RNA molecule (HH363-50) composed of two inhibitors: a hammerhead ribozyme targeting position 363 of the HCV genome and an aptamer directed towards the essential stem-loop structure in domain IV of the IRES region (which contains the translation start codon). The inhibitor RNA interferes with the formation of a translationally active complex, stalling its progression at the level of 80S particle formation. This action is likely related to the effective and specific blocking of HCV IRES-dependent translation achieved in Huh-7 cells. The inhibitor HH363-50 also reduces HCV RNA levels in a subgenomic replicon system. The present findings suggest that HH363-50 could be an effective anti-HCV compound and highlight the possibilities of antiviral agents based on RNA molecules.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Raquel Díaz-González
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Alicia Barroso-delJesus
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|
12
|
De Jesus NH. Epidemics to eradication: the modern history of poliomyelitis. Virol J 2007; 4:70. [PMID: 17623069 PMCID: PMC1947962 DOI: 10.1186/1743-422x-4-70] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/10/2007] [Indexed: 11/13/2022] Open
Abstract
Poliomyelitis has afflicted humankind since antiquity, and for nearly a century now, we have known the causative agent, poliovirus. This pathogen is an enterovirus that in recent history has been the source of a great deal of human suffering. Although comparatively small, its genome is packed with sufficient information to make it a formidable pathogen. In the last 20 years the Global Polio Eradication Initiative has proven successful in greatly diminishing the number of cases worldwide but has encountered obstacles in its path which have made halting the transmission of wild polioviruses a practical impossibility. As we begin to realize that a change in strategy may be crucial in achieving success in this venture, it is imperative that we critically evaluate what is known about the molecular biology of this pathogen and the intricacies of its interaction with its host so that in future attempts we may better equipped to more effectively combat this important human pathogen.
Collapse
Affiliation(s)
- Nidia H De Jesus
- Department of Molecular Genetics & Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
13
|
Abstract
The picornavirus family contains a number of significant pathogens, such as poliovirus, rhinovirus (common cold) and foot-and-mouth disease virus. Despite having been the subject of extensive study for more than a century, we remain ignorant of the exact molecular mechanisms by which these viruses infect cells. In this article we review recent progress towards the understanding of this process and discuss what questions remain unanswered.
Collapse
Affiliation(s)
- Tobias J Tuthill
- University of Leeds, Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, Leeds LS2 9JT, UK
| | - David J Rowlands
- University of Leeds, Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, Leeds LS2 9JT, UK
| | - Richard A Killington
- University of Leeds, Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Kim MC, Kwon YK, Joh SJ, Lindberg AM, Kwon JH, Kim JH, Kim SJ. Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae. J Gen Virol 2006; 87:3307-3316. [PMID: 17030865 DOI: 10.1099/vir.0.81804-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Duck hepatitis virus type 1 (DHV-1) was previously classified as an enterovirus, based primarily on observed morphology and physicochemical properties of the virion. The complete nucleotide sequences of two strains (DRL-62 and R85952) of DHV-1 have been determined. Excluding the poly(A) tail, the genomes are 7691 and 7690 nt, respectively, and contain a single, large open reading frame encoding a polyprotein of 2249 aa. The genome of DHV-1 is organized as are those of members of the family Picornaviridae: 5' untranslated region (UTR)-VP0-VP3-VP1-2A1-2A2-2B-2C-3A-3B-3C-3D-3' UTR. Analysis of the genomic and predicted polyprotein sequences revealed several unusual features, including the absence of a predicted maturation cleavage of VP0, the presence of two unrelated 2A protein motifs and a 3' UTR extended markedly compared with that of any other picornavirus. The 2A1 protein motif is related to the 2A protein type of the genus Aphthovirus and the adjacent 2A2 protein is related to the 2A protein type present in the genus Parechovirus. Phylogenetic analysis using the 3D protein sequence shows that the two DHV-1 strains are related more closely to members of the genus Parechovirus than to other picornaviruses. However, the two DHV-1 strains form a monophyletic group, clearly distinct from members of the genus Parechovirus.
