1
|
Koh WC, Yusoff K, Song AAL, Saad N, Chia SL. Viral vectors: design and delivery for small RNA. J Med Microbiol 2025; 74. [PMID: 39950625 DOI: 10.1099/jmm.0.001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
RNA interference regulates gene expression by selectively silencing target genes through the introduction of small RNA molecules, such as microRNA, small interfering RNA and short hairpin RNA. These molecules offer significant therapeutic potential for diverse human ailments like cancer, viral infections and neurodegenerative disorders. Whilst non-viral vectors like nanoparticles have been extensively explored for delivering these RNAs, viral vectors, with superior specificity and delivery efficiency, remain less studied. This review examines current viral vectors for small RNA delivery, focusing on design strategies and characteristics. It compares the advantages and drawbacks of each vector, aiding readers in selecting the optimal one for small RNA delivery.
Collapse
Affiliation(s)
- Wei Chin Koh
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suet Lin Chia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Nazarenko AS, Vorovitch MF, Biryukova YK, Pestov NB, Orlova EA, Barlev NA, Kolyasnikova NM, Ishmukhametov AA. Flaviviruses in AntiTumor Therapy. Viruses 2023; 15:1973. [PMID: 37896752 PMCID: PMC10611215 DOI: 10.3390/v15101973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Oncolytic viruses offer a promising approach to tumor treatment. These viruses not only have a direct lytic effect on tumor cells but can also modify the tumor microenvironment and activate antitumor immunity. Due to their high pathogenicity, flaviviruses have often been overlooked as potential antitumor agents. However, with recent advancements in genetic engineering techniques, an extensive history with vaccine strains, and the development of new attenuated vaccine strains, there has been a renewed interest in the Flavivirus genus. Flaviviruses can be genetically modified to express transgenes at acceptable levels, and the stability of such constructs has been greatly improving over the years. The key advantages of flaviviruses include their reproduction cycle occurring entirely within the cytoplasm (avoiding genome integration) and their ability to cross the blood-brain barrier, facilitating the systemic delivery of oncolytics against brain tumors. So far, the direct lytic effects and immunomodulatory activities of many flaviviruses have been widely studied in experimental animal models across various types of tumors. In this review, we delve into the findings of these studies and contemplate the promising potential of flaviviruses in oncolytic therapies.
Collapse
Affiliation(s)
- Alina S. Nazarenko
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Mikhail F. Vorovitch
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Yulia K. Biryukova
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Nikolay B. Pestov
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Ekaterina A. Orlova
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Nickolai A. Barlev
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nadezhda M. Kolyasnikova
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Aydar A. Ishmukhametov
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
3
|
van der Meulen K, Smets G, Rüdelsheim P. Viral Replicon Systems and Their Biosafety Aspects. APPLIED BIOSAFETY 2023; 28:102-122. [PMID: 37342518 PMCID: PMC10278005 DOI: 10.1089/apb.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Introduction Viral RNA replicons are self-amplifying RNA molecules generated by deleting genetic information of one or multiple structural proteins of wild-type viruses. Remaining viral RNA is used as such (naked replicon) or packaged into a viral replicon particle (VRP), whereby missing genes or proteins are supplied via production cells. Since replicons mostly originate from pathogenic wild-type viruses, careful risk consideration is crucial. Methods A literature review was performed compiling information on potential biosafety risks of replicons originating from positive- and negative-sense single-stranded RNA viruses (except retroviruses). Results For naked replicons, risk considerations included genome integration, persistence in host cells, generation of virus-like vesicles, and off-target effects. For VRP, the main risk consideration was formation of primary replication competent virus (RCV) as a result of recombination or complementation. To limit the risks, mostly measures aiming at reducing the likelihood of RCV formation have been described. Also, modifying viral proteins in such a way that they do not exhibit hazardous characteristics in the unlikely event of RCV formation has been reported. Discussion and Conclusion Despite multiple approaches developed to reduce the likelihood of RCV formation, scientific uncertainty remains on the actual contribution of the measures and on limitations to test their effectiveness. In contrast, even though effectiveness of each individual measure is unclear, using multiple measures on different aspects of the system may create a solid barrier. Risk considerations identified in the current study can also be used to support risk group assignment of replicon constructs based on a purely synthetic design.
Collapse
|
4
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
The Delivery of mRNA Vaccines for Therapeutics. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081254. [PMID: 36013433 PMCID: PMC9410089 DOI: 10.3390/life12081254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022]
Abstract
mRNA vaccines have been revolutionary in combating the COVID-19 pandemic in the past two years. They have also become a versatile tool for the prevention of infectious diseases and treatment of cancers. For effective vaccination, mRNA formulation, delivery method and composition of the mRNA carrier play an important role. mRNA vaccines can be delivered using lipid nanoparticles, polymers, peptides or naked mRNA. The vaccine efficacy is influenced by the appropriate delivery materials, formulation methods and selection of a proper administration route. In addition, co-delivery of several mRNAs could also be beneficial and enhance immunity against various variants of an infectious pathogen or several pathogens altogether. Here, we review the recent progress in the delivery methods, modes of delivery and patentable mRNA vaccine technologies.
