1
|
Heydarifard Z, Zadheidar S, Kalantari S, Nejati A, Achak F, Salimi V, Mokhtari‐Azad T, Shafiei‐Jandaghi NZ. Evaluation of Lytic and Persistent Human Adenovirus Infections in Tonsil Tissue of Children With Tonsillar Hypertrophy: A Matched Case-Control Study. Laryngoscope Investig Otolaryngol 2025; 10:e70113. [PMID: 40291574 PMCID: PMC12023410 DOI: 10.1002/lio2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Tonsillar hypertrophy is a common condition in children, and human adenoviruses (HAdVs) may contribute to its development. However, the mechanisms underlying HAdVs' persistence in tonsils remain unclear. This study investigates the role of HAdVs in tonsillar hypertrophy. Methods In a case-control study, oropharyngeal swabs and tonsillar tissues were collected from 50 children with and without tonsillar hypertrophy. HAdV viral load, mRNA expression, and virus shedding were considered to differentiate lytic and persistent infections. Results HAdV genomes were detected in 32% of hypertrophic tissues, exclusively HAdV-C, with no presence in controls. Viral loads varied, peaking in children under 5 years old, ranging from 4 ×10 3 to 1.9 ×10 6 copies/g, with a median of 2.6 ×10 4 copies/g. Predominantly, infections were persistent (81%), with a smaller number of lytic or reactive cases. Conclusion The study supports and extends previous findings regarding HAdV-C persistence in tonsillar tissues and its potential contribution to hypertrophy, with viral loads tending to decrease with age. These findings contribute to the growing body of evidence on HAdVs' role in tonsillar hypertrophy, reinforcing the importance of persistent infections in the tonsils.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
- Hepatitis Research Center, Department of Virology, School of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Sevrin Zadheidar
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Shirin Kalantari
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Ahmad Nejati
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Farshid Achak
- Department of Otolaryngology, Marvasti HospitalTehran University of Medical SciencesTehranIran
| | - Vahid Salimi
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Talat Mokhtari‐Azad
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
2
|
Darweesh M, Younis S, Hajikhezri Z, Ali A, Jin C, Punga T, Gupta S, Essand M, Andersson L, Akusjärvi G. ZC3H11A loss of function enhances NF-κB signaling through defective IκBα protein expression. Front Immunol 2022; 13:1002823. [PMID: 36439101 PMCID: PMC9681899 DOI: 10.3389/fimmu.2022.1002823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
ZC3H11A is a cellular protein associated with the transcription export (TREX) complex that is induced during heat-shock. Several nuclear-replicating viruses exploit the mRNA export mechanism of ZC3H11A protein for their efficient replication. Here we show that ZC3H11A protein plays a role in regulation of NF-κB signal transduction. Depletion of ZC3H11A resulted in enhanced NF-κB mediated signaling, with upregulation of numerous innate immune related mRNAs, including IL-6 and a large group of interferon-stimulated genes. IL-6 upregulation in the absence of the ZC3H11A protein correlated with an increased NF-κB transcription factor binding to the IL-6 promoter and decreased IL-6 mRNA decay. The enhanced NF-κB signaling pathway in ZC3H11A deficient cells correlated with a defect in IκBα inhibitory mRNA and protein accumulation. Upon ZC3H11A depletion The IκBα mRNA was retained in the cell nucleus resulting in failure to maintain normal levels of the cytoplasmic IκBα mRNA and protein that is essential for its inhibitory feedback loop on NF-κB activity. These findings indicate towards a previously unknown mechanism of ZC3H11A in regulating the NF-κB pathway at the level of IkBα mRNA export.
