1
|
Wen Y, Tang Z, Wang K, Geng Z, Yang S, Guo J, Chen Y, Wang J, Fan Z, Chen P, Qian J. Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China. Viruses 2024; 16:1967. [PMID: 39772273 PMCID: PMC11728606 DOI: 10.3390/v16121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024. The 41 FPV strains, including 38 feline strains and 3 canine strains, were isolated from rectal swab samples by inoculating monolayer FK81 cells and performing a plaque purification assay. The viral and hemagglutination titers of these 41 FPV strains were 104.33~106.33 TCID50/0.1 mL and 7.0 log2~9.7 log2, respectively. Based on the complete VP2 gene, the nucleotide homology of these FPV strains was 98.91~100%, and the homology with 24 reference FPV strains from different countries and hosts was 98.85~100%. The phylogenetic analysis revealed that 41 FPV strains were more closely related to the FPV strains of Asian origin (Asian FPV strain group) than those of European and American origin (European and American FPV strain group). Furthermore, 12 mutation sites of the VP2 protein were found in these FPV strains, of which 91 and 232 amino acid sites were previously reported. Moreover, the 91 amino acid site was found to be a positive selection site with the highest dN/dS value in the selection pressure analysis. Importantly, 35 FPV strains with 91S substitution in the VP2 protein (FPV-VP2-91S strains) had formed obvious evolutionary branches in the Asian FPV strain group. The analysis of all available VP2 protein sequences of Chinese FPV strains in the GenBank database showed that the occurrence rate of FPV-VP2-91S strains had been increasing from 15.63% to 100% during 2017~2024, indicating that the FPV-VP2-91S substitution in the VP2 protein was a noteworthy molecular characteristic of the dominant FPV strains in China. These results contribute to a better understanding of their genetic evolution and renew the knowledge of FPV molecular epidemiology.
Collapse
Affiliation(s)
- Yinghui Wen
- College of veterinary medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhengxu Tang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kunli Wang
- College of veterinary medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhengyang Geng
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Simin Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junqing Guo
- Henan Institute of Modern Chinese Veterinary Medicine, Zhengzhou 450002, China
| | - Yongzhen Chen
- Henan Institute of Modern Chinese Veterinary Medicine, Zhengzhou 450002, China
| | - Jiankun Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Nanjing Taihe Bioengineering Co., Ltd., Nanjing 210014, China
| | - Zhiyu Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pengju Chen
- Henan Institute of Modern Chinese Veterinary Medicine, Zhengzhou 450002, China
| | - Jing Qian
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
3
|
Liao Z, Wang C, Tang X, Yang M, Duan Z, Liu L, Lu S, Ma L, Cheng R, Wang G, Liu H, Yang S, Xu J, Tadese DA, Mwangi J, Kamau PM, Zhang Z, Yang L, Liao G, Zhao X, Peng X, Lai R. Human transferrin receptor can mediate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2024; 121:e2317026121. [PMID: 38408250 DOI: 10.1073/pnas.2317026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.
Collapse
Affiliation(s)
- Zhiyi Liao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoming Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopeng Tang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Mengli Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zilei Duan
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Lei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ruomei Cheng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Gan Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Hongqi Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Shuo Yang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiye Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Yeo YG, Kim HR, Park J, Kim JM, Shin YK, Lee KK, Kwon OK, Jeoung HY, Kang HE, Ku BK, Park SC, Kwon OD, Park CK. Epidemiological and Molecular Approaches for a Fatal Feline Panleukopenia Virus Infection of Captive Siberian Tigers ( Panthera tigris altaica) in the Republic of Korea. Animals (Basel) 2023; 13:2991. [PMID: 37760391 PMCID: PMC10526094 DOI: 10.3390/ani13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Feline panleukopenia virus (FPV), a member of the species Protoparvovirus carnivoran1, is one of the most fatal pathogens of domestic and wild carnivores. The virus endemically infects domestic carnivores worldwide and its cross-species transmission threatens endangered wild carnivores, including Siberian tigers. In this study, a fatal FPV infection in endangered Siberian tigers was investigated to trace the origin of the virus and elucidate the reason behind FPV's infection of the vaccinated tigers. Our genetic characterization and phylogenetic analysis revealed that the virus detected in the infected tigers, designated as the KTPV-2305 strain, was closely related to FPV strains circulating in Korean cats, suggesting that it might have been transmitted from stray cats wandering around the zoo. Compared with the prototype FPV reference strains, the KTPV-2305 strain carried three distinct amino acid (aa) mutations in the VP2 protein sequence (I101T, I232V, and L562V) in this study. These three mutations are commonly found in most global FPV strains, including Korean strains, indicating that these mutations are common evolutionary characteristics of currently circulating global FPVs. The reason why the vaccinated tigers were infected with FPV was most likely the insufficient protective immunity of the affected tigress or vaccine failure triggered by the interference of maternal-derived antibodies in the affected tiger cubs. These findings suggest that improved vaccination guidelines are urgently needed to save the lives of wild carnivores from this fatal virus.
Collapse
Affiliation(s)
- Yong-Gu Yeo
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.-G.Y.); (H.-R.K.); (J.-M.K.)
- Seoul Zoo, Gwacheon 13829, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.-G.Y.); (H.-R.K.); (J.-M.K.)
| | - Jonghyun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (S.-C.P.)
| | - Jong-Min Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.-G.Y.); (H.-R.K.); (J.-M.K.)
| | - Yeun-Kyung Shin
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (K.-K.L.); (O.-K.K.); (H.-Y.J.); (H.-E.K.); (B.-K.K.)
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (K.-K.L.); (O.-K.K.); (H.-Y.J.); (H.-E.K.); (B.-K.K.)
| | - Oh-Kyu Kwon
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (K.-K.L.); (O.-K.K.); (H.-Y.J.); (H.-E.K.); (B.-K.K.)
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (K.-K.L.); (O.-K.K.); (H.-Y.J.); (H.-E.K.); (B.-K.K.)
| | - Hae-Eun Kang
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (K.-K.L.); (O.-K.K.); (H.-Y.J.); (H.-E.K.); (B.-K.K.)
| | - Bok-Kyung Ku
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (Y.-K.S.); (K.-K.L.); (O.-K.K.); (H.-Y.J.); (H.-E.K.); (B.-K.K.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (S.-C.P.)
| | - Oh-Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.-G.Y.); (H.-R.K.); (J.-M.K.)
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.-G.Y.); (H.-R.K.); (J.-M.K.)
| |
Collapse
|
5
|
López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The Structures and Functions of Parvovirus Capsids and Missing Pieces: the Viral DNA and Its Packaging, Asymmetrical Features, Nonprotein Components, and Receptor or Antibody Binding and Interactions. J Virol 2023; 97:e0016123. [PMID: 37367301 PMCID: PMC10373561 DOI: 10.1128/jvi.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Yang Y, Geng Y, Ouyang P, Li Y, Guo H, Deng H, Hou R, Lai W, Zhang D, Liu S. Identification of a Feline Panleukopenia Virus from Captive Giant Pandas ( Ailuropoda melanoleuca) and Its Phylogenetic Analysis. Transbound Emerg Dis 2023; 2023:7721487. [PMID: 40303714 PMCID: PMC12016729 DOI: 10.1155/2023/7721487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/02/2025]
Abstract
The host range of feline panleukopenia virus (FPV) is expanding and is a serious threat to both captive and free-range endangered wildlife. The FPV named FPV-am2020 was isolated from fecal samples from four diarrheal captive giant pandas in 2020, and pathogenicity and phylogenetic analysis were conducted in this study. Three-month-old cats challenged with FPV-am2020 experienced 100% mortality. The complete FPV-am2020 sequence was determined and comprised 5277 base pairs (bp), 36.76% GC content, and two open reading frames. According to the phylogenetic analysis of whole genome sequences and VP2 gene sequences, FPV-am2020 was closely related with MG764511.1 (isolated from captive lions in China, 2015), KX685354.1 (isolated from captive tigers in China, 2016), and KX900570.1 (isolated from captive jaguar in China, 1986). Furthermore, the study identified a G299E mutation in VP2 which was a key residue involved in phenotype changes in FPV. Thus, increased surveillance of FPV mutant isolates must be enacted to protect giant pandas against potential viral threats.
