1
|
Cui X, Yang Y, Wang F, Luo J, Zhang P, Chen H, Zhao L, Ge J. Genomic characterization and phylogenetic analysis of Aleutian mink disease virus identified in a sudden death mink case. Comp Immunol Microbiol Infect Dis 2023; 101:102052. [PMID: 37651788 DOI: 10.1016/j.cimid.2023.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Aleutian mink disease (AMD) is one of the most serious diseases in minks worldwide, it brings tremendous financial losses in mink farming. AMD virus (AMDV) has unusually high genetic diversity, its genomic structure remains unclear. In 2014, sudden death of breeding minks was occurred in northeast China. After clinical signs evaluation and virus isolation, AMDV was identified in all sudden death minks, we investigated the complete genomic sequence of AMDV-LM isolated from the sudden death case. The full-genome sequence of AMDV-LM was 7 nucleotides (nts) or 8 nts longer than isolates AMDV-BJ and AMDV-G. AMDV-LM contained two unique nucleotide changes in VP2 (G79T, T710C), which led to two amino acid changes G27W and L237S. For NS1, some unique point mutations, such as A374C, A428C, A463C, and T476A were found and resulted in four unique amino acid mutations at N24V, H125P, V143P, K155Q, and V159N, respectively. The predicted secondary structure of the 5' terminal of AMDV-LM formed a large bubble formation near the 5' end, which affected the stability of the U-shaped hairpin. Phylogenetic analysis demonstrated that AMDV-LM was closely related to Chinese isolates and confirmed that AMDV strains circulating in China had different origins of ancestors. This study was first to investigate the association of sudden death of adult breeding minks with AMDV infection. Our findings provide useful suggestions for evaluation of the pathogenic potential of AMDV, additional details on AMDV genome characterization were also presented. Future work should focus on the importance of AMDV-LM strain in mink infection.
Collapse
Affiliation(s)
- Xingyang Cui
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China.
| |
Collapse
|
2
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
3
|
Hwang JY, Lee UH, Heo MJ, Jeong JM, Kwon MG, Jee BY, Park CI, Park JW. RNA-seq transcriptome analysis in flounder cells to compare innate immune responses to low- and high-virulence viral hemorrhagic septicemia virus. Arch Virol 2020; 166:191-206. [PMID: 33145636 DOI: 10.1007/s00705-020-04871-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Viral growth and virulence rely on the ability to inhibit the cellular innate immune response. In this study, we investigated differences in the modulation of innate immune responses of HINAE flounder cells infected with low- and high-virulence VHSV strains at a multiplicity of infection of 1 for 12 h and 24 h and performed RNA sequencing (RNA-seq)-based transcriptome analysis. A total of 193 and 170 innate immune response genes were differentially expressed by the two VHSV strains at 12 and 24 h postinfection (hpi), respectively. Of these, 73 and 77 genes showed more than a twofold change in their expression at 12 and 24 hpi, respectively. Of the genes with more than twofold changes, 22 and 11 genes showed high-virulence VHSV specificity at 12 and 24 hpi, respectively. In particular, IL-16 levels were more than two time higher and CCL20a.3, CCR6b, CCL36.1, Casp8L2, CCR7, and Trim46 levels were more than two times lower in high-virulence-VHSV-infected cells than in low-virulence-VHSV-infected cells at both 12 and 24 hpi. Quantitative PCR (qRT-PCR) confirmed the changes in expression of the ten mRNAs with the most significantly altered expression. This is the first study describing the genome-wide analysis of the innate immune response in VHSV-infected flounder cells, and we have identified innate immune response genes that are specific to a high-virulence VHSV strain. The data from this study can contribute to a greater understanding of the molecular basis of VHSV virulence in flounder.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Min Jin Heo
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, 650-160, Korea
| | - Ji Min Jeong
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Mun Gyeong Kwon
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, 650-160, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea.
| |
Collapse
|
4
|
Oh C, Kim Y, Chang KO. Caspase-mediated cleavage of nucleocapsid protein of a protease-independent porcine epidemic diarrhea virus strain. Virus Res 2020; 285:198026. [PMID: 32482590 PMCID: PMC7232077 DOI: 10.1016/j.virusres.2020.198026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
Infection of PEDV 8aa in Vero cells leads to apoptotic cell death. Caspase 6 or 7 can cleave PEDV 8aa N protein at the late stage of the replication. The caspase-mediated cleavage occurs between D424 and G425 near C-terminal of N protein.
Porcine epidemic diarrhea virus (PEDV) infection in neonatal piglets can cause up to 100% mortality, resulting in significant economic loss in the swine industry. Like other coronaviruses, PEDV N protein is a nucleocapsid protein and abundantly presents at all stages of infection. Previously, we reported that the N protein of trypsin-independent PEDV 8aa is cleaved during virus replication. In this study, we further investigated the nature of N protein cleavage using various methods including protease cleavage assays with or without various inhibitors and mutagenesis study. We found that PEDV 8aa infection in Vero cells leads to apoptotic cell death, and caspase 6 or 7 can cleave PEDV 8aa N protein at the late stage of the replication. The caspase-mediated cleavage occurs between D424 and G425 near the C-terminal of N protein. We also report that both cleaved and uncleaved N proteins are exclusively localized in the cytoplasm of PEDV infected cells.
Collapse
Affiliation(s)
- Changin Oh
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
5
|
Awad RA, Khalil WK, Attallah AG. Feline panleukopenia viral infection in cats: Application of some molecular methods used for its diagnosis. J Genet Eng Biotechnol 2019; 16:491-497. [PMID: 30733765 PMCID: PMC6353765 DOI: 10.1016/j.jgeb.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/05/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Forty diseased cats and seven healthy control cats from different sex, ages and breeds had examined clinically to confirm presence or absence of clinical symptoms of Feline panleukopenia disease (FP). Several tools including ELISA, gene expression analysis (qRT-PCR), DNA fragmentation test and apoptosis assay were conducted to determine the Feline panleukopenia disease in cat tissues. Clinical symptoms in the form of depression, fever, anorexia, vomiting, diarrhea, dehydration, anaemia and leucopenia were recorded in the diseased cats while no clinical sings were observed in control healthy cats. ELISA results showed that all of diseased (n = 40) cats were positive while control cats (n = 7) were negative for FP viral antigen. After carrying out of ELISA assay, supportive treatment trials including fluid therapy, immunostimulant, antibiotics to overcome dehydration, restoring electrolytes imbalances, combating secondary bacterial infection were conducted but all diseased cats were died and control cats exposed to soft death. Gene expression analysis detected high levels of FP viral gene in several cat tissues in which ilium exhibited high viral expression levels compared with jejunum. Also, viral expression levels in jejunum were higher than in mesenteric lymph nodes. In addition, viral expression levels were not detected in tissues of control cats. The results of the DNA fragmentation assay observed that DNA extracted from different tissues of infected cats exhibited damaged DNA bands as compared with DNA of control cats. DNA fragmentation rates in infected tissues increased significantly (P < 0.01), the highest rates were showed in ilium and jejunum tissue than in mesenteric lymph nodes. Determination of apoptosis in cat tissues showed that rate of apoptosis/necrosis increased significantly (P < 0.05) in infected cats tissues in comparison to control cats. Moreover the highest apoptotic ratios of infected cats were observed in ilium and jejunum tissues compared with mesenteric lymph nodes.