Collapse
Affiliation(s)
- Min-Chul Kim
- National Veterinary Research and Quarantine Service, 480 Anyang 6 dong, Manan-gu, Anyang, Gyeonggi-do 420-824, Republic of Korea
| | - Yong-Kuk Kwon
- National Veterinary Research and Quarantine Service, 480 Anyang 6 dong, Manan-gu, Anyang, Gyeonggi-do 420-824, Republic of Korea
| | - Seong-Joon Joh
- National Veterinary Research and Quarantine Service, 480 Anyang 6 dong, Manan-gu, Anyang, Gyeonggi-do 420-824, Republic of Korea
| | - A Michael Lindberg
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | - Jun-Hun Kwon
- National Veterinary Research and Quarantine Service, 480 Anyang 6 dong, Manan-gu, Anyang, Gyeonggi-do 420-824, Republic of Korea
| | - Jae-Hong Kim
- National Veterinary Research and Quarantine Service, 480 Anyang 6 dong, Manan-gu, Anyang, Gyeonggi-do 420-824, Republic of Korea
| | - Sun-Joong Kim
- College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
15
|
MacCallum PR, Jack SC, Egan PA, McDermott BT, Elliott RM, Chan SW. Cap-dependent and hepatitis C virus internal ribosome entry site-mediated translation are modulated by phosphorylation of eIF2alpha under oxidative stress. J Gen Virol 2006; 87:3251-3262. [PMID: 17030858 DOI: 10.1099/vir.0.82051-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic hepatitis C is often associated with oxidative stress. Hepatitis C virus (HCV) utilizes an internal ribosome entry site (IRES) element for translation, in contrast to cap-dependent translation of the majority of cellular proteins. To understand how virus translation is modulated under oxidative stress, HCV IRES-mediated translation was compared with cap-dependent translation using a bicistronic reporter construct and hydrogen peroxide (H2O2) as a stress inducer. In H2O2-sensitive HeLa cells, H2O2 repressed translation in a time- and dose-dependent manner, concomitant with the kinetics of eIF2alpha phosphorylation. A phosphomimetic of eIF2alpha, which mimics the structure of the phosphorylated eIF2alpha, was sufficient to repress translation in the absence of H2O2. In H2O2-resistant HepG2 cells, H2O2 activated both HCV IRES-mediated and cap-dependent translation, associated with an increased level of phospho-eIF2alpha. It was postulated that H2O2 might stimulate translation in HepG2 cells via an eIF2alpha-independent mechanism, whereas the simultaneous phosphorylation of eIF2alpha repressed part of the translational activities. Indeed, the translational repression was released in the presence of a non-phosphorylatable mutant, eIF2alpha-SA, resulting in further enhancement of both translational activities after exposure to H2O2. In HuH7 cells, which exhibited an intermediate level of sensitivity towards H2O2, both HCV IRES-mediated and cap-dependent translational activities were upregulated after treatment with various doses of H2O2, but the highest level of induction was achieved with a low level of H2O2, which may represent the physiological level of H2O2. At this level, the HCV IRES-mediated translation was preferentially upregulated compared with cap-dependent translation.
Collapse
Affiliation(s)
- Paul R MacCallum
- Faculty of Life Sciences, The University of Manchester, Jackson's Mill, PO Box 88, Sackville Street, Manchester M60 1QD, UK
| | - Samantha C Jack
- Faculty of Life Sciences, The University of Manchester, Jackson's Mill, PO Box 88, Sackville Street, Manchester M60 1QD, UK
| | - Philip A Egan
- Faculty of Life Sciences, The University of Manchester, Jackson's Mill, PO Box 88, Sackville Street, Manchester M60 1QD, UK
| | - Benjamin T McDermott
- Faculty of Life Sciences, The University of Manchester, Jackson's Mill, PO Box 88, Sackville Street, Manchester M60 1QD, UK
| | - Richard M Elliott
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shiu-Wan Chan
- Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
- Faculty of Life Sciences, The University of Manchester, Jackson's Mill, PO Box 88, Sackville Street, Manchester M60 1QD, UK
| |
Collapse
|
16
|
Whitton JL, Cornell CT, Feuer R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 2005; 3:765-76. [PMID: 16205710 DOI: 10.1038/nrmicro1284] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The family Picornaviridae contains some notable members, including rhinovirus, which infects humans more frequently than any other virus; poliovirus, which has paralysed or killed millions over the years; and foot-and-mouth-disease virus, which led to the creation of dedicated institutes throughout the world. Despite their profound impact on human and animal health, the factors that regulate pathogenesis and tissue tropism are poorly understood. In this article, we review the clinical and economic challenges that these agents pose, summarize current knowledge of host-pathogen interactions and highlight a few of the many outstanding questions that remain to be answered.