Collapse
Affiliation(s)
- Yuqing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| |
Collapse
|
7
|
Ndiana LA, Lanave G, Desario C, Odigie AE, Madubuike KG, Lucente MS, Ezeifeka CA, Patruno G, Lorusso E, Elia G, Buonavoglia C, Decaro N. Detection of Selected Canine Viruses in Nigerian Free-Ranging Dogs Traded for Meat Consumption. Animals (Basel) 2023; 13:ani13061119. [PMID: 36978659 PMCID: PMC10044693 DOI: 10.3390/ani13061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Animal trade favors the spreading of emerging and re-emerging pathogens. Concerns have been previously expressed regarding the risks of dog trade in spreading zoonotic pathogens in Nigeria. However, the role of these dogs in disseminating highly pathogenic canine viruses has not yet been explored. The present study aimed to identify selected canine viruses in dogs traded for meat consumption in Nigeria. A total of 100 blood samples were screened for carnivore protoparvovirus-1 (CPPV-1), canine adenovirus 1/2 (CAdV-1/2), canine circovirus (CaCV), and canine distemper virus (CDV) by using real-time PCR and conventional PCR and/or sequencing. CPPV-1 DNA was identified in 83% of canine samples while CaCV DNA and CDV RNA were detected in 14% and 17% of the dog samples, respectively. None of the dogs tested positive for CAdV-1/2. The CaCVs identified in this study clustered along with other European, Asian, and American strains. Moreover, CDV strains identified in Nigeria clustered in a separate lineage with the closest genetic relatedness to the Europe-South America-1 clade. Further surveys prior to and after arrival of dogs at the slaughtering points are required to clarify the real virus burden in these animals.
Collapse
Affiliation(s)
- Linda A Ndiana
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umuhaia Ikot Ekpene Road, Umudike 440101, Nigeria
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Amienwanlen E Odigie
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Kelechi G Madubuike
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umuhaia Ikot Ekpene Road, Umudike 440101, Nigeria
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Chukwuemeka A Ezeifeka
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umuhaia Ikot Ekpene Road, Umudike 440101, Nigeria
| | - Giovanni Patruno
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Eleonora Lorusso
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| |
Collapse
|
8
|
Packianathan R, Hodge A, Wright J, Lavidis L, Ameiss K, Yip HYE, Akbarzadeh M, Sharifian M, Amanollahi R, Khabiri A, Hemmatzadeh F. Cross-Neutralization of Vanguard C4 Vaccine Against Australian Isolates of Canine Parvovirus Variants CPV-2a, CPV-2b, and CPV-2c. Viral Immunol 2022; 35:553-558. [PMID: 35997600 DOI: 10.1089/vim.2022.0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) remains one of the most significant viral pathogens in dogs in Australia and worldwide despite the availability of safe and effective CPV vaccines. At least three different variants of CPV-2 have emerged and spread all around the world, namely CPV-2a, CPV-2b, and CPV-2c. The ability of the current vaccines containing either original CPV-2 type or CPV-2b variant to cross protect the heterologous variants has been well demonstrated in laboratory studies, despite some concerns regarding the vaccine efficacy against the emerging variants. Vanguard®, a series of multivalent vaccines, has been in the market for a considerable period of time and demonstrated to provide efficacy against all three types of CPV variants CPV-2a, CPV-2b, and CPV-2c. The purpose of this study was to evaluate the ability of the recently registered Vanguard C4 vaccine to induce cross-neutralizing antibodies against the Australian isolates of CPV-2a, CPV-2b, and CPV-2c variants. Blood samples collected from dogs vaccinated with Vanguard C4 were analyzed by virus neutralizing assays developed for each of three CPV variants. The results of the study demonstrated that Vanguard vaccine induced cross-neutralizing antibodies against the Australian isolates of CPV-2a, CPV-2b, and CPV-2c, thus offering cross protection against all three Australian CPV variants.
Collapse
Affiliation(s)
- Raj Packianathan
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Andrew Hodge
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Jacqueline Wright
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Lynette Lavidis
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Keith Ameiss
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, Michigan, USA
| | - Hiu Ying Esther Yip
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Malihe Akbarzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Maryam Sharifian
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Reza Amanollahi
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Aliakbar Khabiri
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
9
|
Fiorito F, Irace C, Nocera FP, Piccolo M, Ferraro MG, Ciampaglia R, Tenore GC, Santamaria R, De Martino L. MG-132 interferes with iron cellular homeostasis and alters virulence of bovine herpesvirus 1. Res Vet Sci 2021; 137:1-8. [PMID: 33906007 DOI: 10.1016/j.rvsc.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) requires an iron-replete cell host to replicate efficiently. BoHV-1 infection provokes an increase in ferritin levels and a decrease of transferrin receptor 1 (TfR-1) expression, ultimately lowering iron pool extent. Thus, cells try to limit iron availability for virus spread. It has been demonstrated that MG-132, a proteasome inhibitor, reduces BoHV-1 release. Since ferritin, the major iron storage protein in mammalian cells, undergoes proteasome-mediated degradation, herein, the influence of MG-132 on iron metabolism during BoHV-1 infection was examined. Following infection in bovine cells (MDBK), MG-132 reduced cell death and viral yield. Western blot analysis showed a significant ferritin accumulation, likely due to the inhibition of its proteasome-mediated degradation pathway. In addition, the concomitant down-regulation of TfR-1 expression, observed during infection, was counteracted by proteasome inhibitor. This trend may be explained by enhanced acidic vesicular organelles, detected by acridine orange staining, determining a reduction of intracellular pH, that promotes new synthesis of TfR-1 degraded in a recycling pathway. In addition, MG-132 influences cellular iron distribution during BoHV-1 infection, as revealed by Perls' Prussian blue staining. However, cellular iron content, evaluated by Atomic Absorption Spectrophotometry, resulted essentially unaltered. These findings reveal that MG-132 may contribute to limit cellular iron availability for virus replication thereby enhancing cell survival.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | | | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Hoang M, Wu CN, Lin CF, Nguyen HTT, Le VP, Chiou MT, Lin CN. Genetic characterization of feline panleukopenia virus from dogs in Vietnam reveals a unique Thr101 mutation in VP2. PeerJ 2020; 8:e9752. [PMID: 33083102 PMCID: PMC7560322 DOI: 10.7717/peerj.9752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Canine parvovirus type 2 (CPV-2) and feline parvovirus (FPV) are known as the main causes of several serious diseases and have a severe impact on puppies and kittens, respectively. FPV and new CPV-2 variants are all able to infect cats, causing diseases indistinguishable from feline panleukopenia. However, FPV only replicates efficiently in feline cells in vitro and replicates in dogs in the thymus and bone marrow without being shed in feces. In our previous study, the genotypes of six parvoviral isolates were unable to be identified using a SimpleProbe® real-time PCR assay. Methods In the present study, we characterized previously unidentified FPV-like viruses isolated from dogs in Vietnam. The six isolates were utilized to complete VP2 gene sequencing and to conduct phylogenetic analyses. Results Sequence analysis of the six parvoviral strains identified the species as being similar to FPV. Phylogenetic analysis demonstrated that the complete VP2 genes of the strains are similar to those of FPV. The FPV-like strains contain a Thr101 mutation in the VP2 protein, which is different from prototype FPV strains. Discussion Our data provide evidence for the existence of changes in the charge, protein contact potential and molecular surface of the core of the receptor-binding size with an Ile101 to Thr101 mutation. This is also the first study to provide reliable evidence that FPV may be a threat to the Vietnamese dog population.