Collapse
Affiliation(s)
- Romane A. Awad
- Parasitology and Animal Diseases Department, Veterinary Division, National Research Center, 33 Bohouth St., 12622 Dokki, Giza, Egypt
- Corresponding author.
| | - Wagdy K.B. Khalil
- Cell Biology Department, National Research Center, 33 Bohouth St., 12622 Dokki, Giza, Egypt
| | - Ashraf G. Attallah
- Microbial Genetics Department, National Research Center, 33 Bohouth St., 12622 Dokki, Giza, Egypt
| |
Collapse
|
6
|
Yao S, Tuo T, Gao X, Han C, Yan N, Liu A, Gao H, Gao Y, Cui H, Liu C, Zhang Y, Qi X, Hussain A, Wang Y, Wang X. Molecular epidemiology of chicken anaemia virus in sick chickens in China from 2014 to 2015. PLoS One 2019; 14:e0210696. [PMID: 30657774 PMCID: PMC6338413 DOI: 10.1371/journal.pone.0210696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/01/2019] [Indexed: 01/05/2023] Open
Abstract
Chicken anaemia virus (CAV), a member of the genus Gyrovirus, is the etiological agent of chicken infectious anaemia. CAV infects bone marrow-derived cells, resulting in severe anaemia and immunosuppression in young chickens and a compromised immune response in older birds. We investigated the molecular epidemiology of CAV in sick chickens in China from 2014 to 2015 and showed that the CAV-positive rate was 13.30%, in which mixed infection (55.56%) was the main type of infection. We isolated and identified 15 new CAV strains using different methods including indirect immunofluorescence assay and Western Blotting. We used overlapping polymerase chain reaction to map the whole genome of the strains. Phylogenetic analyses of the obtained sequences and related sequences available in GenBank generated four distinct groups (A-D). We built phylogenetic trees using predicted viral protein (VP) sequences. Unlike CAV VP2s and VP3s that were well conserved, the diversity of VP1s indicated that the new strains were virulent. Our epidemiological study provided new insights into the prevalence of CAV in clinical settings in recent years in China.
Collapse
Affiliation(s)
- Shuai Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianbei Tuo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiang Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunyan Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Wildlife Resource, Northeast Forestry University, Harbin, China
| | - Nana Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Altaf Hussain
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Kashtanov SN, Salnikova LE. Aleutian Mink Disease: Epidemiological and Genetic Aspects. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079086418020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Leng X, Liu D, Li J, Shi K, Zeng F, Zong Y, Liu Y, Sun Z, Zhang S, Liu Y, Du R. Genetic diversity and phylogenetic analysis of Aleutian mink disease virus isolates in north-east China. Arch Virol 2018; 163:1241-1251. [DOI: 10.1007/s00705-018-3754-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/06/2018] [Indexed: 02/02/2023]
|
9
|
Xi J, Zhang Y, Wang J, Yu Y, Zhang X, Li Z, Cui S, Liu W. Generation of an infectious clone of AMDV and identification of capsid residues essential for infectivity in cell culture. Virus Res 2017; 242:58-65. [DOI: 10.1016/j.virusres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
10
|
Connolly PF, Fearnhead HO. Viral hijacking of host caspases: an emerging category of pathogen-host interactions. Cell Death Differ 2017; 24:1401-1410. [PMID: 28524855 PMCID: PMC5520459 DOI: 10.1038/cdd.2017.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Viruses co-evolve with their hosts, and many viruses have developed mechanisms to suppress or modify the host cell apoptotic response for their own benefit. Recently, evidence has emerged for the opposite strategy. Some viruses have developed the ability to co-opt apoptotic caspase activity to facilitate their own proliferation. In these strategies, viral proteins are cleaved by host caspases to create cleavage products with novel activities which facilitate viral replication. This represents a novel and interesting class of viral-host interactions, and also represents a new group of non-apoptotic roles for caspases. Here we review the evidence for such strategies, and discuss their origins and their implications for our understanding of the relationship between viral pathogenesis and programmed cell death.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Abstract
Background Aleutian Mink Disease (AMD) is an infectious disease of mink (Neovison vison) and globally a major cause of economic losses in mink farming. The disease is caused by Aleutian Mink Disease Virus (AMDV) that belongs to the genus Amdoparvovirus within the Parvoviridae family. Several strains have been described with varying virulence and the severity of infection also depends on the host’s genotype and immune status. Clinical signs include respiratory distress in kits and unthriftiness and low quality of the pelts. The infection can also be subclinical. Systematic control of AMDV in Danish mink farms was voluntarily initiated in 1976. Over recent decades the disease was mainly restricted to the very northern part of the country (Northern Jutland), with only sporadic outbreaks outside this region. Most of the viruses from this region have remained very closely related at the nucleotide level for decades. However, in 2015, several outbreaks of AMDV occurred at mink farms throughout Denmark, and the sources of these outbreaks were not known. Methods Partial NS1 gene sequencing, phylogenetic analyses data were utilized along with epidemiological to determine the origin of the outbreaks. Results The phylogenetic analyses of partial NS1 gene sequences revealed that the outbreaks were caused by two different clusters of viruses that were clearly different from the strains found in Northern Jutland. These clusters had restricted geographical distribution, and the variation within the clusters was remarkably low. The outbreaks on Zealand were epidemiologically linked and a close sequence match was found to two virus sequences from Sweden. The other cluster of outbreaks restricted to Jutland and Funen were linked to three feed producers (FP) but secondary transmissions between farms in the same geographical area could not be excluded. Conclusion This study confirmed that partial NS1 sequencing can be used in outbreak tracking to determine major viral clusters of AMDV. Using this method, two new distinct AMDV clusters with low intra-cluster sequence diversity were identified, and epidemiological data helped to reveal possible ways of viral introduction into the affected herds. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0786-5) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
13
|
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W. Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 2016; 52:463-73. [PMID: 27007772 DOI: 10.1007/s11262-016-1320-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The genome of a highly pathogenic strain of Aleutian disease mink virus (AMDV-BJ) isolated from a domestic farm in North China has been determined and compared with other strains. Alignment analysis of the major structural protein VP2 revealed that AMDV-BJ is unique among 17 other AMDV strains. Compared with the nonpathogenic strain ADV-G, the 3' end Y-shaped hairpin was highly conserved, while a 4-base deletion in the 5' U-shaped terminal palindrome resulted in a different unpaired "bubble" group near the NS1-binding region of the 5' end hairpin which may affect replication efficiency in vivo. We also performed a protein analysis of the NS1, NS2, and new-confirmed NS3 of AMDV-BJ with some related AMDV DNA sequence published, providing information on evolution of AMDV genes. This study shows a useful method to obtain the full-length genome of AMDV and some other parvoviruses.