Collapse
|
6
|
Lücke AC, vom Hemdt A, Wieseler J, Fischer C, Feldmann M, Rothenfusser S, Drexler JF, Kümmerer BM. High-Throughput Platform for Detection of Neutralizing Antibodies Using Flavivirus Reporter Replicon Particles. Viruses 2022; 14:v14020346. [PMID: 35215941 PMCID: PMC8880525 DOI: 10.3390/v14020346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Flavivirus outbreaks require fast and reliable diagnostics that can be easily adapted to newly emerging and re-emerging flaviviruses. Due to the serological cross-reactivity among flavivirus antibodies, neutralization tests (NT) are considered the gold standard for sero-diagnostics. Here, we first established wild-type single-round infectious virus replicon particles (VRPs) by packaging a yellow fever virus (YFV) replicon expressing Gaussia luciferase (Gluc) with YFV structural proteins in trans using a double subgenomic Sindbis virus (SINV) replicon. The latter expressed the YFV envelope proteins prME via the first SINV subgenomic promoter and the capsid protein via a second subgenomic SINV promoter. VRPs were produced upon co-electroporation of replicon and packaging RNA. Introduction of single restriction enzyme sites in the packaging construct flanking the prME sequence easily allowed to exchange the prME moiety resulting in chimeric VRPs that have the surface proteins of other flaviviruses including dengue virus 1-4, Zika virus, West Nile virus, and tick-borne encephalitis virus. Besides comparing the YF-VRP based NT assay to a YF reporter virus NT assay, we analyzed the neutralization efficiencies of different human anti-flavivirus sera or a monoclonal antibody against all established VRPs. The assays were performed in a 96-well high-throughput format setting with Gluc as readout in comparison to classical plaque reduction NTs indicating that the VRP-based NT assays are suitable for high-throughput analyses of neutralizing flavivirus antibodies.
Collapse
Affiliation(s)
- Arlen-Celina Lücke
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universtät Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.F.); (J.F.D.)
| | - Marie Feldmann
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany;
- Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, 80337 Munich, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universtät Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.F.); (J.F.D.)
- Martinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moskow, Russia
- German Center for Infection Research (DZIF), Associated Partner Site Berlin, 10117 Berlin, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
- German Center for Infection Research (DZIF), Associated Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
7
|
Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:71-110. [PMID: 32483657 PMCID: PMC8195316 DOI: 10.1007/82_2020_217] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
mRNA vaccines have become a versatile technology for the prevention of infectious diseases and the treatment of cancers. In the vaccination process, mRNA formulation and delivery strategies facilitate effective expression and presentation of antigens, and immune stimulation. mRNA vaccines have been delivered in various formats: encapsulation by delivery carriers, such as lipid nanoparticles, polymers, peptides, free mRNA in solution, and ex vivo through dendritic cells. Appropriate delivery materials and formulation methods often boost the vaccine efficacy which is also influenced by the selection of a proper administration route. Co-delivery of multiple mRNAs enables synergistic effects and further enhances immunity in some cases. In this chapter, we overview the recent progress and existing challenges in the formulation and delivery technologies of mRNA vaccines with perspectives for future development.
Collapse
Affiliation(s)
- Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Patrick G Walker
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, 43210, Columbus, OH, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Abstract
The flavivirus virion consists of an envelope outer layer, formed by envelope (E) and membrane (M) proteins on a lipid bilayer, and an internal core, formed by capsid (C) protein and genomic RNA. The molecular mechanism of flavivirus assembly is not well understood. Here, we show that Zika virus (ZIKV) NS2A protein recruits genomic RNA, the structural protein prM/E complex, and the NS2B/NS3 protease complex to the virion assembly site and orchestrates virus morphogenesis. Coimmunoprecipitation analysis showed that ZIKV NS2A binds to prM, E, NS2B, and NS3 (but not C, NS4B, or NS5) in a viral RNA-independent manner, whereas prM/E complex does not interact with NS2B/NS3 complex. Remarkably, a single-amino-acid mutation (E103A) of NS2A impairs its binding to prM/E and NS2B/NS3 and abolishes virus production, demonstrating the indispensable role of NS2A/prM/E and NS2A/NS2B/NS3 interactions in virion assembly. In addition, RNA-protein pulldown analysis identified a stem-loop RNA from the 3' untranslated region (UTR) of the viral genome as an "RNA recruitment signal" for ZIKV assembly. The 3' UTR RNA binds to a cytoplasmic loop of NS2A protein. Mutations of two positively charged residues (R96A and R102A) from the cytoplasmic loop reduce NS2A binding to viral RNA, leading to a complete loss of virion assembly. Collectively, our results support a virion assembly model in which NS2A recruits viral NS2B/NS3 protease and structural C-prM-E polyprotein to the virion assembly site; once the C-prM-E polyprotein has been processed, NS2A presents viral RNA to the structural proteins for virion assembly.IMPORTANCE ZIKV is a recently emerged mosquito-borne flavivirus that can cause devastating congenital Zika syndrome in pregnant women and Guillain-Barré syndrome in adults. The molecular mechanism of ZIKV virion assembly is largely unknown. Here, we report that ZIKV NS2A plays a central role in recruiting viral RNA, structural protein prM/E, and viral NS2B/NS3 protease to the virion assembly site and orchestrating virion morphogenesis. One mutation that impairs these interactions does not significantly affect viral RNA replication but selectively abolishes virion assembly, demonstrating the specific role of these interactions in virus morphogenesis. We also show that the 3' UTR of ZIKV RNA may serve as a "recruitment signal" through binding to NS2A to enter the virion assembly site. Following a coordinated cleavage of C-prM-E at the virion assembly site, NS2A may present the viral RNA to C protein for nucleocapsid formation followed by envelopment with prM/E proteins. The results have provided new insights into flavivirus virion assembly.