Collapse
Affiliation(s)
- Minh Hoang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Huong Thanh Thi Nguyen
- Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Van Phan Le
- Department of Microbiology and Infectious Disease, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
11
|
Diagnostic Challenges in Canine Parvovirus 2c in Vaccine Failure Cases. Viruses 2020; 12:v12090980. [PMID: 32899378 PMCID: PMC7552027 DOI: 10.3390/v12090980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, three different diagnostic tests for parvovirus were compared with vaccination status and parvovirus genotype in suspected canine parvovirus cases. Faecal samples from vaccinated (N17) and unvaccinated or unknown vaccination status (N41) dogs that had clinical signs of parvovirus infection were tested using three different assays of antigen tests, conventional and quantitative PCR tests. The genotype of each sample was determined by sequencing. In addition to the suspected parvovirus samples, 21 faecal samples from apparently healthy dogs were tested in three diagnostic tests to evaluate the sensitivity and specificity of the tests. The antigen test was positive in 41.2% of vaccinated dogs and 73.2% of unvaccinated diseased dogs. Conventional PCR and qPCR were positive for canine parvovirus (CPV) in 82.4% of vaccinated dogs and 92.7% of unvaccinated dogs. CPV type-2c (CPV-2c) was detected in 82.75% of dogs (12 vaccinated and 36 unvaccinated dogs), CPV-2b was detected in 5.17% dogs (one vaccinated and two unvaccinated) and CPV-2a in 1.72% vaccinated dog. Mean Ct values in qPCR for vaccinated dogs were higher than the unvaccinated dogs (p = 0.049), suggesting that vaccinated dogs shed less virus, even in clinical forms of CPV. CPV-2c was the dominant subtype infecting dogs in both vaccinated and unvaccinated cases. Faecal antigen testing failed to identify a substantial proportion of CPV-2c infected dogs, likely due to low sensitivity. The faecal samples from apparently healthy dogs (n = 21) showed negative results in all three tests. Negative CPV faecal antigen results should be viewed with caution until they are confirmed by molecular methods.
Collapse
|
12
|
Chaiyasak S, Piewbang C, Banlunara W, Techangamsuwan S. Carnivore Protoparvovirus-1 Associated With an Outbreak of Hemorrhagic Gastroenteritis in Small Indian Civets. Vet Pathol 2020; 57:706-713. [PMID: 32880233 DOI: 10.1177/0300985820932144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carnivore protoparvovirus-1 (CPPV-1) infection has been reported frequently in both domestic and wildlife species including wild carnivores. Fifty-five captive small Indian civets (Viverricula indica), farmed for perfume production in Eastern Thailand, showed clinical signs of acute bloody diarrhea, anorexia, vomiting, circling, and seizures. The disease spread within the farm and resulted in the death of 38 of the 55 civets (69% mortality) within a month. Fecal swabs were collected from the 17 surviving civets, and necropsy was performed on 7 of the dead civets. Pathologic findings were severe hemorrhagic gastroenteritis with generalized lymphadenopathy. CPPV-1 was identified in both fecal swabs and postmortem samples by species-specific polymerase chain reaction. Further whole-gene sequencing and restriction fragment length polymorphism analysis suggested feline panleukopenia virus (FPV) as the causative agent. The viral tropism and tissue distribution were confirmed by immunohistochemistry, with immunolabeling in the cytoplasm and nucleus of small intestinal crypt epithelial cells, villous enterocytes, histiocytes in lymphoid tissues, myenteric nerve plexuses, and cerebral and cerebellar neurons. Phylogenetic analysis of civet-derived CPPV-1 indicated a genetic similarity close to the FPV HH-1/86 strain detected in a jaguar (Panthera onca) in China. To our knowledge, this mass die-off of civets is the first evidence of disease associated with CPPV-1 infection in the subfamily Viverrinae. These findings support the multi-host range of parvovirus infection and raises awareness for CPPV-1 disease outbreaks in wildlife species.
Collapse
|
13
|
Zhao W, Wang X, Li Y, Li Y. Administration with Vaccinia Virus Encoding Canine Parvovirus 2 vp2 Elicits Systemic Immune Responses in Mice and Dogs. Viral Immunol 2020; 33:434-443. [PMID: 32364832 DOI: 10.1089/vim.2019.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Canine parvovirus type 2 (CPV2) is a highly contagious cause of serious and often fatal disease in young dogs. Despite the widespread availability of attenuated vaccines, safer, more stable, and more effective CPV2 vaccine candidates are still under exploration. Vaccinia virus (VV) has already been proved to be a safe, stable, and effective vaccine vector. In this study, we generated a VV-based CPV2 vaccine candidate (VV-CPV-VP2) and then evaluated its immunogenicity in mice and dogs. The exogenous vp2 gene of CPV2, which replaced the major virulence gene hemagglutinin (ha) of VV, expressed efficiently and stably in vitro. Subsequently, intramuscular immunization of mice induced robust and lasting systemic immune responses, including neutralizing antibody against both CPV2a and CPV2b, and CPV2-VP2-specific interferon gamma (IFN-γ) secreting T cell. In addition, administration with a high-dose of VV-CPV-VP2 did not cause significant side effects for mice, thus indicating marked safety of this vaccine candidate. Most importantly, a single-dose vaccination of VV-CPV2-VP2 elicited substantial antibody responses and provided comparable protection for dogs with attenuated CPV2 vaccine. Collectively, this study demonstrated that VV-CPV2-VP2 could be used as a promising vaccine candidate preventing CPV2 from infection for dogs.
Collapse
Affiliation(s)
- Wanbo Zhao
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Xiaomei Wang
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Yi Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Yaoming Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| |
Collapse
|
14
|
Giraldo-Ramirez S, Rendon-Marin S, Ruiz-Saenz J. Phylogenetic, Evolutionary and Structural Analysis of Canine Parvovirus (CPV-2) Antigenic Variants Circulating in Colombia. Viruses 2020; 12:v12050500. [PMID: 32366040 PMCID: PMC7290427 DOI: 10.3390/v12050500] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Canine parvovirus (CPV-2) is the causative agent of haemorrhagic gastroenteritis in canids. Three antigenic variants—CPV-2a, CPV-2b and CPV-2c—have been described, which are determined by variations at residue 426 of the VP2 capsid protein. In Colombia, the CPV-2a and CPV-2b antigenic variants have previously been reported through partial VP2 sequencing. Mutations at residues Asn428Asp and Ala514Ser of variant CPV-2a were detected, implying the appearance of a possible new CPV-2a variant in Colombia. The purpose of the present study was to characterise the full VP2 capsid protein in samples from Antioquia, Colombia. We conducted a cross-sectional study with 56 stool samples from dogs showing clinical symptoms of parvoviral disease. Following DNA extraction from the samples, VP2 amplification was performed using PCR and positive samples were sequenced. Sequence and phylogenetic analyses were performed by comparison with the VP2 gene sequences of the different CPV-2 worldwide. VP2 was amplified in 51.8% of the analysed samples. Sequencing and sequence alignment showed that 93.1% of the amplified samples belonged to the new CPV-2a antigenic variant previously. Analysing the amino acid sequences revealed that all CPV-2a contain Ala297Asn mutations, which are related to the South America I clade, and the Ala514Ser mutation, which allows characterization as a new CPV-2a sub-variant. The Colombian CPV-2b variant presented Phe267Tyr, Tyr324Ile and Thr440Ala, which are related to the Asia-I clade variants. The CPV-2c was not detected in the samples. In conclusion, two antigenic CPV-2 variants of two geographically distant origins are circulating in Colombia. It is crucial to continue characterising CPV-2 to elucidate the molecular dynamics of the virus and to detect new CPV-2 variants that could be becoming highly prevalent in the region.