Collapse
Affiliation(s)
- Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
14
|
Arslan SY, Son KN, Lipton HL. During Infection, Theiler's Virions Are Cleaved by Caspases and Disassembled into Pentamers. J Virol 2016; 90:3573-83. [PMID: 26792734 PMCID: PMC4794658 DOI: 10.1128/jvi.03035-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infected macrophages in spinal cords of mice persistently infected with Theiler's murine encephalomyelitis virus (TMEV) undergo apoptosis, resulting in restricted virus yields, as do infected macrophages in culture. Apoptosis of murine macrophages in culture occurs via the intrinsic pathway later in infection (>10 h postinfection [p.i.]) after maximal virus titers (150 to 200 PFU/cell) have been reached, with loss of most infectious virus (<5 PFU/cell) by 20 to 24 h p.i. Here, we show that BeAn virus RNA replication, translation, polyprotein processing into final protein products, and assembly of protomers and pentamers in infected M1-D macrophages did not differ from those processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the initial difference from BHK-21 cell infection was seen at 10 to 12 h p.i., where virions from the 160S peak in sucrose gradients had incompletely processed VP0 (compared to that in infected BHK-21 cells). Thereafter, there was a gradual loss of the 160S virion peak in sucrose gradients, with replacement by a 216S peak that was observed to contain pentamers among lipid debris in negatively stained grids by electron microscopy. After infection or incubation of purified virions with activated caspase-3 in vitro, 13- and 17-kDa capsid peptide fragments were observed and were predicted by algorithms to contain cleavage sites within proteins by cysteine-dependent aspartate-directed proteases. These findings suggest that caspase cleavage of sites in exposed capsid loops of assembled virions occurs contemporaneously with the onset and progression of apoptosis later in the infection. IMPORTANCE Theiler's murine encephalomyelitis virus (TMEV) infection in mice results in establishment of virus persistence in the central nervous system and chronic inflammatory demyelinating disease, providing an experimental animal model for multiple sclerosis. Virus persistence takes place primarily in macrophages recruited into the spinal cord that undergo apoptosis and in turn may facilitate viral spread via infected apoptotic blebs. Infection of murine macrophages in culture results in restricted virus yields late in infection. Here it is shown that the early steps of the virus life cycle in infected macrophages in vitro do not differ from these processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the findings late in infection suggest that caspases cleave sites in exposed capsid loops and possibly internal sites of assembled virions occurring contemporaneously with onset and progression of apoptosis. Mechanistically, this would explain the dramatic loss in virus yields during TMEV-induced apoptosis and attenuate the virus, enabling persistence.
Collapse
Affiliation(s)
- Sevim Yildiz Arslan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA The Graduate School, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyung-No Son
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Howard L Lipton
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Wolff S, Groseth A, Meyer B, Jackson D, Strecker T, Kaufmann A, Becker S. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. J Gen Virol 2016; 97:855-866. [PMID: 26769540 DOI: 10.1099/jgv.0.000403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arenaviridae is a diverse and growing family of viruses that already includes more than 25 distinct species. While some of these viruses have a significant impact on public health, others appear to be non-pathogenic. At present little is known about the host cell responses to infection with different arenaviruses, particularly those found in the New World; however, apoptosis is known to play an important role in controlling infection of many viruses. Here we show that infection with Tacaribe virus (TCRV), which is widely considered the prototype for non-pathogenic arenaviruses, leads to stronger induction of apoptosis than does infection with its human-pathogenic relative Junín virus. TCRV-induced apoptosis occurred in several cell types during late stages of infection and was shown to be caspase-dependent, involving the activation of caspases 3, 7, 8 and 9. Further, UV-inactivated TCRV did not induce apoptosis, indicating that the activation of this process is dependent on active viral replication/transcription. Interestingly, when apoptosis was inhibited, growth of TCRV was not enhanced, indicating that apoptosis does not have a direct negative effect on TCRV infection in vitro. Taken together, our data identify and characterize an important virus-host cell interaction of the prototypic, non-pathogenic arenavirus TCRV, which provides important insight into the growing field of arenavirus research aimed at better understanding the diversity in responses to different arenavirus infections and their functional consequences.
Collapse
Affiliation(s)
- Svenja Wolff
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein Str. 2, 35043, Marburg, Germany.,German Center for Infection Research (DZIF), partner site Gießen-Marburg-Langen, Hans-Meerwein Str. 2, 35043, Marburg, Germany
| | - Allison Groseth
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein Str. 2, 35043, Marburg, Germany
| | - Bjoern Meyer
- University of St Andrews, Biomedical Sciences Research Complex, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - David Jackson
- University of St Andrews, Biomedical Sciences Research Complex, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Thomas Strecker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein Str. 2, 35043, Marburg, Germany
| | - Andreas Kaufmann
- Institut für Immunologie, Philipps-Universität Marburg, Hans-Meerwein Str. 2, 35043, Marburg, Germany
| | - Stephan Becker
- German Center for Infection Research (DZIF), partner site Gießen-Marburg-Langen, Hans-Meerwein Str. 2, 35043, Marburg, Germany.,Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein Str. 2, 35043, Marburg, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
17
|
Canuti M, Whitney HG, Lang AS. Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology. Front Microbiol 2015; 6:1119. [PMID: 26528267 PMCID: PMC4600916 DOI: 10.3389/fmicb.2015.01119] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Many new viruses have been discovered recently, thanks in part to the advent of next-generation sequencing technologies. Among the Parvoviridae, three novel members of the genus Amdoparvovirus have been described in the last 4 years, expanding this genus that had contained a single species since its discovery, Aleutian mink disease virus. The increasing number of molecular and epidemiological studies on these viruses around the world also highlights the growing interest in this genus. Some aspects of amdoparvoviruses have been well characterized, however, many other aspects still need to be elucidated and the most recent reviews on this topic are outdated. We provide here an up-to-date overview of what is known and what still needs to be investigated about these scientifically and clinically relevant animal viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland St. John's, NL, Canada
| | - Hugh G Whitney
- Animal Health Division, Forestry and Agrifoods Agency St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
18
|
Rodríguez-Grille J, Busch LK, Martínez-Costas J, Benavente J. Avian reovirus-triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein. Virology 2014; 462-463:49-59. [PMID: 25092461 PMCID: PMC7112042 DOI: 10.1016/j.virol.2014.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 01/09/2023]
Abstract
Avian reovirus non-structural protein muNS is partially cleaved in infected chicken embryo fibroblast cells to produce a 55-kDa carboxyterminal protein, termed muNSC, and a 17-kDa aminoterminal polypeptide, designated muNSN. In this study we demonstrate that muNS processing is catalyzed by a caspase 3-like protease activated during the course of avian reovirus infection. The cleavage site was mapped by site directed mutagenesis between residues Asp-154 and Ala-155 of the muNS sequence. Although muNS and muNSC, but not muNSN, are able to form inclusions when expressed individually in transfected cells, only muNS is able to recruit specific ARV proteins to these structures. Furthermore, muNSC associates with ARV factories more weakly than muNS, sigmaNS and lambdaA. Finally, the inhibition of caspase activity in ARV-infected cells does not diminish ARV gene expression and replication, but drastically reduces muNS processing and the release and dissemination of progeny viral particles. Avian reovirus-triggered apoptosis promotes cleavage of the viral nonstructural muNS protein. muNS processing is catalyzed by a caspase 3-like protease activated during avian reovirus infection. Cleavage occurs between residues Asp-154 and Ala-155 of the muNS sequence. Avian reovirus-induced apoptosis enhances the release and dissemination of progeny viral particles.