Collapse
Affiliation(s)
- J Lindsay Whitton
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
17
|
Shaw AE, Reid SM, Knowles NJ, Hutchings GH, Wilsden G, Brocchi E, Paton D, King DP. Sequence analysis of the 5′ untranslated region of swine vesicular disease virus reveals block deletions between the end of the internal ribosomal entry site and the initiation codon. J Gen Virol 2005; 86:2753-2761. [PMID: 16186229 DOI: 10.1099/vir.0.80988-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swine vesicular disease virus (SVDV) is a picornavirus closely related to the human pathogen coxsackievirus B5. In common with other picornaviruses, the 5′ untranslated region (5′ UTR) of SVDV contains an internal ribosomal entry site (IRES) that plays an important role in cap-independent translation. The aim of this study was to use RT-PCR and sequencing to characterize a fragment of the 5′ UTR encompassing the entire IRES. Sequence analysis demonstrated high nucleotide identities within the IRES between 33 representative SVDV isolates. These data support the choice of this region as a diagnostic target and provide information for the improvement of laboratory-based molecular assays to detect SVDV. In contrast to the relative conservation of the IRES element, there was considerable nucleotide variability in the spacer region located between the cryptic AUG at the 3′ end of the IRES and the initiation codon of the polyprotein. Interestingly, 11 SVDV isolates had block deletions of between 6 and 125 nt in this region. Nine of these isolates were of recent European origin and were phylogenetically closely related. In vitro growth studies showed that selected isolates with these deletions had a significantly reduced plaque diameter and grew to a significantly lower titre relative to an isolate with a full-length 5′ UTR. Further work is required to define the significance of these deletions and to assess whether they impact on the pathogenesis of SVD.
Collapse
Affiliation(s)
- Andrew E Shaw
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Scott M Reid
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Nick J Knowles
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | | | - Ginette Wilsden
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Emiliana Brocchi
- Department of Research, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7/9, 25124 Brescia, Italy
| | - David Paton
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Donald P King
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
18
|
Monie TP, Greatorex JS, Maynard-Smith L, Hook BDC, Bishop N, Beales LP, Lever AML. Identification and visualization of the dimerization initiation site of the prototype lentivirus, maedi visna virus: a potential GACG tetraloop displays structural homology with the alpha- and gamma-retroviruses. Biochemistry 2005; 44:294-302. [PMID: 15628871 DOI: 10.1021/bi048529m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimerization of retroviral genomic RNA is essential for efficient viral replication and is mediated by structural interactions between identical RNA motifs in the viral leader region. We have visualized, by electron microscopy, RNA dimers formed from the leader region of the prototype lentivirus, maedi visna virus. Characterization by in vitro assays of the domains responsible for this interaction has identified a 20 nucleotide sequence that functions as the core dimerization initiation site. This region is predicted to form a GACG tetraloop and therefore differs significantly from the kissing loop palindromes utilized to initiate dimerization in primate lentiviruses. The motif is strongly conserved across the ovine and caprine lentiviruses, implying a critical functional role. Furthermore, the proposed GACG tetraloop exhibits marked structural homology with similar structural motifs present in the leader regions of the alpha- and gamma-retroviruses, and the maedi visna virus dimer linkage region is capable of forming heterodimeric species with the Moloney murine leukemia virus Psi domain. This may be indicative of commonality of origin of the two viruses or convergent evolution.
Collapse
Affiliation(s)
- Tom P Monie
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Fux C, Langer D, Kelm JM, Weber W, Fussenegger M. New-generation multicistronic expression platform: pTRIDENT vectors containing size-optimized IRES elements enable homing endonuclease-based cistron swapping into lentiviral expression vectors. Biotechnol Bioeng 2004; 86:174-87. [PMID: 15052637 DOI: 10.1002/bit.20028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capitalizing on a proven multicistronic expression vector platform we have designed novel pTRIDENT vectors which (1). enable coordinated expression of three desired transgenes, (2). are size-optimized, (3). take advantage of small highly efficient internal ribosome entry sites of the GTX or Rbm3 type, (4). harbor various sites specific for homing endonucleases facilitating promoter/multicistronic expression unit/polyadenylation site swapping as well as (5). straightforward integration into human HIV-l-based lentiviral expression vectors tailored to contain compatible homing endonucleases. Multicistronic expression profiles of novel pTRIDENT vectors engineered for different tricistronic expression configurations encoding human low-molecular-weight urokinase-type plasminogen activator (u-PA(LMW)) or Bacillus stearothermophilus-derived alpha-amylase (SAMY), human vascular endothelial growth factor (hVEGF), and human placental secreted alkaline phosphatase (SEAP) have been quantified in Chinese hamster ovary cells (CHO-K1), mouse fibroblasts (NIH/3T3), and/or human fibrosarcoma (HT-1080) cells. In addition, a pTRIDENT-derived SAMY-VEGF-SEAP expression cassette transferred into a compatible lentiviral expression vector enabled simultaneous high-level transgene expression following transduction of transgenic lentiviral particles into primary human chondrocytes.