Collapse
|
15
|
Dai X, Zhang X, Ostrikov K, Abrahamyan L. Host receptors: the key to establishing cells with broad viral tropism for vaccine production. Crit Rev Microbiol 2020; 46:147-168. [PMID: 32202955 PMCID: PMC7113910 DOI: 10.1080/1040841x.2020.1735992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell culture-based vaccine technology is a flexible and convenient approach for vaccine production that requires adaptation of the vaccine strains to the new cells. Driven by the motivation to develop a broadly permissive cell line for infection with a wide range of viruses, we identified a set of the most relevant host receptors involved in viral attachment and entry. This identification was done through a review of different viral entry pathways and host cell lines, and in the context of the Baltimore classification of viruses. In addition, we indicated the potential technical problems and proposed some solutions regarding how to modify the host cell genome in order to meet industrial requirements for mass production of antiviral vaccines. Our work contributes to a finer understanding of the importance of breaking the host–virus recognition specificities for the possibility of creating a cell line feasible for the production of vaccines against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kostya Ostrikov
- School of Chemistry and Physics and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Levon Abrahamyan
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
16
|
Inthong N, Kaewmongkol S, Meekhanon N, Sirinarumitr K, Sirinarumitr T. Dynamic evolution of canine parvovirus in Thailand. Vet World 2020; 13:245-255. [PMID: 32255965 PMCID: PMC7096304 DOI: 10.14202/vetworld.2020.245-255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: According to the previous study, the circulating canine parvovirus (CPV) in Thailand is 2a and 2b. Nowadays, CPV mutants, including CPV-2c, have been identified in many parts of the world. This study aimed to investigate the genetic diversity of the circulating CPV in Thailand. Materials and Methods: Eighty-five CPV-positive fecal samples were obtained from dogs with either acute hemorrhagic diarrhea or diarrhea. The complete VP2 gene of these samples was amplified using VP2 specific primers and polymerase chain reaction (PCR). The obtained full-length VP2 sequences were analyzed and a phylogenetic tree was constructed. Results: Sixty and 25 CPV-positive fecal samples were collected in 2010 and 2018, respectively. Thirty-four samples were new CPV-2a and 31 samples were new CPV-2b due to amino acids substitution at position 297 (Ser-Ala). In 2018, 5 new CPV-2a, 19 CPV-2c, and 1 feline panleukopenia virus (FPV) were found, but no new CPV-2b was detected. Moreover, most of the CPV in this study had amino acids mutations at positions 324 and 440. The phylogenetic construction demonstrated the close relationship between the current new CPV-2a with the previous CPV-2a reported from Thailand, China, Uruguay, Vietnam, Singapore, and India. Interestingly, the current new CPV-2b in this study was not closely related to the previous CPV-2b reported in Thailand. The CPV-2c in this study was closer to Asian CPV-2c and further from either European or South America CPV-2c. Interestingly, FPV was identified in a diarrhea dog. Conclusion: The evolution of CPV in Thailand is very dynamic. Thus, it is important to monitor for CPV mutants and especially the clinical signs relating to these mutants to conduct surveillance for the emergence of new highly pathogenic CPV in the future.
Collapse
Affiliation(s)
- N Inthong
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Sean Campus, Nakhon Pathom 73140, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, 50 Ngamwongwan Road, Chatuchak 10900, Thailand
| | - S Kaewmongkol
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, 50 Ngamwongwan Road, Chatuchak 10900, Thailand
| | - N Meekhanon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, 50 Ngamwongwan Road, Chatuchak 10900, Thailand
| | - K Sirinarumitr
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak 10900, Thailand
| | - T Sirinarumitr
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
17
|
Wang SL, Tu YC, Lee MS, Wu LH, Chen TY, Wu CH, Tsao EHS, Chin SC, Li WT. Fatal canine parvovirus-2 (CPV-2) infection in a rescued free-ranging Taiwanese pangolin (Manis pentadactyla pentadactyla). Transbound Emerg Dis 2020; 67:1074-1081. [PMID: 31886933 DOI: 10.1111/tbed.13469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
Carnivore protoparvovirus 1 includes feline parvovirus (FPV), variants of canine parvovirus-2 (CPV-2), mink enteritis virus, and raccoon parvovirus, important pathogens affecting both wild and domestic carnivores. In this report, we described a fatal CPV-2 infection in a rescued Taiwanese pangolin, which provides the first evidence of CPV-2 infection in a non-carnivore. Post-rescue, the Taiwanese pangolin died from complications resulting from a severe panleucocytopenia and bloody diarrhoea. A full autopsy was performed and microscopic examination of the tissues revealed ulcerative, necrotizing, and haemorrhagic glossitis, esophagitis and enteritis. The results of transmission electronic microscopy, polymerase chain reaction and in situ hybridization provided confirmatory evidence that the lesions in the tongue, oesophagus and intestine were associated with a protoparvovirus. Phylogenetic comparison of the whole VP2 gene from the current pangolin protoparvovirus strain showed close clustering with the CPV-2c strains from domestic dogs in Taiwan, China and Singapore. The amino acid sequence of the pangolin protoparvovirus showed 100% identity to the CPV-2c strains from domestic dogs in China, Italy, and Singapore. The current findings highlight that pangolins are susceptible to protoparvoviruses. The potential of cross-species transmission of protoparvoviruses between Carnivora and Pholidota should be considered when housing pangolins in close proximity to carnivores and adopting strict biosecurity measures to avoid cross-species transmission in rescue facilities and zoos.
Collapse
Affiliation(s)
| | - Yang-Chang Tu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei, Taiwan
| | - Ming-Shiuh Lee
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei, Taiwan
| | | | | | - Chieh-Hao Wu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei, Taiwan
| | | | | | | |
Collapse
|
18
|
Limited Intrahost Diversity and Background Evolution Accompany 40 Years of Canine Parvovirus Host Adaptation and Spread. J Virol 2019; 94:JVI.01162-19. [PMID: 31619551 DOI: 10.1128/jvi.01162-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.