Collapse
Affiliation(s)
- Javier Rodríguez-Grille
- Centro de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lisa K Busch
- Centro de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Martínez-Costas
- Centro de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Benavente
- Centro de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology 2014; 452-453:23-31. [PMID: 24606679 DOI: 10.1016/j.virol.2014.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/29/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Aleutian mink disease virus (AMDV) is the only member in genus Amdovirus of the family Parvoviridae. During AMDV infection, six species of viral transcripts are generated from one precursor mRNA through alternative splicing and alternative polyadenylation. In addition to the large non-structural protein NS1, two small non-structural proteins, NS2 and NS3, are putatively encoded (Qiu J, et al., 2006. J. Virol. 80 654-662). However, these two proteins have not been experimentally demonstrated during virus infection, and nothing is known about their function. Here, we studied the nonstructural protein expression profile of AMDV, and for the first time, confirmed expression of NS2 and NS3 during infection, and identified their intracellular localization. More importantly, we provided evidence that both NS2 and NS3 are necessary for AMDV replication.
Collapse
|
20
|
Structure of the NS1 protein N-terminal origin recognition/nickase domain from the emerging human bocavirus. J Virol 2013; 87:11487-93. [PMID: 23966383 DOI: 10.1128/jvi.01770-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human bocavirus is a newly identified, globally prevalent, parvovirus that is associated with respiratory infection in infants and young children. Parvoviruses encode a large nonstructural protein 1 (NS1) that is essential for replication of the viral single-stranded DNA genome and DNA packaging and may play versatile roles in virus-host interactions. Here, we report the structure of the human bocavirus NS1 N-terminal domain, the first for any autonomous parvovirus. The structure shows an overall fold that is canonical to the histidine-hydrophobic-histidine superfamily of nucleases, which integrates two distinct DNA-binding sites: (i) a positively charged region mediated by a surface hairpin (residues 190 to 198) that is responsible for recognition of the viral origin of replication of the double-stranded DNA nature and (ii) the nickase active site that binds to the single-stranded DNA substrate for site-specific cleavage. The structure reveals an acidic-residue-rich subdomain that is present in bocavirus NS1 proteins but not in the NS1 orthologs in erythrovirus or dependovirus, which may mediate bocavirus-specific interaction with DNA or potential host factors. These results provide insights into recognition of the origin of replication and nicking of DNA during bocavirus genome replication. Mapping of variable amino acid residues of NS1s from four human bocavirus species onto the structure shows a scattered pattern, but the origin recognition site and the nuclease active site are invariable, suggesting potential targets for antivirals against this clade of highly diverse human viruses.
Collapse
|
21
|
Perera S, Krell P, Demirbag Z, Nalçacioğlu R, Arif B. Induction of apoptosis by the Amsacta moorei entomopoxvirus. J Gen Virol 2013; 94:1876-1887. [DOI: 10.1099/vir.0.051888-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CF-70-B2 cells derived from the spruce budworm (Choristoneura fumiferana) undergo apoptosis when infected with Amsacta moorei entomopoxvirus (AMEV), as characterized by membrane blebbing, formation of apoptotic bodies, TdT-mediated dUTP nick-end labelling (TUNEL) staining, condensed chromatin and induction of caspase-3/7 activity. The apoptotic response was reduced when cells were infected with UV-inactivated AMEV, but not when infected in the presence of the DNA synthesis inhibitor, cytosine β-d-arabinofuranoside. Hence, only pre-DNA replication events were involved in inducing the antiviral response in CF-70-B2 cells. The virus eventually overcame the host’s antiviral response and replicated to high progeny virus titres accompanied by high levels of caspase-3/7 activity. The CF-70-B2 cells were less productive of progeny virus in comparison to LD-652, a Lymantria dispar cell line routinely used for propagation of AMEV. At late stages of infection, LD-652 cells also showed characteristics of apoptosis such as oligosomal DNA fragmentation, TUNEL staining, condensed chromatin and increased caspase-3/7 activity. Induction of apoptosis in LD-652 cells was dependent on viral DNA replication and/or late gene expression. A significantly reduced rate of infection was observed in the presence of general caspase inhibitors Q-VD-OPH and Z-VAD-FMK, indicating caspases may be involved in productive virus infection.
Collapse
Affiliation(s)
- Srini Perera
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Peter Krell
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Zihni Demirbag
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | | | - Basil Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
22
|
Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 2013; 87:8135-44. [PMID: 23678170 DOI: 10.1128/jvi.03159-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr Virus (EBV) generates a variety of viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. BART miRNAs are expressed in all cells latently infected with EBV, but the functions of most BART miRNAs remain unknown. The results of a cell proliferation assay revealed that miR-BART15-3p inhibited cell proliferation. Fluorescence-activated cell sorting following staining with annexin V or propidium iodide showed that miR-BART15-3p promoted apoptosis. Furthermore, the inhibitor for miR-BART15-3p increased cell growth and reduced apoptosis in EBV-infected cells. Using bioinformatic analyses, we predicted that miR-BART15-3p may target the antiapoptotic B-cell lymphoma 2 (BCL2), BCL2L2, DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 (DDX42), and baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme (BRUCE) mRNAs. The luciferase reporter assay showed that only the 3' untranslated region (UTR) of BRUCE was affected by miR-BART15-3p. Two putative seed-matched sites for miR-BART15-3p were evident on the BRUCE 3' UTR. The results of a mutation study indicated that miR-BART15-3p hybridized only with the first seed-matched site on the BRUCE 3' UTR. miR-BART15-3p downregulated the BRUCE protein in EBV-negative cells, while the inhibitor for miR-BART15-3p upregulated the BRUCE protein in EBV-infected cells without affecting the BRUCE mRNA level. miR-BART15-3p was secreted from EBV-infected gastric carcinoma cells, and the level of miR-BART15-3p was 2- to 16-fold higher in exosomes than in the corresponding cells. Our data suggest that miR-BART15-3p can induce apoptosis partially by inhibiting the translation of the apoptosis inhibitor BRUCE. Further study is warranted to understand the role of miR-BART15-3p in the EBV life cycle.