Collapse
|
9
|
Dengue NS2A Protein Orchestrates Virus Assembly. Cell Host Microbe 2019; 26:606-622.e8. [PMID: 31631053 DOI: 10.1016/j.chom.2019.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 01/12/2023]
Abstract
Dengue virus assembly requires cleavage of viral C-prM-E polyprotein into three structural proteins (capsid, premembrane, and envelope), packaging of viral RNA with C protein into nucleocapsid, and budding of prM and E proteins into virions. The molecular mechanisms underlying these assembly events are unclear. Here, we show that dengue nonstructural protein 2A (NS2A protein) recruits viral RNA, structural proteins, and protease to the site of virion assembly and coordinates nucleocapsid and virus formation. The last 285 nucleotides of viral 3' UTR serve as a "recruiting signal for packaging" that binds to a cytosolic loop of NS2A. This interaction allows NS2A to recruit nascent RNA from the replication complex to the virion assembly site. NS2A also recruits the C-prM-E polyprotein and NS2B-NS3 protease to the virion assembly site by interacting with prM, E, and NS3, leading to coordinated C-prM-E cleavage. Mature C protein assembles onto genomic RNA to form nucleocapsid, followed by prM and E envelopment and virion formation.
Collapse
|
10
|
He Y, Liu P, Wang T, Wu Y, Lin X, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Genetically stable reporter virus, subgenomic replicon and packaging system of duck Tembusu virus based on a reverse genetics system. Virology 2019; 533:86-92. [PMID: 31136895 DOI: 10.1016/j.virol.2019.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Duck Tembusu virus (DTMUV) is a novel flavivirus that has caused an outbreak of severe duck egg-drop syndrome since 2010. It has spread rapidly to other avian species, causing enormous economic loss. In the present study, we generated a reporter virus expressing NanoLuc luciferase, which was stable after 10 rounds of continuous propagation without reporter gene deletion. Moreover, we generated two types of replicons driven by the T7 promoter or CMV promoter, both of which worked well in BHK21 cells. Furthermore, we developed the first packaging system for DTMUV by co-transfection into BHK21 cells of a replicon (containing mature C) and a plasmid encoding C16-prM-E, which resulted in the production of single round infectious particles (SRIPs). We also generated a packaging cell line for DTMUV to produce SRIPs. We believe that these multicomponent platform tools are important for DTMUV pathogenesis research and novel vaccine development.
Collapse
Affiliation(s)
- Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanyuan Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao Lin
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
11
|
Role of Capsid Anchor in the Morphogenesis of Zika Virus. J Virol 2018; 92:JVI.01174-18. [PMID: 30158295 DOI: 10.1128/jvi.01174-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/22/2018] [Indexed: 01/24/2023] Open
Abstract
The flavivirus capsid protein (C) is separated from the downstream premembrane (PrM) protein by a hydrophobic sequence named capsid anchor (Ca). During polyprotein processing, Ca is sequentially cleaved by the viral NS2B/NS3 protease on the cytosolic side and by signal peptidase on the luminal side of the endoplasmic reticulum (ER). To date, Ca is considered important mostly for directing translocation of PrM into the ER lumen. In this study, the role of Ca in the assembly and secretion of Zika virus was investigated using a pseudovirus-based approach. Our results show that, while Ca-mediated anchoring of C to the ER membrane is not needed for the production of infective particles, Ca expression in cis with respect to PrM is strictly required to allow proper assembly of infectious particles. Finally, we show that the presence of heterologous, but not homologous, Ca induces degradation of E through the autophagy/lysosomal pathway.IMPORTANCE The capsid anchor (Ca) is a single-pass transmembrane domain at the C terminus of the capsid protein (C) known to function as a signal for the translocation of PrM into the ER lumen. The objective of this study was to further examine the role of Ca in Zika virus life cycle, whether involved in the formation of nucleocapsid through association with C or in the formation of viral envelope. In this study, we show that Ca has a function beyond the one of translocation signal, controlling protein E stability and therefore its availability for assembly of infectious particles.