Collapse
Affiliation(s)
- Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alazhr University, Assiut, Egypt
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
| | - Zamaneh Hajikhezri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Arwa Ali
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019; 593:3551-3570. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linda R Gooding
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
4
|
Zeng X, Carlin CR. Adenovirus early region 3 RIDα protein limits NFκB signaling through stress-activated EGF receptors. PLoS Pathog 2019; 15:e1008017. [PMID: 31425554 PMCID: PMC6715251 DOI: 10.1371/journal.ppat.1008017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/29/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
The host limits adenovirus infections by mobilizing immune systems directed against infected cells that also represent major barriers to clinical use of adenoviral vectors. Adenovirus early transcription units encode a number of products capable of thwarting antiviral immune responses by co-opting host cell pathways. Although the EGF receptor (EGFR) was a known target for the early region 3 (E3) RIDα protein encoded by nonpathogenic group C adenoviruses, the functional role of this host-pathogen interaction was unknown. Here we report that incoming viral particles triggered a robust, stress-induced pathway of EGFR trafficking and signaling prior to viral gene expression in epithelial target cells. EGFRs activated by stress of adenoviral infection regulated signaling by the NFκB family of transcription factors, which is known to have a critical role in the host innate immune response to infectious adenoviruses and adenovirus vectors. We found that the NFκB p65 subunit was phosphorylated at Thr254, shown previously by other investigators to be associated with enhanced nuclear stability and gene transcription, by a mechanism that was attributable to ligand-independent EGFR tyrosine kinase activity. Our results indicated that the adenoviral RIDα protein terminated this pathway by co-opting the host adaptor protein Alix required for sorting stress-exposed EGFRs in multivesicular endosomes, and promoting endosome-lysosome fusion independent of the small GTPase Rab7, in infected cells. Furthermore RIDα expression was sufficient to down-regulate the same EGFR/NFκB signaling axis in a previously characterized stress-activated EGFR trafficking pathway induced by treatment with the pro-inflammatory cytokine TNF-α. We also found that cell stress activated additional EGFR signaling cascades through the Gab1 adaptor protein that may have unappreciated roles in the adenoviral life cycle. Similar to other E3 proteins, RIDα is not conserved in adenovirus serotypes associated with potentially severe disease, suggesting stress-activated EGFR signaling may contribute to adenovirus virulence.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
5
|
Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol 2013; 88:903-12. [PMID: 24198418 DOI: 10.1128/jvi.01675-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection.
Collapse
|
6
|
Alkhalaf MA, Guiver M, Cooper RJ. Prevalence and quantitation of adenovirus DNA from human tonsil and adenoid tissues. J Med Virol 2013; 85:1947-54. [PMID: 23852770 DOI: 10.1002/jmv.23678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
In this study, real-time PCR was used to quantify adenovirus DNA in cell suspensions prepared from 106 right and left tonsils and 10 adenoids obtained from 57 patients who underwent routine tonsillectomies and/or adenoidectomies. Eighty-four (72.4%) tonsils and adenoids samples were positive for HAdV by real-time PCR. The viral load ranged from 2.8 × 10(2) to 2.6 × 10(6) copies/10(7) cells and varied up to sixfold between the right and left tonsils. In some cases, only one tonsil was positive and the viral load was lower in older children. Seventy-eight of 84 positive samples could be typed by sequencing of the hexon L1 region. Species C (types 1, 2, and 5) were detected in 84.1% of the patients followed by types 3 and 7 of species B (6.8%), HAdV-E4 (6.8%), and HAdV-F41 (2.3%). In one patient adenovirus C2 was found in the left tonsil and adenovirus C5 in the right tonsil. No DNA methylation was detected in either the E1A promoter or the major late promoter region of adenovirus DNA from six tonsils and adenoids samples and two clinical isolates.
Collapse
Affiliation(s)
- Moustafa Alissa Alkhalaf
- Virology Unit, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
7
|
Ugai H, Wang M, Le LP, Matthews DA, Yamamoto M, Curiel DT. In vitro dynamic visualization analysis of fluorescently labeled minor capsid protein IX and core protein V by simultaneous detection. J Mol Biol 2010; 395:55-78. [PMID: 19853616 PMCID: PMC2787850 DOI: 10.1016/j.jmb.2009.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/29/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Oncolytic adenoviruses represent a promising therapeutic medicine for human cancer therapy, but successful translation into human clinical trials requires careful evaluation of their viral characteristics. While the function of adenovirus proteins has been analyzed in detail, the dynamics of adenovirus infection remain largely unknown due to technological constraints that prevent adequate tracking of adenovirus particles after infection. Fluorescence labeling of adenoviral particles is one new strategy designed to directly analyze the dynamic processes of viral infection in virus-host cell interactions. We hypothesized that the double labeling of an adenovirus with fluorescent proteins would allow us to properly analyze intracellular viruses and the fate of viral proteins in a live analysis of an adenovirus as compared to single labeling. Thus, we generated a fluorescently labeled adenovirus with both a red fluorescent minor capsid protein IX (pIX) [pIX