Collapse
|
23
|
Cleavage of the Junin virus nucleoprotein serves a decoy function to inhibit the induction of apoptosis during infection. J Virol 2012; 87:224-33. [PMID: 23077297 DOI: 10.1128/jvi.01929-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulation of apoptosis during infection is an important factor for host survival and, in some cases, also for the virus life cycle. At the same time, mechanisms to prevent the induction of apoptosis have been observed in numerous viral pathogens, but until now the role of apoptosis during arenavirus infection has not been investigated. Junin virus (JUNV) belongs to the New World arenavirus serogroup of the Arenaviridae and is the causative agent of Argentine hemorrhagic fever. We have demonstrated that infection with JUNV in cell culture does not induce apoptosis but leads to cleavage of the nucleoprotein (NP) into discrete products resembling caspase cleavage events. Similar specific NP degradation patterns were also observed in NP-transfected cell lines, and a closer examination of the sequence of NP showed several putative caspase cleavage motifs. Point mutations that abolished these cleavage motifs were consistent with the loss of certain cleavage products. Consistent with these data, further studies showed that treatment with a caspase inhibitor also reduced NP cleavage, indicating that the observed cleavage events were occurring as a result of caspase activity with NP as a substrate. Finally, we showed that expression of NP suppresses the cleavage of caspase 3 in cells treated with an apoptosis activator. Based on these findings, we propose that NP functions as a decoy substrate for caspase cleavage in order to inhibit the induction of apoptosis in JUNV-infected cells.
Collapse
|
24
|
Nituch LA, Bowman J, Wilson P, Schulte-Hostedde AI. Molecular epidemiology of Aleutian disease virus in free-ranging domestic, hybrid, and wild mink. Evol Appl 2012; 5:330-40. [PMID: 25568054 PMCID: PMC3353359 DOI: 10.1111/j.1752-4571.2011.00224.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/07/2011] [Indexed: 11/26/2022] Open
Abstract
Aleutian mink disease (AMD) is a prominent infectious disease in mink farms. The AMD virus (AMDV) has been well characterized in Europe where American mink (Neovison vison) are an introduced species; however, in North America, where American mink are native and the disease is thought to have originated, the virus’ molecular epidemiology is unknown. As such, we characterized viral isolates from Ontario free-ranging mink of domestic, hybrid, and wild origin at two proteins: NS1, a nonstructural protein, and VP2, a capsid protein. AMDV DNA was detected in 25% of free-ranging mink (45 of 183), indicating prevalent active infection. Median-joining networks showed that Ontario AMDV isolates formed two subgroups in the NS1 region and three in the VP2 region, which were somewhat separate from, but closely related to, AMDVs circulating in domestic mink worldwide. Molecular analyses showed evidence of AMDV crossing from domestic to wild mink. Our results suggest that AMDV isolate grouping is linked to both wild endogenous reservoirs and the long-term global trade in domestic mink, and that AMD spills back and forth between domestic and wild mink. As such, biosecurity on mink farms is warranted to prevent transmission of the disease between mink farms and the wild.
Collapse
Affiliation(s)
- Larissa A Nituch
- Environmental and Life Sciences, Trent University Peterborough, ON, Canada
| | - Jeff Bowman
- Ontario Ministry of Natural Resources, Trent University Peterborough, ON, Canada
| | - Paul Wilson
- Department of Biology, Trent University Peterborough, ON, Canada
| | | |
Collapse
|
25
|
Genetic characterization of Aleutian mink disease viruses isolated in China. Virus Genes 2012; 45:24-30. [PMID: 22415541 DOI: 10.1007/s11262-012-0733-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Aleutian mink disease virus (AMDV) is a parvovirus that causes an immune complex mediated disease in minks. To understand the genetic characterization of AMDV in China, the genomic sequences of three isolates, ADV-LN1, ADV-LN2, and ADV-LN3, from different farms in the Northern China were analyzed. The results showed that the lengths of genomic sequences of three isolates were 4,543, 4,566, and 4,566 bp, respectively. They shared only 95.5-96.3 % nucleotide identity with each other. The nucleotide and amino acid homology of genome sequence between the Chinese isolates and European or American strains (ADV-G, ADV-Utah1, and ADV-SL3) were 92.4-95.0 % and 92.1-93.8 %, respectively. The amino acid substitutions randomly distributed in the genome, especially NS gene. ADV-LN1 strain had a 9-amino-acid deletion at amino acid positions 70 and 72-79 in the VP1 gene, comparing with ADV-G strain; ADV-LN2 and ADV-LN3 strains had 1-amino-acid deletion at amino acid positions 70 in the VP1. Some potential glycosylation site mutations in VP and NS genes were also observed. Phylogenetic analysis results showed that the three strains belonged to two different branches based on the complete coding sequence of VP2 gene. However, they all were in the same group together with the strains from United States based on the NS1 sequence. It indicated that Chinese AMDV isolates had genetic diversity. The origin of the ancestors of the Chinese AMDV strains might be associated with the American strains.
Collapse
|
26
|
Abstract
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.
Collapse
|
27
|
Huang Q, Deng X, Best SM, Bloom ME, Li Y, Qiu J. Internal polyadenylation of parvoviral precursor mRNA limits progeny virus production. Virology 2012; 426:167-77. [PMID: 22361476 DOI: 10.1016/j.virol.2012.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
Aleutian Mink Disease Virus (AMDV) is the only virus in the genus Amdovirus of family Parvoviridae. In adult mink, AMDV causes a persistent infection associated with severe dysfunction of the immune system. Cleavage of AMDV capsid proteins has been previously shown to play a role in regulating progeny virus production (Fang Cheng et al., J. Virol. 84:2687-2696, 2010). The present study shows that AMDV has evolved a second strategy to limit expression of capsid proteins by preventing processing of the full-length capsid protein-encoding mRNA transcripts. Characterization of the cis-elements of the proximal polyadenylation site [(pA)p] in the infectious clone of AMDV revealed that polyadenylation at the (pA)p site is controlled by an upstream element (USE) of 200 nts in length, the AAUAAA signal, and a downstream element (DSE) of 40 nts. A decrease in polyadenylation at the (pA)p site, either by mutating the AAUAAA signal or the DSE, which does not affect the encoding of amino acids in the infectious clone, increased the expression of capsid protein VP1/VP2 and thereby increased progeny virus production approximately 2-3-fold. This increase was accompanied by enhanced replication of the AMDV genome. Thus, this study reveals correlations among internal polyadenylation, capsid production, viral DNA replication and progeny virus production of AMDV, indicating that internal polyadenylation is a limiting step for parvovirus replication and progeny virus production.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mincberg M, Gopas J, Tal J. Minute virus of mice (MVMp) infection and NS1 expression induce p53 independent apoptosis in transformed rat fibroblast cells. Virology 2011; 412:233-43. [DOI: 10.1016/j.virol.2010.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/10/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
29
|
Davey NE, Travé G, Gibson TJ. How viruses hijack cell regulation. Trends Biochem Sci 2010; 36:159-69. [PMID: 21146412 DOI: 10.1016/j.tibs.2010.10.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022]
Abstract
Viruses, as obligate intracellular parasites, are the pathogens that have the most intimate relationship with their host, and as such, their genomes have been shaped directly by interactions with the host proteome. Every step of the viral life cycle, from entry to budding, is orchestrated through interactions with cellular proteins. Accordingly, viruses will hijack and manipulate these proteins utilising any achievable mechanism. Yet, the extensive interactions of viral proteomes has yielded a conundrum: how do viruses commandeer so many diverse pathways and processes, given the obvious spatial constraints imposed by their compact genomes? One important approach is slowly being revealed, the extensive mimicry of host protein short linear motifs (SLiMs).