Collapse
|
12
|
Establishment and Application of Flavivirus Replicons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:165-173. [PMID: 29845532 DOI: 10.1007/978-981-10-8727-1_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are enveloped, positive-strand RNA viruses belonging to the genus Flavivirus in the family Flaviviridae. The genome of ~11 kb length encodes one long open reading frame flanked by a 5' and a 3' untranslated region (UTR). The 5' end is capped and the 3' end lacks a poly(A) tail. The encoded single polyprotein is cleaved co-and posttranslationally by cellular and viral proteases. The first one-third of the genome encodes the structural proteins (C-prM-E), whereas the nonstructural (NS) proteins NS1-NS2A-NS3-NS4A-2K-NS4B-NS5 are encoded by the remaining two-thirds of the genome.Research on flaviviruses was driven forward by the ability to produce recombinant viruses using reverse genetics technology. It is known that the purified RNA of flaviviruses is per se infectious, which allows initiation of a complete viral life cycle by transfecting the genomic RNA into susceptible cells. In 1989, the first infectious flavivirus RNA was transcribed from full-length cDNA templates of yellow fever virus (YFV) facilitating molecular genetic analyses of this virus. In addition to the production of infectious recombinant viruses, reverse genetics can also be used to establish non-infectious replicons. Replicons contain an in-frame deletion in the structural protein genes but still encode all nonstructural proteins and contain the UTRs necessary to mediate efficient replication, a factor that enables their analyses under Biosafety Level (BSL) 1 conditions. This is particularly important since many flaviviruses are BSL3 agents.The review will cover strategies for generating flavivirus replicons, including the establishment of bacteriophage (T7 or SP6) promoter-driven constructs as well as cytomegalovirus (CMV) promoter-driven constructs. Furthermore, different reporter replicons or replicons expressing selectable marker proteins will be outlined using examples of their application to answer basic questions of the flavivirus replication cycle, to select and test antiviral compounds or to produce virus replicon particles. The establishment and application of flavivirus replicons will further be exemplified by my own data using an established YFV reporter replicon to study the role of YFV NS2A in the viral life cycle. In addition, we established a reporter replicon of a novel insect-specific flavivirus, namely Niénokoué virus (NIEV), to define the barrier(s) involved in host range restriction.
Collapse
|
13
|
Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling. Viruses 2017; 9:v9110326. [PMID: 29099073 PMCID: PMC5707533 DOI: 10.3390/v9110326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.
Collapse
|
14
|
Li W, Ma L, Guo LP, Wang XL, Zhang JW, Bu ZG, Hua RH. West Nile virus infectious replicon particles generated using a packaging-restricted cell line is a safe reporter system. Sci Rep 2017; 7:3286. [PMID: 28607390 PMCID: PMC5468312 DOI: 10.1038/s41598-017-03670-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/03/2017] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic pathogen which causes zoonotic disease in humans. Recently, there have been an increasing number of infected cases and there are no clinically approved vaccines or effective drugs to treat WNV infections in humans. The purpose of this study was to facilitate vaccine and antiviral drug discovery by developing a packaging cell line-restricted WNV infectious replicon particle system. We constructed a DNA-based WNV replicon lacking the C-prM-E coding region and replaced it with a GFP coding sequence. To produce WNV replicon particles, cell lines stably-expressing prM-E and C-prM-E were constructed. When the WNV replicon plasmid was co-transfected with a WNV C-expressing plasmid into the prM-E-expressing cell line or directly transfected the C-prM-E expressing cell line, the replicon particle was able to replicate, form green fluorescence foci, and exhibit cytopathic plaques similar to that induced by the wild type virus. The infectious capacity of the replicon particles was restricted to the packaging cell line as the replicons demonstrated only one round of infection in other permissive cells. Thus, this system provides a safe and convenient reporter WNV manipulating tool which can be used to study WNV viral invasion mechanisms, neutralizing antibodies and antiviral efficacy.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Le Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Li-Ping Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Xiao-Lei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Jing-Wei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
15
|
Shan C, Xie X, Ren P, Loeffelholz MJ, Yang Y, Furuya A, Dupuis AP, Kramer LD, Wong SJ, Shi PY. A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients. EBioMedicine 2017; 17:157-162. [PMID: 28283425 PMCID: PMC5360589 DOI: 10.1016/j.ebiom.2017.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
The potential association of microcephaly and other congenital abnormalities with Zika virus (ZIKV) infection during pregnancy underlines the critical need for a rapid and accurate diagnosis. Due to the short duration of ZIKV viremia in infected patients, a serologic assay that detects antibody responses to viral infection plays an essential role in diagnosing patient specimens. The current serologic diagnosis of ZIKV infection relies heavily on the labor-intensive Plaque Reduction Neutralization Test (PRNT) that requires more than one-week turnaround time and represents a major bottleneck for patient diagnosis. To overcome this limitation, we have developed a high-throughput assay for ZIKV and dengue virus (DENV) diagnosis that can attain the "gold standard" of the current PRNT assay. The new assay is homogeneous and utilizes luciferase viruses to quantify the neutralizing antibody titers in a 96-well format. Using 91 human specimens, we showed that the reporter diagnostic assay has a higher dynamic range and maintains the relative specificity of the traditional PRNT assay. Besides the improvement of assay throughput, the reporter virus technology has also shortened the turnaround time to less than two days. Collectively, our results suggest that, along with the viral RT-PCR assay, the reporter virus-based serologic assay could be potentially used as the first-line test for clinical diagnosis of ZIKV infection as well as for vaccine clinical trials.