Collapse
|
19
|
Structural analysis of the transferrin receptor multifaceted ligand(s) interface. Biophys Chem 2019; 254:106242. [DOI: 10.1016/j.bpc.2019.106242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
|
20
|
Inthong N, Sutacha K, Kaewmongkol S, Sinsiri R, Sribuarod K, Sirinarumitr K, Sirinarumitr T. Feline panleukopenia virus as the cause of diarrhea in a banded linsang (Prionodon linsang) in Thailand. J Vet Med Sci 2019; 81:1763-1768. [PMID: 31548471 PMCID: PMC6943334 DOI: 10.1292/jvms.19-0238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A banded linsang (Prionodon linsang) presented at our hospital with clinical signs of acute diarrhea. Fecal samples were positive for canine parvovirus (CPV) as determined by polymerase chain reaction with primers specific for both CPV and feline panleukopenia virus (FPV). The full-length VP2 was cloned, sequenced, and compared with sequences of FPV and CPV strains reported in GenBank. The amino acids that determined the host range were similar to those of FPV. Moreover, amino acid analysis of VP2 revealed over 98% homology to FPV. The FPV isolate was closely related with FPV isolates from Japan, South Korea, and China. To the best of our knowledge, this is the first study to report that banded linsang can be infected with FPV.
Collapse
Affiliation(s)
- Natnaree Inthong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.,Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Sean Campus, Nakhon Pathom 73140, Thailand.,Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Kaset Sutacha
- The Veterinary Teaching Hospital, Bang Khaen campus, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Sarawan Kaewmongkol
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Rungthiwa Sinsiri
- Molecular Diagnostic Laboratory, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kriangsak Sribuarod
- Khlong Saeng Wildlife Research Station, Wildlife Research Division, Wildlife Conservation Bureau, Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Kaitkanoke Sirinarumitr
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Small Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Theerapol Sirinarumitr
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
21
|
Abstract
Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV-TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV-TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus-receptor interface. Our "rock-and-roll" model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.
Collapse
|
22
|
Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrido L, Parrish CR. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190017. [PMID: 31401954 PMCID: PMC6711314 DOI: 10.1098/rstb.2019.0017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The critical step in the emergence of a new epidemic or pandemic viral pathogen occurs after it infects the initial spillover host and then is successfully transmitted onwards, causing an outbreak chain of transmission within that new host population. Crossing these choke points sets a pathogen on the pathway to epidemic emergence. While many viruses spill over to infect new or alternative hosts, only a few accomplish this transition—and the reasons for the success of those pathogens are still unclear. Here, we consider this issue related to the emergence of animal viruses, where factors involved likely include the ability to efficiently infect the new animal host, the demographic features of the initial population that favour onward transmission, the level of shedding and degree of susceptibility of individuals of that population, along with pathogen evolution favouring increased replication and more efficient transmission among the new host individuals. A related form of emergence involves mutations that increased spread or virulence of an already-known virus within its usual host. In all of these cases, emergence may be due to altered viral properties, changes in the size or structure of the host populations, ease of transport, climate change or, in the case of arboviruses, to the expansion of the arthropod vectors. Here, we focus on three examples of viruses that have gained efficient onward transmission after spillover: influenza A viruses that are respiratory transmitted, HIV, a retrovirus, that is mostly blood or mucosal transmitted, and canine parvovirus that is faecal:oral transmitted. We describe our current understanding of the changes in the viruses that allowed them to overcome the barriers that prevented efficient replication and spread in their new hosts. We also briefly outline how we could gain a better understanding of the mechanisms and variability in order to better anticipate these events in the future. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 9095-7239, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
A glycan shield on chimpanzee CD4 protects against infection by primate lentiviruses (HIV/SIV). Proc Natl Acad Sci U S A 2019; 116:11460-11469. [PMID: 31113887 DOI: 10.1073/pnas.1813909116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pandemic HIV-1 (group M) emerged following the cross-species transmission of a simian immunodeficiency virus from chimpanzees (SIVcpz) to humans. Primate lentiviruses (HIV/SIV) require the T cell receptor CD4 to enter into target cells. By surveying the sequence and function of CD4 in 50 chimpanzee individuals, we find that all chimpanzee CD4 alleles encode a fixed, chimpanzee-specific substitution (34T) that creates a glycosylation site on the virus binding surface of the CD4 receptor. Additionally, a single nucleotide polymorphism (SNP) has arisen in chimpanzee CD4 (68T) that creates a second glycosylation site on the same virus-binding interface. This substitution is not yet fixed, but instead alleles containing this SNP are still circulating within chimpanzee populations. Thus, all allelic versions of chimpanzee CD4 are singly glycosylated at the virus binding surface, and some allelic versions are doubly glycosylated. Doubly glycosylated forms of chimpanzee CD4 reduce HIV-1 and SIVcpz infection by as much as two orders of magnitude. Full restoration of virus infection in cells bearing chimpanzee CD4 requires reversion of both threonines at sites 34 and 68, destroying both of the glycosylation sites, suggesting that the effects of the glycans are additive. Differentially glycosylated CD4 receptors were biochemically purified and used in neutralization assays and microscale thermophoresis to show that the glycans on chimpanzee CD4 reduce binding affinity with the lentiviral surface glycoprotein, Env. These glycans create a shield that protects CD4 from being engaged by viruses, demonstrating a powerful form of host resistance against deadly primate lentiviruses.
Collapse
|
24
|
Dunbar CA, Callaway HM, Parrish CR, Jarrold MF. Probing Antibody Binding to Canine Parvovirus with Charge Detection Mass Spectrometry. J Am Chem Soc 2018; 140:15701-15711. [PMID: 30398860 DOI: 10.1021/jacs.8b08050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There are many techniques for monitoring and measuring the interactions between proteins and ligands. Most of these techniques are ensemble methods that can provide association constants and in some cases stoichiometry. Here we use charge detection mass spectrometry (CDMS), a single particle technique, to probe the interactions of antigen binding fragments (Fabs) from a series of antibodies with the canine parvovirus (CPV) capsid. In addition to providing the average number of bound Fabs as a function of Fab concentration (i.e., the binding curve), CDMS measurements provide information about the distribution of bound Fabs. We show that the distribution of bound ligands is much better at distinguishing between different binding models than the binding curve. The binding of Fab E to CPV is a textbook example. A maximum of 60 Fabs bind and the results are consistent with a model where all sites have the same binding affinity. However, for Fabs B, F, and 14, the distributions can only be fit by a model where there are distinct virus subpopulations with different binding affinities. This behavior can be distinguished from a situation where all CPV particles are identical, and each particle has the same distribution of sites with different binding affinities. The different responses to viral heterogeneity can be traced to the Fab binding sites. A comparison of Fab binding to new and aged CPV capsids reveals that a post-translational modification at the binding site for Fab E (M569) probably reduces the binding affinity.
Collapse
Affiliation(s)
- Carmen A Dunbar
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47405 , United States
| | - Heather M Callaway
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine , Cornell University , Ithaca , New York 14850 , United States
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine , Cornell University , Ithaca , New York 14850 , United States
| | - Martin F Jarrold
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47405 , United States
| |
Collapse
|
25
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
26
|
Complex and Dynamic Interactions between Parvovirus Capsids, Transferrin Receptors, and Antibodies Control Cell Infection and Host Range. J Virol 2018; 92:JVI.00460-18. [PMID: 29695427 DOI: 10.1128/jvi.00460-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/17/2018] [Indexed: 01/18/2023] Open
Abstract
Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.