Collapse
Affiliation(s)
- Norman E Davey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Abstract
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 2010; 171:81-5. [PMID: 20951744 DOI: 10.1016/j.jviromet.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 11/23/2022]
Abstract
Aleutian mink disease virus (AMDV) is a severe progressive disease causing multiple different clinical syndromes in mink. In Denmark, the disease is notifiable and under official control. The control programme, based on serological screening, has confined successfully AMDV to the northern part of Denmark. However, re-infections and new introductions of virus into farms require a confirmatory virological test to verify the positive test results of single animals and ultimately to investigate disease transmission. A one step PCR amplifying a 374-base fragment of the NS1 gene of AMDV was compared to the counter-current immune electrophoresis (CIE) routinely used in the serological screening programme. Mink organs (n=299) obtained from 55 recently infected farms and 8 non-infected farms from 2008 to 2010 were tested by PCR, and the results were found to have a high correlation with the serological status of the mink. The relative diagnostic sensitivity of the PCR was 94.7%, and the relative diagnostic specificity was 97.9% when read in parallel with the CIE. PCR positive samples were sequenced and phylogenetic analysis revealed high similarity within the analysed AMDV strains and to AMDV strains described previously.
Collapse
|
32
|
Abstract
The first human parvoviruses to be described (1960s) were the adeno-associated viruses (AAVs, now classed as dependoviruses), originally identified as contaminants of cell cultures, followed by parvovirus B19 (B19V) in 1974, the first parvovirus to be definitively shown to be pathogenic. More recently two new groups of parvoviruses, the human bocaviruses (HuBoV) and the Parv4 viruses have been identified. These four groups of human viruses are all members of different genera within the Parvovirus family, and have very different biology, epidemiology and disease associations from each other. This review will provide an overview of the virological, pathogenic and clinical features of the different human paroviruses, and how these new viruses and their variants fit into the current understanding of parvovirus infection.
Collapse
Affiliation(s)
- Kevin E Brown
- Virus Reference Department, Centre for Infection, Health Protection Agency, London, UK.
| |
Collapse
|
33
|
Chen AY, Cheng F, Lou S, Luo Y, Liu Z, Delwart E, Pintel D, Qiu J. Characterization of the gene expression profile of human bocavirus. Virology 2010; 403:145-54. [PMID: 20457462 PMCID: PMC2879452 DOI: 10.1016/j.virol.2010.04.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/16/2022]
Abstract
We have generated a quantitative transcription profile of human bocavirus type 1 (HBoV1) by transfecting a nearly full-length clone in human lung epithelial A549 cells as well as in a replication competent system in 293 cells. The overall transcription profile of HBoV1 is similar to that of two other members of genus Bocavirus, minute virus of canines and bovine parvovirus 1. In particular, a spliced NS1-transcript that was not recognized previously expressed the large non-structural protein NS1 at approximately 100kDa; and the NP1-encoding transcripts were expressed abundantly. In addition, the protein expression profile of human bocavirus type 2 (HBoV2) was examined in parallel by transfection of a nearly full-length clone in A549 cells, which is similar to that of HBoV1. Moreover, our results showed that, unlike human parvovirus B19 infection, expression of the HBoV1 proteins only does not induce cell cycle arrest and apoptosis of A549 cells.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Sai Lou
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
- Department of Infectious Diseases, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, China
| | - Yong Luo
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Zhengwen Liu
- Department of Infectious Diseases, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, China
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
| | - David Pintel
- Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
34
|
The capsid proteins of Aleutian mink disease virus activate caspases and are specifically cleaved during infection. J Virol 2009; 84:2687-96. [PMID: 20042496 DOI: 10.1128/jvi.01917-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37 degrees C but not at 31.8 degrees C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV.
Collapse
|
35
|
Li G, Sun C, Zhang J, He Y, Chen H, Kong J, Huang G, Chen K, Yao Q. Characterization of Bombyx mori parvo-like virus non-structural protein NS1. Virus Genes 2009; 39:396-402. [PMID: 19816762 DOI: 10.1007/s11262-009-0402-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/21/2009] [Indexed: 01/27/2023]
Abstract
NS1 gene of Bombyx mori parvo-like virus (China Zhenjiang isolate, BmDNV-Z) codes a predicted 316-amino acid protein, but its function remains unknown. Results of the current study showed that purified recombinant 6 x His-NS1 protein possesses ATP binding, ATPase, DNA binding, and helicase activities. Only one protein was captured in infected Bombyx mori midgut cells against NS1 target protein by employing co-immunoprecipitation, which was identified to be a viral protein by mass spectrometry. The NS1-interacting protein is encoded by BmDNV-Z ORF4 and its molecular is about 100 kD. Analysis of His pull-down confirmed that binding of identified viral protein to purified recombinant 6 x His-NS1 protein in vitro. Taken together, our results indicated that BmDNV-Z NS1 was a multifunctional protein, which may be involved with virus replication.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The nuclear localization signal of the NS1 protein is essential for Periplaneta fuliginosa densovirus infection. Virus Res 2009; 145:134-40. [PMID: 19596391 DOI: 10.1016/j.virusres.2009.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022]
Abstract
The regulatory protein NS1 is a key molecule in life cycle of Periplaneta fuliginosa densovirus (PfDNV). When we ectopically expressed the PfDNV NS1 protein in non-P. fuliginosa insect cells, the NS1 protein could not enter the nucleus and remained in the cytosol. However, the NS1 was localized to both the cytosol and nucleus of cockroach hemocyte cells. So we investigated the abilities of the potential nuclear localization signal (NLS) of P. fuliginosa Densovirus non-structural protein 1 (NS1) to translocate NS1 and a carrier protein to the nucleus following transfection into insect cells. Possible nuclear localization sequences were chosen from the NS1 on the basis of the presence of basic residues, which is a common theme in most of the previously identified targeting peptides. Nuclear localization activity was found within the residues 252-257 (RRRRRR) of the NS1, while replacement of a single arginine in this region with glycine abolished it. The targeting activity was enhanced with the arginine residues added.
Collapse
|
37
|
Abstract
Autophagy is a cellular process that creates double-membraned vesicles, engulfs and degrades cytoplasmic material, and generates and recycles nutrients. A recognized participant in the innate immune response to microbial infection, a functional autophagic response can help to control the replication of many viruses. However, for several viruses, there is functional and mechanistic evidence that components of the autophagy pathway act as host factors in viral replicative cycles, viral dissemination, or both. Investigating the mechanisms by which viruses subvert or imitate autophagy, as well as the mechanisms by which they inhibit autophagy, will reveal cell biological tools and processes that will be useful for understanding the many functional ramifications of the double-membraned vesicle formation and cytosolic entrapment unique to the autophagy pathway.