Collapse
Affiliation(s)
- Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Yujiao Yang
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrea Furuya
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Susan J Wong
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice. PLoS Negl Trop Dis 2017; 11:e0005394. [PMID: 28187142 PMCID: PMC5322982 DOI: 10.1371/journal.pntd.0005394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/23/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses. Many emerging viruses of public health concern are arthropod-borne, including tick-borne encephalitis, dengue, Zika, chikungunya, and West Nile viruses. The arboviruses are maintained in nature via virus-specific transmission cycles, involving arthropod (e.g. mosquitos, midges, and ticks) and vertebrate animals (e.g. birds, humans, and livestock). Common to all transmission cycles is the requirement of the arbovirus to replicate in these very different hosts. Since viruses rely on the host cell machinery to produce progeny, the virus particles from these hosts can differ in viral protein glycosylation and lipid content. Thus, the viral inoculum deposited by an infected arthropod will have different properties than virus produced in vertebrate cells. We set out to study the early events of arbovirus infection in a vertebrate host, using the mosquito-borne West Nile virus as a model. Here, we are the first to describe a robust protocol to produce West Nile replicon particles from mosquito cells. Since replicon particles are restricted to a single round of infection, we were able to compare the tropism and spread of the inoculum in animals for mosquito cell- and mammalian cell-derived replicon particles. We found that West Nile replicon particles derived from mosquito cells were significantly reduced in spread to distant sites compared to those derived from mammalian cells. Our results suggest that studies on arbovirus pathogenesis should be conducted with arthropod cell-derived virus, especially for the study of early virus-host interactions.
Collapse
|
17
|
Abstract
Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have strengthened the position of nucleic acid vaccines in veterinary vaccinology. The present review focuses on replicon vaccines designed for veterinary use. Replicon vaccines are self-amplifying viral RNA sequences that, in addition to the sequence encoding the antigen of interest, contain all elements necessary for RNA replication. Vaccination results in high levels of in situ antigen expression and induction of potent immune responses. Both positive- and negative-stranded viruses have been used to construct replicons, and they can be delivered as RNA, DNA, or viral replicon particles. An introduction to the biology and the construction of different viral replicon vectors is given, and examples of veterinary replicon vaccine applications are discussed.
Collapse
Affiliation(s)
- Mia C Hikke
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
18
|
Xie X, Zou J, Shan C, Yang Y, Kum DB, Dallmeier K, Neyts J, Shi PY. Zika Virus Replicons for Drug Discovery. EBioMedicine 2016; 12:156-160. [PMID: 27658737 PMCID: PMC5078599 DOI: 10.1016/j.ebiom.2016.09.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023] Open
Abstract
The current epidemic of Zika virus (ZIKV) has underscored the urgency to establish experimental systems for studying viral replication and pathogenesis, and countermeasure development. Here we report two ZIKV replicon systems: a luciferase replicon that can differentiate between viral translation and RNA synthesis; and a stable luciferase replicon carrying cell line that can be used to screen and characterize inhibitors of viral replication. The transient replicon was used to evaluate the effect of an NS5 polymerase mutation on viral RNA synthesis and to analyze a known ZIKV inhibitor. The replicon cell line was developed into a 96-well format for antiviral testing. Compare with virus infection-based assay, the replicon cell line allows antiviral screening without using infectious virus. Collectively, the replicon systems have provided critical tools for both basic and translational research. A Zika virus replicon has been developed to study antivirals and to differentiate between viral translation and replication. A cell line carrying Zika virus replicon has been developed to screen and characterize antiviral inhibitors.