monomeric red fluorescent protein 1 (mRFP1)] and a green fluorescent minor core protein V (pV) [pV enhanced green fluorescent protein (EGFP)], resulting in Ad5-IX-mRFP1-E3-V-EGFP. The fluorescent signals for pIX-mRFP1 and pV-EGFP were detected within 10 min in living cells. However, a growth curve analysis of Ad5-IX-mRFP1-E3-V-EGFP showed an approximately 150-fold reduced production of the viral progeny at 48 h postinfection as compared to adenovirus type 5. Interestingly, pIX-mRFP1 and pV-EGFP were initially localized in the cytoplasm and nucleolus, respectively, at 18 h postinfection. These proteins were observed in the nucleus during the late stage of infection, and relocalization of the proteins was observed in an adenoviral-replication-dependent manner. These results indicate that simultaneous detection of adenoviruses using dual-fluorescent proteins is suitable for real-time analysis, including identification of infected cells and monitoring of viral spread, which will be required for a complete evaluation of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Hideyo Ugai
- Division of Human Gene Therapy, Department of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Minghui Wang
- Division of Human Gene Therapy, Department of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Long P. Le
- Massachusetts General Hospital, Pathology Service, 55 Fruit St.-GRJ 249, Boston, MA 02114, USA
| | - David A. Matthews
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - David T. Curiel
- Division of Human Gene Therapy, Department of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Abstract
Although species C human adenoviruses establish persistent infections, the molecular details of this lifestyle remain poorly understood. We previously reported that adenovirus DNA is found in human mucosal T lymphocytes in a noninfectious form (C. T. Garnett, D. Erdman, W. Xu, and L. R. Gooding, J. Virol. 76:10608-10616, 2002). In this study, human tonsil and adenoid tissues were analyzed to determine the dynamics of infection, the rate of clearance of viral DNA, and the possibility of reactivation of virus from these tissues. The presence of viral DNA peaked at 4 years of age and declined thereafter. The average number of viral genomes declined with the age of the donor. The frequency of virus-bearing cells ranged from 3 x 10(-7) to 3.4 x 10(-4), while the amount of viral DNA per cell varied less, with an average of 280 copies per cell. All species C serotypes were represented in these tissues, although adenovirus type 6 was notably rare. Infectious virus was detected infrequently (13 of 94 of donors tested), even among donors with the highest levels of adenoviral DNA. Adenovirus transcripts were rarely detected in uncultured lymphocytes (2 of 12 donors) but appeared following stimulation and culture (11 of 13 donors). Viral DNA replication could be stimulated in most donor samples by lymphocyte stimulation in culture. New infectious virus was detected in 13 of 15 donors following in vitro stimulation. These data suggest that species C adenoviruses can establish latent infections in mucosal lymphocytes and that stimulation of these cells can cause viral reactivation resulting in RNA transcription, DNA replication, and infectious virus production.
Collapse
|
9
|
Zhou D, Cun A, Li Y, Xiang Z, Ertl HCJ. A chimpanzee-origin adenovirus vector expressing the rabies virus glycoprotein as an oral vaccine against inhalation infection with rabies virus. Mol Ther 2006; 14:662-72. [PMID: 16797238 DOI: 10.1016/j.ymthe.2006.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/17/2006] [Accepted: 03/27/2006] [Indexed: 11/25/2022] Open
Abstract
Rabies has the highest fatality rate of all human viral infections and the virus could potentially be disseminated through aerosols. Currently licensed vaccines to rabies virus are highly effective but it is unknown if they would provide reliable protection to rabies virus transmitted through inhalation, which allows rapid access to the central nervous system upon entering olfactory nerve endings. Here we describe preclinical data with a novel vaccine to rabies virus based on a recombinant replication-defective chimpanzee-origin adenovirus vector expressing the glycoprotein of the Evelyn Rokitniki Abelseth strain of rabies virus. This vaccine, termed AdC68rab.gp, induces sustained central and mucosal antibody responses to rabies virus after oral application and provides complete protection against rabies virus acquired through inhalation even if given at a moderate dose.
Collapse
Affiliation(s)
- Dongming Zhou
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
10
|
Carmody RJ, Maguschak K, Chen YH. A novel mechanism of nuclear factor-kappaB regulation by adenoviral protein 14.7K. Immunology 2006; 117:188-95. [PMID: 16423054 PMCID: PMC1782211 DOI: 10.1111/j.1365-2567.2005.02277.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Viruses have evolved many different ways to evade immune attacks. The adenoviral E3 protein 14.7K effectively inhibits antiviral immunity and inflammation. However, the underlying mechanism for this effect is unclear. Here we show that 14.7K is a potent inhibitor of nuclear factor (NF)-kappaB transcriptional activity following Toll-like receptor (TLR) or tumour necrosis factor (TNF) receptor signalling. The inhibition of the NF-kappaB activity occurs downstream of IkappaBalpha degradation and NF-kappaB translocation into the nucleus. Analysis of NF-kappaB DNA binding reveals that 14.7K specifically inhibits p50 homodimer DNA binding and that this inhibition is mediated through the interaction of 14.7K with p50. We propose that 14.7K inhibits NF-kappaB activity through directly blocking p50 binding to DNA and that this is the basis for its anti-inflammatory properties. Our data also indicate a role for p50 homodimer-dependent transcription in inflammation.