Collapse
|
38
|
Abstract
To prolong cell viability and facilitate replication, viruses have evolved multiple mechanisms to inhibit the host apoptotic response. Cellular proteases such as caspases and serine proteases are instrumental in promoting apoptosis. Thus, these enzymes are logical targets for virus-mediated modulation to suppress cell death. Four major classes of viral inhibitors antagonize caspase function: serpins, p35 family members, inhibitor of apoptosis proteins, and viral FLICE-inhibitory proteins. Viruses also subvert activity of the serine proteases, granzyme B and HtrA2/Omi, to avoid cell death. The combined efforts of viruses to suppress apoptosis suggest that this response should be avoided at all costs. However, some viruses utilize caspases during replication to aid virus protein maturation, progeny release, or both. Hence, a multifaceted relationship exists between viruses and the apoptotic response they induce. Examination of these interactions contributes to our understanding of both virus pathogenesis and the regulation of apoptotic enzymes in normal cellular functions.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| |
Collapse
|
39
|
Diemer C, Schneider M, Seebach J, Quaas J, Frösner G, Schätzl HM, Gilch S. Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection. J Mol Biol 2007; 376:23-34. [PMID: 18155731 PMCID: PMC7094231 DOI: 10.1016/j.jmb.2007.11.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 12/30/2022]
Abstract
The epidemic outbreak of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus (CoV), designated SARS-CoV. The RNA genome of SARS-CoV is complexed by the nucleocapsid protein (N) to form a helical nucleocapsid. Besides this primary function, N seems to be involved in apoptotic scenarios. We show that upon infection of Vero E6 cells with SARS-CoV, which elicits a pronounced cytopathic effect and a high viral titer, N is cleaved by caspases. In contrast, in SARS-CoV-infected Caco-2 cells, which show a moderate cytopathic effect and a low viral titer, this processing of N was not observed. To further verify these observations, we transiently expressed N in different cell lines. Caco-2 and N2a cells served as models for persistent SARS-CoV infection, whereas Vero E6 and A549 cells did as prototype cell lines lytically infected by SARS-CoV. The experiments revealed that N induces the intrinsic apoptotic pathway, resulting in processing of N at residues 400 and 403 by caspase-6 and/or caspase-3. Of note, caspase activation is highly cell type specific in SARS-CoV-infected as well as transiently transfected cells. In Caco-2 and N2a cells, almost no N-processing was detectable. In Vero E6 and A549 cells, a high proportion of N was cleaved by caspases. Moreover, we examined the subcellular localization of SARS-CoV N in these cell lines. In transfected Vero E6 and A549 cells, SARS-CoV N was localized both in the cytoplasm and nucleus, whereas in Caco-2 and N2a cells, nearly no nuclear localization was observed. In addition, our studies indicate that the nuclear localization of N is essential for its caspase-6-mediated cleavage. These data suggest a correlation among the replication cycle of SARS-CoV, subcellular localization of N, induction of apoptosis, and the subsequent activation of caspases leading to cleavage of N.
Collapse
Affiliation(s)
- Claudia Diemer
- Institute of Virology, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Kalamvoki M, Georgopoulou U, Mavromara P. The NS5A protein of the hepatitis C virus genotype 1a is cleaved by caspases to produce C-terminal-truncated forms of the protein that reside mainly in the cytosol. J Biol Chem 2006; 281:13449-13462. [PMID: 16517592 DOI: 10.1074/jbc.m601124200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonstructural 5A (NS5A) protein of the hepatitis C virus (HCV) is a multifunctional protein that is implicated in viral replication and pathogenesis. We report here that NS5A of HCV-1a is cleaved at multiple sites by caspase proteases in transfected cells. Two cleavage sites at positions Asp154 and 248DXXD251 were mapped. Cleavage at Asp154 has been previously recognized as one of the caspase cleavage sites for the NS5A protein of HCV genotype 1b (1, 2) and results in the production of a 17-kDa fragment. The sequence 248DXXD251 is a novel caspase recognition motif for NS5A and is responsible for the production of a 31-kDa fragment. Furthermore, we show that Arg217 is implicated in the production of the previously described 24-kDa product, whose accumulation is affected by both calpain and caspase inhibitors. We also showed that caspase-mediated cleavage occurs in the absence of exogenous proapoptotic stimuli and is not related to the accumulation of the protein in the endoplasmic reticulum. Interestingly, our data indicate that NS5A is targeted by at least two different caspases and suggest that caspase 6 is implicated in the production of the 17-kDa fragment. Most importantly, we report that, all the detectable NS5A fragments following caspase-mediated cleavage are C-terminal-truncated forms of NS5A and are mainly localized in the cytosol. Thus, in sharp contrast to the current view we found no evidence supporting a role for caspase-mediated cleavage in the transport of the NS5A protein to the nucleus, which could lead to transcriptional activation.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
41
|
Best SM, Bloom ME. Pathogenesis of aleutian mink disease parvovirus and similarities to b19 infection. ACTA ACUST UNITED AC 2006; 52:331-4. [PMID: 16316395 DOI: 10.1111/j.1439-0450.2005.00864.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aleutian mink disease parvovirus (ADV) is an unusual member of the autonomous parvoviruses in both its replication and pathogenesis. Infection of newborn mink kits results in an acute disease typified by virus replication in type II pneumocytes in the lung. This replication is permissive and cytopathic, characterized by the production of high levels of viral replicative intermediates and infectious progeny. However, infection of adult Aleutian mink leads to a chronic form of the disease termed Aleutian disease (AD). In this case, virus replication occurs predominantly in lymph node macrophages and is restricted, with viral DNA replication, RNA transcription, protein expression and production of infectious progeny occurring at low levels. B19 is the only autonomous parvovirus known to infect humans. The primary site of virus replication in both children and adults is in erythrocyte precursors in the blood and bone marrow, although viral genomes have been detected in various other tissues. B19 infection often causes a self-limiting disease although persistent infection of B19 can occur in both immuno-compromised and -competent people. Perhaps the most striking similarity between infection with ADV or with B19 is the important role the humoral immune response to infection has in pathogenesis. It can be both protective and pathogenic. Due to of the central role of antibody in the disease caused by either virus, understanding the specific roles of antibody production in protection, antibody-mediated enhancement of infection, the establishment of persistent infection and immune-mediated pathology will provide insight into the pathogenesis of these infections. A second similarity between the two viruses is the ability to establish persistent infection. Persistence of ADV is associated with restricted replication. Although many cellular factors may contribute to restricted virus replication, the interactions between the major non-structural protein, NS1, and the cells are likely to be critical. Parallels exist between the expression and post-translational modification of ADV and B19 NS1 proteins that may contribute to restriction of virus replication. Thus, a study of the regulation of NS1 expression and its interactions with cell signalling pathways may lead to increased understanding of the restricted replication of these two viruses, and perhaps of persistent infection.
Collapse
Affiliation(s)
- S M Best
- Laboratory of Persistent Viral Diseases, NIAID, NIH. Rocky Mountain Laboratories, 903 S. Fourth St., Hamilton, MT 59840, USA.
| | | |
Collapse
|
42
|
Abstract
The genomes of all members of the Parvovirus genus were found to contain a small open reading frame (ORF), designated SAT, with a start codon four or seven nucleotides downstream of the VP2 initiation codon. Green fluorescent protein or FLAG fusion constructs of SAT demonstrated that these ORFs were expressed. Although the SAT proteins of the different parvoviruses are not particularly conserved, they were all predicted to contain a membrane-spanning helix, and mutations in this hydrophobic stretch affected the localization of the SAT protein. SAT colocalized with calreticulin in the membranes of the endoplasmic reticulum and the nucleus. A knockout mutant (SAT(-)), with an unmodified VP sequence, showed a "slow-spreading" phenotype. These knockout mutants could be complemented with VP2(-) SAT(+) mutant. The SAT protein is a late nonstructural (NS) protein, in contrast to previously identified NS proteins, since it is expressed from the same mRNA as VP2.