Collapse
Affiliation(s)
- Cornelia Fux
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hoenggerberg, HPT D74, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Buckwold VE, Beer BE, Donis RO. Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents. Antiviral Res 2003; 60:1-15. [PMID: 14516916 DOI: 10.1016/s0166-3542(03)00174-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification and development of new antiviral agents that can be used to combat hepatitis C virus (HCV) infection has been complicated by both technical and logistic issues. There are few, if any, robust methods by which HCV virions can be grown in vitro. The development of HCV RNA replicons has been a great breakthrough that has allowed for the undertaking of significant screening efforts to identify inhibitors of HCV intracellular replication. However, since replicons do not undergo a complete replication cycle, drug screening programs and mechanism of action studies based solely on these assays will not identify compounds targeting either early (virion attachment, entry, uncoating) or late (virion assembly, egress) stages of the viral replication cycle. Drugs that negatively affect the infectivity of new virions will also not be identified using HCV RNA replicons. Bovine viral diarrhea virus (BVDV) shares a similar structural organization with HCV, and both viruses generally cause chronic long-term infections in their respective hosts. The BVDV surrogate model is attractive, since it is a virus-based system. It is easy to culture the virus in vitro, molecular clones are available for genetic studies, and the virus undergoes a complete replication cycle. Like HCV, BVDV utilizes the LDL receptor to enter cells, uses a functionally similar internal ribosome entry site (IRES) for translation, uses an NS4A cofactor with its homologous NS3 protease, has a similar NS3 helicase/NTPase, a mechanistically similar NS5B RNA-dependent RNA polymerase, and a seemingly equivalent mechanism of virion maturation, assembly and egress. While the concordance between drugs active in either BVDV or HCV is largely unknown at this time, BVDV remains a popular model system with which drugs can be evaluated for potential antiviral activity against HCV and in studies of drug mechanism of action.
Collapse
Affiliation(s)
- Victor E Buckwold
- Infectious Disease Research Department, Southern Research Institute, 431 Aviation Way, Frederick MD 21701, USA.
| | | | | |
Collapse
|
21
|
Kan QC, Yu ZJ, Lei YC, Yang DL, Hao LJ. Artificially constructed biscistronic vector containing hepatitis C virus internal ribosome entry site. Shijie Huaren Xiaohua Zazhi 2003; 11:1520-1523. [DOI: 10.11569/wcjd.v11.i10.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study the function of hepatitis C virus(HCV) internal ribosome entry site (IRES), and to construct biscistronic vector.
METHODS After amplifying HCV IRES by reverse-transcription PCR (RT-PCR), the products were cloned into pcDNA3-S upstream hepatitis B virus (HBV) surface gene. HBV core gene was cloned following HCV IRES. After determination by PCR and sequencing, we acquired plasmids containing HBV S, C gene and HCV IRES, which were named as plasmids pcDNA3-SIC. PcDNA3-SIC were transfected into HepG2 cells and detected by immunofluorescence assay and Western blot.
RESULTS HBV surface gene and core gene were both expressed in hepG2 cells, which were detected by immunofluorescence assay and confirmed by Western blot.
CONCLUSION The 17 nt of 5' nontranslated RNA in HCV IRES had no effect on driving downstream gene expression itself and could be used in the biscistronic vector that drove two genes expression.
Collapse
Affiliation(s)
- Quan-Cheng Kan
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zu-Jiang Yu
- Department of Infectious Disease, First Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yan-Chang Lei
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dong-Liang Yang
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lian-Jie Hao
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|