Collapse
Affiliation(s)
- Ruaidhrí J Carmody
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
11
|
Segerman A, Lindman K, Mei YF, Allard A, Wadell G. Adenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology 2006; 349:96-111. [PMID: 16483626 DOI: 10.1016/j.virol.2005.12.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/01/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5. To evaluate which Ad species B type(s) would be the most efficient vector(s) for primary T-cells, B-cells and monocytes, attachment to and entry of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 into primary PBMCs was studied. Ad11p and Ad35 were the only serotypes to show efficient binding and for which uptake by PBMCs could be detected. Infection of PBMCs by Ad5, Ad11p and Ad35 was compared. Expression of Ad hexons was detected in stimulated PBMCs, most frequently in T-cells, and in unstimulated monocytes, although B-cells appear to be refractory to productive infection. Replication of Ad DNA was severely restricted in most PBMCs. Neither hexon expression nor genome replication could be detected in unstimulated lymphocytes, but FISH and a real-time PCR-based assay suggested that Ad11p and Ad35 DNA reach the nucleus. Activation thus appears to be required for T-cells to be permissive to Ad gene expression. In summary, there are substantial differences between Ad3p and Ad7p on the one hand and Ad11p and Ad35 on the other, in their ability to interact with PBMCs. Ad11p and Ad35 probably represent vectors of choice for these cell types.
Collapse
Affiliation(s)
- Anna Segerman
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23:75-111. [PMID: 14690856 DOI: 10.1080/08830180490265556] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the evolutionary battle between viruses and their hosts, viruses have armed themselves with weapons to defeat the host's attacks on infected cells. Various proteins encoded in the adenovirus (Ad) E3 transcription unit protect cells from killing mediated by cytotoxic T cells and death-inducing cytokines such as tumor necrosis factor (TNF), Fas ligand, and TNF-related apoptosis-inducing ligand (TRAIL). The viral protein E3-gp19 K blocks MHC class-I-restricted antigen presentation, which diminishes killing by cytotoxic T cells. The receptor internalization and degradation (RID) complex (formerly E3-10.4 K/14.5 K) stimulates the clearance from the cell surface and subsequent degradation of the receptors for Fas ligand and TRAIL, thereby preventing the action of these important immune mediators. RID also downmodulates the epidermal growth factor receptor (EGFR), although what role, if any, this function has in immune regulation is uncertain. In addition, RID antagonizes TNF-mediated apoptosis and inflammation through a mechanism that does not primarily involve receptor downregulation. E3-6.7 K functions together with RID in downregulating some TRAIL receptors and may block apoptosis independently of other E3 proteins. Furthermore, E3-14.7 K functions as a general inhibitor of TNF-mediated apoptosis and blocks TRAIL-induced apoptosis. Finally, after expending great effort to maintain cell viability during the early part of the virus replication cycle, Ads lyse the cell to allow efficient virus release and dissemination. To perform this task subgroup C Ads synthesize a protein late in infection named ADP (formerly E3-11.6 K) that is required for efficient virus release. This review focuses on recent experiments aimed at discovering the mechanism of action of these critically important viral proteins.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
13
|
Fessler SP, Delgado-Lopez F, Horwitz MS. Mechanisms of E3 Modulation of Immune and Inflammatory Responses. Curr Top Microbiol Immunol 2004; 273:113-35. [PMID: 14674600 DOI: 10.1007/978-3-662-05599-1_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Adenoviruses contain genes that have evolved to control the host immune and inflammatory responses; however, it is not clear whether these genes function primarily to facilitate survival of the virus during acute infection or during its persistent phase. These issues have assumed greater importance as the use of adenoviruses as vectors for gene therapy has been expanded. This review will focus on the mechanism of immune evasion mediated by the proteins encoded within the early region 3 (E3) transcription region, which affect the functions of a number of cell surface receptors including Fas, intracellular cell signaling events involving NF-kappaB, and the secretion of pro-inflammatory molecules such as chemokines. The successful use of E3 genes in facilitating allogeneic transplantation and in preventing autoimmune diabetes in several transgenic mouse models will also be described.
Collapse
Affiliation(s)
- S P Fessler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, NY 10461, USA
| | | | | |
Collapse
|
14
|
Shepard RN, Ornelles DA. E4orf3 is necessary for enhanced S-phase replication of cell cycle-restricted subgroup C adenoviruses. J Virol 2003; 77:8593-5. [PMID: 12857931 PMCID: PMC165245 DOI: 10.1128/jvi.77.15.8593-8595.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
E1B-55K-mutant or E4orf6-mutant adenoviruses replicate more effectively after infecting cells in S phase than after infecting cells in G(1). Enhanced S-phase replication of the E4orf6-mutant viruses requires the E4orf3 gene. This report demonstrates that the E4orf3 gene is also required for enhanced S-phase replication of the E1B-55K-mutant virus.
Collapse
Affiliation(s)
- Robin N Shepard
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|