Collapse
Affiliation(s)
- Zoltán Zádori
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
43
|
Paterson A, Robinson E, Suchman E, Afanasiev B, Carlson J. Mosquito densonucleosis viruses cause dramatically different infection phenotypes in the C6/36 Aedes albopictus cell line. Virology 2005; 337:253-61. [PMID: 15919104 DOI: 10.1016/j.virol.2005.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/14/2005] [Accepted: 04/22/2005] [Indexed: 11/24/2022]
Abstract
Mosquito densoviruses generally establish persistent infections in mosquito cell lines including the C6/36 Aedes albopictus cell line. In contrast, the closely related Haemagogus equinus densovirus (HeDNV) causes dramatic cytopathic effects in the C6/36 Aedes albopictus cell line. Infection of C6/36 cells by HeDNV causes internucleosomal fragmentation of host chromosomal DNA, changes in cellular morphology (membrane budding, apoptotic bodies), caspase activation and exposure of phosphatidylserine on the cellular membrane. This is accompanied by a higher rate of infection and more vigorous production of virus in these cells. These observations are consistent with the induction of apoptosis during infection. In contrast, expression of AeDNV proteins in C6/36 cells does not cause obvious cytopathic effects although NS1 expression causes accumulation of cells in G2 phase. C6/36 cells persistently infected with AeDNV were not protected from superinfection with HeDNV. Thus, there does not seem to be an antiviral state induced by AeDNV persistent infection.
Collapse
Affiliation(s)
- Andrew Paterson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
44
|
Jackson WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 2005; 3:e156. [PMID: 15884975 PMCID: PMC1084330 DOI: 10.1371/journal.pbio.0030156] [Citation(s) in RCA: 687] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 03/02/2005] [Indexed: 12/11/2022] Open
Abstract
Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.
Collapse
Affiliation(s)
- William T Jackson
- 1Departments of Microbiology and Immunology, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Thomas H Giddings
- 2Department of Molecular, Cellularand Developmental Biology, University of Colorado, Boulder, ColoradoUnited States of America
| | - Matthew P Taylor
- 1Departments of Microbiology and Immunology, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Sara Mulinyawe
- 3Biological Sciences, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Marlene Rabinovitch
- 4Pediatrics, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Ron R Kopito
- 3Biological Sciences, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Karla Kirkegaard
- 1Departments of Microbiology and Immunology, Stanford UniversityStanford, CaliforniaUnited States of America
| |
Collapse
|
45
|
Henderson G, Zhang Y, Inman M, Jones D, Jones C. Infected cell protein 0 encoded by bovine herpesvirus 1 can activate caspase 3 when overexpressed in transfected cells. J Gen Virol 2004; 85:3511-3516. [PMID: 15557224 DOI: 10.1099/vir.0.80371-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of cattle or bovine cells with bovine herpesvirus 1 (BHV-1) leads to increased apoptosis. Previous studies indicated that BHV-1 infected cell protein 0 (bICP0), the major transcriptional regulatory protein of BHV-1, is toxic in transiently transfected cells. Point mutations within the zinc RING finger of bICP0 reduced toxicity and eliminated the ability of bICP0 to activate viral gene expression. In mouse neuroblastoma cells (neuro-2A) and bovine turbinate cells, bICP0 activated caspase 3, a key regulatory protein in the apoptotic pathway. A pro-apoptotic gene (Bax), but not bICP0, induced caspase 3 cleavage and activation by 8 h after transfection of neuro-2A cells. Conversely, bICP0 or the N-terminal 356 aa of bICP0 did not induce caspase 3 cleavage in neuro-2A cells until 30 h after transfection, suggesting that bICP0 stimulates caspase 3 cleavage by an indirect mechanism. These studies indicate that the toxic functions of bICP0 correlate with caspase 3 cleavage and activation.
Collapse
Affiliation(s)
- Gail Henderson
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Melissa Inman
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Dallas Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
46
|
Méndez E, Salas-Ocampo E, Arias CF. Caspases mediate processing of the capsid precursor and cell release of human astroviruses. J Virol 2004; 78:8601-8. [PMID: 15280469 PMCID: PMC479052 DOI: 10.1128/jvi.78.16.8601-8608.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work we have shown that astrovirus infection induces apoptosis of Caco-2 cells, since fragmentation of cellular DNA, cleavage of cellular proteins which are substrate of activated caspases, and a change in the mitochondrial transmembrane potential occur upon virus infection. The human astrovirus Yuc8 polyprotein capsid precursor VP90 is initially processed to yield VP70, and we have shown that this processing is trypsin independent and occurs intracellularly through four cleavages at its carboxy-terminal region. We further showed that VP90-VP70 processing is mediated by caspases, since it was blocked by the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk), and it was promoted by the apoptosis inducer TNF-related apoptosis-inducing ligand (TRAIL). Although the cell-associated virus produced in the presence of these compounds was not affected, the release of infectious virus to the cell supernatant was drastically reduced in the presence of z-VAD-fmk and increased by TRAIL, indicating that VP90-VP70 cleavage is important for the virus particles to be released from the cell. This is the first report that describes the induction and utilization of caspase activity by a virus to promote processing of the capsid precursor and dissemination of the viral particles.
Collapse
Affiliation(s)
- Ernesto Méndez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico.
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Labs, Hamilton, MT 59840, USA.
| | | |
Collapse
|
48
|
de Breyne S, Monney RS, Curran J. Proteolytic processing and translation initiation: two independent mechanisms for the expression of the Sendai virus Y proteins. J Biol Chem 2004; 279:16571-80. [PMID: 14739274 DOI: 10.1074/jbc.m312391200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four Sendai virus C-proteins (C', C, Y1, and Y2) represent an N-terminal nested set of non-structural proteins whose expression modulates both the readout of the viral genome and the host cell response. In particular, they modulate the innate immune response by perturbing the signaling of type 1 interferons. The initiation codons for the four C-proteins have been mapped in vitro, and it has been proposed that the Y proteins are initiated by ribosomal shunting. A number of mutations were reported that significantly enhanced Y expression, and this was attributed to increased shunt-mediated initiation. However, we demonstrate that this arises due to enhanced proteolytic processing of C', an event that requires its very N terminus. Curiously, although Y expression in vitro is mediated almost exclusively by initiation, Y proteins in vivo can arise both by translation initiation and processing of the C' protein. To our knowledge this is the first example of two apparently independent pathways leading to the expression of the same polypeptide chain. This dual pathway explains several features of Y expression.
Collapse
Affiliation(s)
- Sylvain de Breyne
- Department of Microbiology and Molecular Medicine, The University of Geneva Medical School (Centre Médicale Universitaire), 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|