Collapse
|
27
|
Wessling-Resnick M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu Rev Nutr 2018; 38:431-458. [PMID: 29852086 DOI: 10.1146/annurev-nutr-082117-051749] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because both the host and pathogen require iron, the innate immune response carefully orchestrates control over iron metabolism to limit its availability during times of infection. Nutritional iron deficiency can impair host immunity, while iron overload can cause oxidative stress to propagate harmful viral mutations. An emerging enigma is that many viruses use the primary gatekeeper of iron metabolism, the transferrin receptor, as a means to enter cells. Why and how this iron gate is a viral target for infection are the focus of this review.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA;
| |
Collapse
|
28
|
A single amino acid substitution in the Bombyx-specific mucin-like membrane protein causes resistance to Bombyx mori densovirus. Sci Rep 2018; 8:7430. [PMID: 29743532 PMCID: PMC5943349 DOI: 10.1038/s41598-018-25388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Bombyx mori densovirus type 1 (BmDV) is a pathogen that causes flacherie disease in the silkworm. The absolute nonsusceptibility to BmDV among certain silkworm strains is determined independently by two genes, nsd-1 and Nid-1. However, neither of these genes has been molecularly identified to date. Here, we isolated the nsd-1 gene by positional cloning and characterized the properties of its product, NSD-1. Sequence and biochemical analyses revealed that this gene encodes a Bombyx-specific mucin-like glycoprotein with a single transmembrane domain. The NSD-1 protein was specifically expressed in the larval midgut epithelium, the known infection site of BmDV. Sequence analysis of the nsd-1 gene from 13 resistant and 12 susceptible strains suggested that a specific arginine residue in the extracellular tail of the NSD-1 protein was common among susceptible strains. Germline transformation of the susceptible-type nsd-1 (with a single nucleotide substitution) conferred partial susceptibility to resistant larvae, indicating that the + nsd-1 gene is required for the susceptibility of B. mori larvae to BmDV and the susceptibility is solely a result of the substitution of a single amino acid with arginine. Taken together, our results provide striking evidence that a novel membrane-bound mucin-like protein functions as a cell-surface receptor for a densovirus.
Collapse
|
29
|
Phylodynamic and Genetic Diversity of Canine Parvovirus Type 2c in Taiwan. Int J Mol Sci 2017; 18:ijms18122703. [PMID: 29236084 PMCID: PMC5751304 DOI: 10.3390/ijms18122703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 11/20/2022] Open
Abstract
Canine parvovirus type 2c (CPV-2c) emerged in 2000 and is known for causing a more severe disease than other CPV-2 variants in puppies. In 2015, the emerging CPV-2c variant was isolated in Taiwan and it subsequently became the predominant variant. To trace the evolution of Taiwanese CPV-2c, we compared complete VP2 genes of CPV-2c from Taiwan and sequences obtained from GenBank. The evolutionary rate of CPV-2c was estimated to be 4.586 × 10−4 substitutions per site per year (95% highest posterior density (HPD) was 3.284–6.076 × 10−4). The time to the most recent common ancestor (TMRCA) dated to 1990 (95% HPD: 1984–1996) and 2011 (95% HPD: 2010–2013) for the CPV-2c variant and Taiwanese isolates, respectively. The CPV-2c variant isolated from Taiwan was clustered with CPV-2c from China. This phylogenetic clade began to branch off in approximately 2010 (95% HPD was 3.823–6.497). Notably, two unique mutations of Taiwanese CPV-2c were found, Q383R and P410L. In summary, this is the first report on the genome evolution of CPV-2c in Taiwan, revealing that this CPV-2c variant shares a common evolutionary origin with strains from China. The demographic history inferred by the Bayesian skyline plot showed that the effective population of CPV-2c increased until 2006 and then slowly declined until 2011.
Collapse
|
30
|
Ros C, Bayat N, Wolfisberg R, Almendral JM. Protoparvovirus Cell Entry. Viruses 2017; 9:v9110313. [PMID: 29072600 PMCID: PMC5707520 DOI: 10.3390/v9110313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
The Protoparvovirus (PtPV) genus of the Parvoviridae family of viruses includes important animal pathogens and reference molecular models for the entire family. Some virus members of the PtPV genus have arisen as promising tools to treat tumoral processes, as they exhibit marked oncotropism and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus. Understanding mechanisms that govern the complex PtPV entry will be instrumental in developing approaches to boost their anticancer therapeutic potential and improving their safety profile.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Nooshin Bayat
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
31
|
Mizutani T, Ishizaka A, Nihei CI. Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells. J Biol Chem 2015; 291:2829-36. [PMID: 26637351 DOI: 10.1074/jbc.m115.690941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- From the Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Aya Ishizaka
- From the Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Coh-Ichi Nihei
- From the Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
32
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
33
|
Single Mutations in the VP2 300 Loop Region of the Three-Fold Spike of the Carnivore Parvovirus Capsid Can Determine Host Range. J Virol 2015; 90:753-67. [PMID: 26512077 DOI: 10.1128/jvi.02636-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300, varies after transfer to alternative carnivore hosts and may allow infection of previously nonsusceptible hosts in vitro. Here we show that VP2 position 300 is the most variable residue in the parvovirus capsid in nature, suggesting that it is a critical determinant in the cross-species transfer of viruses between different carnivores due to its interactions with the transferrin receptor to mediate infection. To this end, we demonstrated that there are substantial differences in receptor binding and infectivity of various VP2 position 300 mutants for different carnivore species and that single mutations in this region can influence whether a host is susceptible or refractory to virus infection.
Collapse
|
34
|
Allison AB, Kohler DJ, Ortega A, Hoover EA, Grove DM, Holmes EC, Parrish CR. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species. PLoS Pathog 2014; 10:e1004475. [PMID: 25375184 PMCID: PMC4223063 DOI: 10.1371/journal.ppat.1004475] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/16/2014] [Indexed: 01/12/2023] Open
Abstract
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. Canine parvovirus (CPV) is an important example of a viral pathogen that evolved by cross-species transmission and mutation to initiate a disease pandemic. Carnivore parvoviruses infect many species, and their passage in different hosts may select mutations that facilitate host jumping; for example, natural passage of CPV in raccoons may have facilitated its adaptation to dogs. Conversely, some raccoon-adapted viruses are non-infectious to dogs, illustrating that host range barriers exist among different carnivores. Here we demonstrate that these barriers can be overcome by only a few mutations in the virus that likely alter host receptor binding, and that host adaptation can differ dramatically among very similar viruses. Importantly, we also show that passage of viruses in cell cultures of different hosts results in mutations at the same sites that vary in nature and confer fitness increases, strongly suggesting that they are adaptively important. These findings demonstrate that parvoviruses may cross species barriers to infect less susceptible hosts through single or only a few mutations, and that differences in the genetic background, host range, and/or evolutionary history of the viruses influence their propensity to jump hosts. Overall, these discoveries help reveal the mechanisms that control host switching and viral emergence.
Collapse
Affiliation(s)
- Andrew B Allison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Dennis J Kohler
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, Colorado, United States of America
| | - Alicia Ortega
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth A Hoover
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Daniel M Grove
- North Dakota Game and Fish Department, North Dakota State Government, Bismarck, North Dakota, United States of America
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
35
|
Huang LY, Halder S, Agbandje-McKenna M. Parvovirus glycan interactions. Curr Opin Virol 2014; 7:108-18. [PMID: 25047752 DOI: 10.1016/j.coviro.2014.05.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022]
Abstract
Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.
Collapse
Affiliation(s)
- Lin-Ya Huang
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Sujata Halder
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
36
|
Soluble form of canine transferrin receptor inhibits canine parvovirus infection in vitro and in vivo. BIOMED RESEARCH INTERNATIONAL 2013; 2013:172479. [PMID: 24089666 PMCID: PMC3780538 DOI: 10.1155/2013/172479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/25/2013] [Indexed: 12/02/2022]
Abstract
Canine parvovirus (CPV) disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR) was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR)) possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo.