Experimental systems are urgently needed to study Zika virus and to develop countermeasures. In this communication, we report the development of Zika virus replicon systems that can be used to study viral replication and pathogenesis as well as to screen and characterize antiviral inhibitors.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yujiao Yang
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dieudonné Buh Kum
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, Leuven, Belgium
| | - Kai Dallmeier
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, Leuven, Belgium
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
19
|
Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly. J Virol 2015; 89:8632-42. [PMID: 26063422 DOI: 10.1128/jvi.01253-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The molecular mechanisms that define the specificity of flavivirus RNA encapsulation are poorly understood. Virions composed of the structural proteins of one flavivirus and the genomic RNA of a heterologous strain can be assembled and have been developed as live attenuated vaccine candidates for several flaviviruses. In this study, we discovered that not all combinations of flavivirus components are possible. While a West Nile virus (WNV) subgenomic RNA could readily be packaged by structural proteins of the DENV2 strain 16681, production of infectious virions with DENV2 strain New Guinea C (NGC) structural proteins was not possible, despite the very high amino acid identity between these viruses. Mutagenesis studies identified a single residue (position 101) of the DENV capsid (C) protein as the determinant for heterologous virus production. C101 is located at the P1' position of the NS2B/3 protease cleavage site at the carboxy terminus of the C protein. WNV NS2B/3 cleavage of the DENV structural polyprotein was possible when a threonine (Thr101 in strain 16681) but not a serine (Ser101 in strain NGC) occupied the P1' position, a finding not predicted by in vitro protease specificity studies. Critically, both serine and threonine were tolerated at the P1' position of WNV capsid. More extensive mutagenesis revealed the importance of flanking residues within the polyprotein in defining the cleavage specificity of the WNV protease. A more detailed understanding of the context dependence of viral protease specificity may aid the development of new protease inhibitors and provide insight into associated patterns of drug resistance. IMPORTANCE West Nile virus (WNV) and dengue virus (DENV) are mosquito-borne flaviviruses that cause considerable morbidity and mortality in humans. No specific antiflavivirus therapeutics are available for treatment of infection. Proteolytic processing of the flavivirus polyprotein is an essential step in the replication cycle and is an attractive target for antiviral development. The design of protease inhibitors has been informed by insights into the molecular details of the interactions of proteases and their substrates. In this article, studies of the processing of WNV and DENV capsid proteins by the WNV protease identified an unexpected contribution of the sequence surrounding critical residues within the cleavage site on protease specificity. This demonstration of context-dependent protease cleavage has implications for the design of chimeric flaviviruses, new therapeutics, and the interpretation of flavivirus protease substrate specificity studies.
Collapse
|
20
|
Pyankov OV, Bodnev SA, Pyankova OG, Solodkyi VV, Pyankov SA, Setoh YX, Volchkova VA, Suhrbier A, Volchkov VV, Agafonov AA, Khromykh AA. A Kunjin Replicon Virus-like Particle Vaccine Provides Protection Against Ebola Virus Infection in Nonhuman Primates. J Infect Dis 2015; 212 Suppl 2:S368-71. [PMID: 25732811 DOI: 10.1093/infdis/jiv019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The current unprecedented outbreak of Ebola virus (EBOV) disease in West Africa has demonstrated the urgent need for a vaccine. Here, we describe the evaluation of an EBOV vaccine candidate based on Kunjin replicon virus-like particles (KUN VLPs) encoding EBOV glycoprotein with a D637L mutation (GP/D637L) in nonhuman primates. Four African green monkeys (Cercopithecus aethiops) were injected subcutaneously with a dose of 10(9) KUN VLPs per animal twice with an interval of 4 weeks, and animals were challenged 3 weeks later intramuscularly with 600 plaque-forming units of Zaire EBOV. Three animals were completely protected against EBOV challenge, while one vaccinated animal and the control animal died from infection. We suggest that KUN VLPs encoding GP/D637L represent a viable EBOV vaccine candidate.
Collapse
Affiliation(s)
- Oleg V Pyankov
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Sergey A Bodnev
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Olga G Pyankova
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia
| | - Vladislav V Solodkyi
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Stepan A Pyankov
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia
| | - Valentina A Volchkova
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, France
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Viktor V Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, France
| | - Alexander A Agafonov
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia
| |
Collapse
|
21
|
Abstract
Flaviviruses are a genus of (+)ssRNA (positive ssRNA) enveloped viruses that replicate in the cytoplasm of cells of diverse species from arthropods to mammals. Many are important human pathogens such as DENV-1-4 (dengue virus types 1-4), WNV (West Nile virus), YFV (yellow fever virus), JEV (Japanese encephalitis virus) and TBEV (tick-borne encephalitis). Given their RNA genomes it is not surprising that flaviviral life cycles revolve around critical RNA transactions. It is these we highlight in the present article. First, we summarize the mechanisms governing flaviviral replication and the central role of conserved RNA elements and viral protein-RNA interactions in RNA synthesis, translation and packaging. Secondly, we focus on how host RNA-binding proteins both benefit and inhibit flaviviral replication at different stages of their life cycle in mammalian hosts. Thirdly, we cover recent studies on viral non-coding RNAs produced in flavivirus-infected cells and how these RNAs affect various aspects of cellular RNA metabolism. Together, the article puts into perspective the central role of flaviviral RNAs in modulating both viral and cellular functions.
Collapse
|
22
|
Characterization of the mode of action of a potent dengue virus capsid inhibitor. J Virol 2014; 88:11540-55. [PMID: 25056895 DOI: 10.1128/jvi.01745-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Dengue viruses (DV) represent a significant global health burden, with up to 400 million infections every year and around 500,000 infected individuals developing life-threatening disease. In spite of attempts to develop vaccine candidates and antiviral drugs, there is a lack of approved therapeutics for the treatment of DV infection. We have previously reported the identification of ST-148, a small-molecule inhibitor exhibiting broad and potent antiviral activity against DV in vitro and in vivo (C. M. Byrd et al., Antimicrob. Agents Chemother. 57:15-25, 2013, doi:10 .1128/AAC.01429-12). In the present study, we investigated the mode of action of this promising compound by using a combination of biochemical, virological, and imaging-based techniques. We confirmed that ST-148 targets the capsid protein and obtained evidence of bimodal antiviral activity affecting both assembly/release and entry of infectious DV particles. Importantly, by using a robust bioluminescence resonance energy transfer-based assay, we observed an ST-148-dependent increase of capsid self-interaction. These results were corroborated by molecular modeling studies that also revealed a plausible model for compound binding to capsid protein and inhibition by a distinct resistance mutation. These results suggest that ST-148-enhanced capsid protein self-interaction perturbs assembly and disassembly of DV nucleocapsids, probably by inducing structural rigidity. Thus, as previously reported for other enveloped viruses, stabilization of capsid protein structure is an attractive therapeutic concept that also is applicable to flaviviruses. IMPORTANCE Dengue viruses are arthropod-borne viruses representing a significant global health burden. They infect up to 400 million people and are endemic to subtropical and tropical areas of the world. Currently, there are neither vaccines nor approved therapeutics for the prophylaxis or treatment of DV infections, respectively. This study reports the characterization of the mode of action of ST-148, a small-molecule capsid inhibitor with potent antiviral activity against all DV serotypes. Our results demonstrate that ST-148 stabilizes capsid protein self-interaction, thereby likely perturbing assembly and disassembly of viral nucleocapsids by inducing structural rigidity. This, in turn, might interfere with the release of viral RNA from incoming nucleocapsids (uncoating) as well as assembly of progeny virus particles. As previously reported for other enveloped viruses, we propose the capsid as a novel tractable target for flavivirus inhibitors.
Collapse
|
23
|
Mukherjee S, Pierson TC, Dowd KA. Pseudo-infectious reporter virus particles for measuring antibody-mediated neutralization and enhancement of dengue virus infection. Methods Mol Biol 2014; 1138:75-97. [PMID: 24696332 DOI: 10.1007/978-1-4939-0348-1_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter outlines methods for the production of dengue virus (DENV) reporter virus particles (RVPs) and their use in assays that measure antibody-mediated neutralization and enhancement of DENV infection. RVPs are pseudo-infectious virions produced by complementation of a self-replicating flavivirus replicon with the DENV structural genes in trans. RVPs harvested from transfected cells are capable of only a single round of infection and encapsidate replicon RNA that encodes a reporter gene used to enumerate infected cells. RVPs may be produced using the structural genes of different DENV serotypes, genotypes, and mutants by changing plasmids used for complementation. Further modifications are possible including generating RVPs with varying levels of uncleaved prM protein, which resemble either the immature or mature form of the virus. Neutralization potency is measured by incubating RVPs with serial dilutions of antibody, followed by infection of target cells that express DENV attachment factors. Enhancement of infection is measured similarly using Fc receptor-expressing cells capable of internalizing antibody-virus complexes.
Collapse
Affiliation(s)
- Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
24
|
Hoenen A, Gillespie L, Morgan G, van der Heide P, Khromykh A, Mackenzie J. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein. Virology 2014; 448:104-16. [DOI: 10.1016/j.virol.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 06/28/2013] [Accepted: 10/03/2013] [Indexed: 02/04/2023]
|
25
|
Gu L, Schneller SW, Li Q. Assays for the identification of novel antivirals against bluetongue virus. J Vis Exp 2013. [PMID: 24145313 DOI: 10.3791/50820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To identify potential antivirals against BTV, we have developed, optimized and validated three assays presented here. The CPE-based assay was the first assay developed to evaluate whether a compound showed any antiviral efficacy and have been used to screen large compound library. Meanwhile, cytotoxicity of antivirals could also be evaluated using the CPE-based assay. The dose-response assay was designed to determine the range of efficacy for the selected antiviral, i.e. 50% inhibitory concentration (IC50) or effective concentration (EC50), as well as its range of cytotoxicity (CC50). The ToA assay was employed for the initial MoA study to determine the underlying mechanism of the novel antivirals during BTV viral lifecycle or the possible effect on host cellular machinery. These assays are vital for the evaluation of antiviral efficacy in cell culture system, and have been used for our recent researches leading to the identification of a number of novel antivirals against BTV.