Collapse
|
37
|
Truyen U, Parrish CR. Feline panleukopenia virus: its interesting evolution and current problems in immunoprophylaxis against a serious pathogen. Vet Microbiol 2013; 165:29-32. [PMID: 23561891 DOI: 10.1016/j.vetmic.2013.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 11/26/2022]
Abstract
Vaccination of cats against feline panleukopenia virus (FPV) has been a routine part of feline medicine for the past 40 or more years, and many of the same vaccines that were first developed in the 1960s are still in routine use today. However, there has been significant evolution of the virus in the last 40 years, in particular the emergence of canine parvovirus (CPV) in dogs in the late 1970s, which was a host range variant of the FPV-like virus, and the world-wide spread of the CPV-derived viruses since 1978. FPV and the various antigenic types of CPV have been isolated from cats, raccoons, and many different wild and captive carnivores. The consequences of these changes in the viral populations have not been investigated, and the effectiveness of the current vaccine protocols have not been reported. Here we review the recent findings about the evolution of the viruses in carnivores including cats, and describe a study that looks at the efficiency of vaccination of kittens using the standard protocols, which shows that many cats are not protected by those approaches.
Collapse
Affiliation(s)
- Uwe Truyen
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | | |
Collapse
|
38
|
Löfling J, Lyi SM, Parrish CR, Varki A. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid. Virology 2013; 440:89-96. [PMID: 23497940 DOI: 10.1016/j.virol.2013.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 12/27/2022]
Abstract
Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells.
Collapse
Affiliation(s)
- Jonas Löfling
- Department of Medicine, Center for Academic Research and Training in Anthropogeny, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
39
|
Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs. PLoS Pathog 2012; 8:e1002666. [PMID: 22570610 PMCID: PMC3342950 DOI: 10.1371/journal.ppat.1002666] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/09/2012] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host. Parvoviruses in cats and dogs have been studied as a model system to understand how viruses gain the ability to infect new host species. By studying the evolution of the transferrin receptor, which the virus uses to enter a cell, we discovered that the ancestors of dogs were likely infected by a parvovirus millions of years ago until they evolved and became resistant; this was caused by their transferrin receptor changing so it no longer bound the virus. When a variant virus that infects dogs emerged in the 1970s, it had adapted to overcome this block. This story suggests that diseases which were once eliminated from a species can evolve and regain the infectivity for that host, therefore having high potential to be emerging diseases. We identified features of the receptor that were important to the evolution of this host-virus interaction and confirmed their role in regulating virus binding in cell culture.
Collapse
|
40
|
Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures. J Virol 2012; 86:5330-40. [PMID: 22357278 DOI: 10.1128/jvi.07194-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral pathogens usurp cell surface receptors to access clathrin endocytic structures, yet the mechanisms of virus incorporation into these structures remain incompletely understood. Here we used fluorescence microscopy to directly visualize the association of single canine parvovirus (CPV) capsids with cellular transferrin receptors (TfR) on the surfaces of live feline cells and to monitor how these CPV-TfR complexes access endocytic structures. We found that most capsids associated with fewer than five TfRs and that ∼25% of TfR-bound capsids laterally diffused into assembling clathrin-coated pits less than 30 s after attachment. Capsids that did not encounter a coated pit dissociated from the cell surface with a half-life of ∼30 s. Together, our results show how CPV exploits the natural mechanism of TfR endocytosis to engage the clathrin endocytic pathway and reveal that the low affinity of capsids for feline TfRs limits the residence time of capsids on the cell surface and thus the efficiency of virus internalization.
Collapse
|
41
|
The role of evolutionary intermediates in the host adaptation of canine parvovirus. J Virol 2011; 86:1514-21. [PMID: 22114336 DOI: 10.1128/jvi.06222-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses.
Collapse
|
42
|
Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus. J Virol 2011; 86:865-72. [PMID: 22072763 DOI: 10.1128/jvi.06187-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.
Collapse
|
43
|
Bowden TA, Jones EY, Stuart DI. Cells under siege: viral glycoprotein interactions at the cell surface. J Struct Biol 2011; 175:120-6. [PMID: 21440638 PMCID: PMC3137789 DOI: 10.1016/j.jsb.2011.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 12/25/2022]
Abstract
As obligate parasites, viruses are required to enter and replicate within their host, a process which employs many of their proteins to hijack natural cellular processes. High resolution X-ray crystallographic analysis has proven to be an ideal method to visualize the mechanisms by which such virus-host interactions occur and has revealed the innovative capacity of viruses to adapt efficiently to their hosts. In this review, we draw upon recently elucidated paramyxovirus-, arenavirus-, and poxvirus-host protein complex crystal structures to reveal both the capacity of viruses to appropriate one component of a physiological protein-protein binding event (often modifying it to out-compete the host-protein), and the ability to utilize novel binding sites on host cell surface receptors. The structures discussed shed light on a number of biological processes ranging from viral entry to virulence and host antagonism. Drawn together they reveal the common strategies which viruses have evolved to interact with their natural host. The structures also support molecular level rationales for how viruses can be transmitted to unrelated organisms and thus pose severe health risks.
Collapse
Key Words
- glycoprotein structure
- virus entry
- cell signaling
- x-ray crystallography
- cell surface receptors
- gap, gtpase-activating protein
- ipt, ig-like plexins and transcription factors
- hev, hendra virus
- hev-g, hendra virus attachment glycoprotein
- hnv, henipavirus
- hnv-g, henipavirus attachment glycoprotein
- niv, nipah virus
- niv-g, nipah virus attachment glycoprotein
- macv, machupo virus
- pdb, protein databank
- psi, plexin-semaphrorin-integrin domain
- r.m.s.d., root mean square deviation
- tf, transferrin
- tfr1, transferrin receptor 1
- slam, signaling lymphocytic activation molecule
- spine, structural proteomics in europe
Collapse
Affiliation(s)
- Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom.
| | | | | |
Collapse
|
44
|
Binding site on the transferrin receptor for the parvovirus capsid and effects of altered affinity on cell uptake and infection. J Virol 2010; 84:4969-78. [PMID: 20200243 DOI: 10.1128/jvi.02623-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Canine parvovirus (CPV) and its relative feline panleukopenia virus (FPV) bind the transferrin receptor type 1 (TfR) to infect their host cells but show differences in the interactions with the feline and canine TfRs that determine viral host range and tissue tropism. We changed apical and protease-like domain residues by introducing point mutations and adding or removing glycosylation signals, and we then examined the interactions of those mutant TfRs with the capsids. Most substitutions had little effect on virus binding and uptake. However, mutations of several sites in the apical domain of the receptor either prevented binding to the capsids or reduced the affinity of receptor binding to various degrees. Glycans within the virus binding face of the apical domain also controlled capsid binding. CPV, but not the related feline parvovirus, could use receptors containing a canine TfR-specific glycosylation to mediate efficient infection, while addition of other N-linked glycosylation sites into the virus binding face of the feline apical domain reduced or eliminated both binding and infection. Replacement of critical feline TfR residue 221 with every amino acid had effects on binding and infection which were significantly associated with the biochemical properties of the residue replaced. Receptors with reduced affinities mostly showed proportional changes in their ability to mediate infection. Testing feline TfR variants for their binding and uptake patterns in cells showed that low-affinity versions bound fewer capsids and also differed in attachment to the cell surface and filopodia, but transport to the perinuclear endosome was similar.
Collapse
|
45
|
Parrish CR. Structures and functions of parvovirus capsids and the process of cell infection. Curr Top Microbiol Immunol 2010; 343:149-76. [PMID: 20397069 DOI: 10.1007/82_2010_33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To infect a cell, the parvovirus or adeno-associated virus (AAV) genome must be delivered from outside the plasma membrane to the nucleus, and in the process, the capsid must follow a series of binding and trafficking steps and also undergo necessary changes that result in exposure or release the ssDNA genome at the appropriate time and place within the cell. The 25 nm parvovirus capsid is comprised of two or three forms of a single protein, and although it is robust and stable, it is still sufficiently flexible to allow the exposure of several internal components at appropriate times during cell infection. The capsid can also accommodate insertion of peptides into surface loops, and capsid proteins from different viral serotypes can be shuffled to create novel functional variants. The capsids of the different viruses bind to one or more cell receptors, and for at least some viruses, the insertion of additional or alternative receptor binding sequences or structures into the capsid can expand or redirect its tropism. The infection process after cell binding involves receptor-mediated endocytosis followed by viral trafficking through the endosomal systems. That endosomal trafficking may be complex and prolonged for hours or be relatively brief. Generally only a small proportion of the particles taken up enter the cytoplasm after altering the endosomal membrane through the activity of a VP1-encoded phospholipase A2 domain that becomes released to the outside of the viral particle. Modifications to the capsid that can occur within the endosome or cytoplasm include structural changes to expose internal components, ubiquination and proteosomal processing, and possible trafficking of particles on molecular motors. It is still not clear how the genomes enter the nucleus, but nuclear pore-dependent entry of particles or permeabilization of nuclear membranes have been proposed. Those processes control the infection, pathogenesis, and host ranges of the autonomous viruses and determine the effectiveness of gene therapy using AAV capsids.
Collapse
Affiliation(s)
- Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
46
|
Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking. J Virol 2009; 83:10504-14. [PMID: 19656887 DOI: 10.1128/jvi.00295-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Canine parvovirus (CPV) and feline panleukopenia virus (FPV) are closely related parvoviruses that differ in their host ranges for cats and dogs. Both viruses bind their host transferrin receptor (TfR), enter cells by clathrin-mediated endocytosis, and traffic with that receptor through endosomal pathways. Infection by these viruses appears to be inefficient and slow, with low numbers of virions infecting the cell after a number of hours. Species-specific binding to TfR controls viral host range, and in this study FPV and strains of CPV differed in the levels of cell attachment, uptake, and infection in canine and feline cells. During infection, CPV particles initially bound and trafficked passively on the filopodia of canine cells while they bound to the cell body of feline cells. That binding was associated with the TfR as it was disrupted by anti-TfR antibodies. Capsids were taken up from the cell surface with different kinetics in canine and feline cells but, unlike transferrin, most did not recycle. Capsids labeled with fluorescent markers were seen in Rab5-, Rab7-, or Rab11-positive endosomal compartments within minutes of uptake, but reached the nucleus. Constitutively active or dominant negative Rab mutants changed the intracellular distribution of capsids and affected the infectivity of virus in cells.
Collapse
|
47
|
Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. Proc Natl Acad Sci U S A 2008; 105:7523-7. [PMID: 18495929 DOI: 10.1073/pnas.0711841105] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bombyx mori densovirus type 2 (BmDNV-2), a parvo-like virus, replicates only in midgut columnar cells and causes fatal disease. The resistance expressed in some silkworm strains against the virus is determined by a single gene, nsd-2, which is characterized as nonsusceptibility irrespective of the viral dose. However, the responsible gene has been unknown. We isolated the nsd-2 gene by positional cloning. The virus resistance is caused by a 6-kb deletion in the ORF of a gene encoding a 12-pass transmembrane protein, a member of an amino acid transporter family, and expressed only in midgut. Germ-line transformation with a wild-type transgene expressed in the midgut restores susceptibility, showing that the defective membrane protein is responsible for resistance. Cumulatively, our data show that the membrane protein is a functional receptor for BmDNV-2. This is a previously undescribed report of positional cloning of a mutant gene in Bombyx and isolation of an absolute virus resistance gene in insects.
Collapse
|
48
|
Harbison CE, Chiorini JA, Parrish CR. The parvovirus capsid odyssey: from the cell surface to the nucleus. Trends Microbiol 2008; 16:208-14. [DOI: 10.1016/j.tim.2008.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/14/2008] [Accepted: 01/25/2008] [Indexed: 12/21/2022]
|
49
|
Abstract
Parvoviruses elaborate rugged nonenveloped icosahedral capsids of approximately 260 A in diameter that comprise just 60 copies of a common core structural polypeptide. While serving as exceptionally durable shells, capable of protecting the single-stranded DNA genome from environmental extremes, the capsid also undergoes sequential conformational changes that allow it to translocate the genome from its initial host cell nucleus all the way into the nucleus of its subsequent host. Lacking a duplex transcription template, the virus must then wait for its host to enter S-phase before it can initiate transcription and usurp the cell's synthetic pathways. Here we review cell entry mechanisms used by parvoviruses. We explore two apparently distinct modes of host cell specificity, first that used by Minute virus of mice, where subtle glycan-specific interactions between host receptors and residues surrounding twofold symmetry axes on the virion surface mediate differentiated cell type target specificity, while the second involves novel protein interactions with the canine transferrin receptor that allow a mutant of the feline leukopenia serotype, Canine parvovirus, to bind to and infect dog cells. We then discuss conformational shifts in the virion that accompany cell entry, causing exposure of a capsid-tethered phospholipase A2 enzymatic core that acts as an endosomolytic agent to mediate virion translocation across the lipid bilayer into the cell cytoplasm. Finally, we discuss virion delivery into the nucleus, and consider the nature of transcriptionally silent DNA species that, escaping detection by the cell, might allow unhampered progress into S-phase and hence unleash the parvoviral Trojan horse.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University Medical School, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
50
|
Hafenstein S, Palermo LM, Kostyuchenko VA, Xiao C, Morais MC, Nelson CDS, Bowman VD, Battisti AJ, Chipman PR, Parrish CR, Rossmann MG. Asymmetric binding of transferrin receptor to parvovirus capsids. Proc Natl Acad Sci U S A 2007; 104:6585-9. [PMID: 17420467 PMCID: PMC1871829 DOI: 10.1073/pnas.0701574104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Indexed: 12/11/2022] Open
Abstract
Although many viruses are icosahedral when they initially bind to one or more receptor molecules on the cell surface, such an interaction is asymmetric, probably causing a breakdown in the symmetry and conformation of the original infecting virion in preparation for membrane penetration and release of the viral genome. Cryoelectron microscopy and biochemical analyses show that transferrin receptor, the cellular receptor for canine parvovirus, can bind to only one or a few of the 60 icosahedrally equivalent sites on the virion, indicating that either canine parvovirus has inherent asymmetry or binding of receptor induces asymmetry. The asymmetry of receptor binding to canine parvovirus is reminiscent of the special portal in tailed bacteriophages and some large, icosahedral viruses. Asymmetric interactions of icosahedral viruses with their hosts might be a more common phenomenon than previously thought and may have been obscured by averaging in previous crystallographic and electron microscopic structure determinations.
Collapse
Affiliation(s)
- Susan Hafenstein
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Laura M. Palermo
- The James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Victor A. Kostyuchenko
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Chuan Xiao
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Marc C. Morais
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Christian D. S. Nelson
- The James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Valorie D. Bowman
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Anthony J. Battisti
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Paul R. Chipman
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| | - Colin R. Parrish
- The James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Michael G. Rossmann
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and
| |
Collapse
|