Collapse
Affiliation(s)
- Linlin Gu
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | | | | |
Collapse
|
26
|
Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs. Virol J 2013; 10:185. [PMID: 23759022 PMCID: PMC3685532 DOI: 10.1186/1743-422x-10-185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/26/2013] [Indexed: 12/21/2022] Open
Abstract
Viral vectors have become the best option for the delivery of therapeutic genes in conventional and RNA interference-based gene therapies. The current viral vectors for the delivery of small regulatory RNAs are based on DNA viruses and retroviruses/lentiviruses. Cytoplasmic RNA viruses have been excluded as viral vectors for RNAi therapy because of the nuclear localization of the microprocessor complex and the potential degradation of the viral RNA genome during the excision of any virus-encoded pre-microRNAs. However, in the last few years, the presence of several species of small RNAs (e.g., virus-derived small interfering RNAs, virus-derived short RNAs, and unusually small RNAs) in animals and cell cultures that are infected with cytoplasmic RNA viruses has suggested the existence of a non-canonical mechanism of microRNA biogenesis. Several studies have been conducted on the tick-borne encephalitis virus and on the Sindbis virus in which microRNA precursors were artificially incorporated and demonstrated the production of mature microRNAs. The ability of these viruses to recruit Drosha to the cytoplasm during infection resulted in the efficient processing of virus-encoded microRNA without the viral genome entering the nucleus. In this review, we discuss the relevance of these findings with an emphasis on the potential use of cytoplasmic RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs.
Collapse
|
27
|
Reynard O, Mokhonov V, Mokhonova E, Leung J, Page A, Mateo M, Pyankova O, Georges-Courbot MC, Raoul H, Khromykh AA, Volchkov VE. Kunjin virus replicon-based vaccines expressing Ebola virus glycoprotein GP protect the guinea pig against lethal Ebola virus infection. J Infect Dis 2011; 204 Suppl 3:S1060-5. [PMID: 21987742 DOI: 10.1093/infdis/jir347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)-derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor-truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection.
Collapse
Affiliation(s)
- O Reynard
- Filovirus Laboratory, INSERM U758, Human Virology Department, Claude Bernard University Lyon-1, Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mattia K, Puffer BA, Williams KL, Gonzalez R, Murray M, Sluzas E, Pagano D, Ajith S, Bower M, Berdougo E, Harris E, Doranz BJ. Dengue reporter virus particles for measuring neutralizing antibodies against each of the four dengue serotypes. PLoS One 2011; 6:e27252. [PMID: 22096543 PMCID: PMC3212561 DOI: 10.1371/journal.pone.0027252] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
The lack of reliable, high-throughput tools for characterizing anti-dengue virus (DENV) antibodies in large numbers of serum samples has been an obstacle in understanding the impact of neutralizing antibodies on disease progression and vaccine efficacy. A reporter system using pseudoinfectious DENV reporter virus particles (RVPs) was previously developed by others to facilitate the genetic manipulation and biological characterization of DENV virions. In the current study, we demonstrate the diagnostic utility of DENV RVPs for measuring neutralizing antibodies in human serum samples against all four DENV serotypes, with attention to the suitability of DENV RVPs for large-scale, long-term studies. DENV RVPs used against human sera yielded serotype-specific responses and reproducible neutralization titers that were in statistical agreement with Plaque Reduction Neutralization Test (PRNT) results. DENV RVPs were also used to measure neutralization titers against the four DENV serotypes in a panel of human sera from a clinical study of dengue patients. The high-throughput capability, stability, rapidity, and reproducibility of assays using DENV RVPs offer advantages for detecting immune responses that can be applied to large-scale clinical studies of DENV infection and vaccination.
Collapse
Affiliation(s)
- Kimberly Mattia
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Bridget A. Puffer
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Katherine L. Williams
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Ritela Gonzalez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Meredith Murray
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Emily Sluzas
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Dan Pagano
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Sandya Ajith
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Megan Bower
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Eli Berdougo
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
29
|
Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2011; 9:1149-76. [PMID: 20923267 DOI: 10.1586/erv.10.115] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination.
Collapse
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
30
|
The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol 2010; 84:10438-47. [PMID: 20686019 DOI: 10.1128/jvi.00986-10] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cytoplasmic replication of positive-sense RNA viruses is associated with a dramatic rearrangement of host cellular membranes. These virus-induced changes result in the induction of vesicular structures that envelop the virus replication complex (RC). In this study, we have extended our previous observations on the intracellular location of West Nile virus strain Kunjin virus (WNV(KUN)) to show that the virus-induced recruitment of host proteins and membrane appears to occur at a pre-Golgi step. To visualize the WNV(KUN) replication complex, we performed three-dimensional (3D) modeling on tomograms from WNV(KUN) replicon-transfected cells. These analyses have provided a 3D representation of the replication complex, revealing the open access of the replication complex with the cytoplasm and the fluidity of the complex to the rough endoplasmic reticulum. In addition, we provide data that indicate that a majority of the viral RNA species housed within the RC is in a double-stranded RNA (dsRNA) form.
Collapse
|
31
|
Prime‐boost vaccinations using recombinant flavivirus replicon and vaccinia virus vaccines: an ELISPOT analysis. Immunol Cell Biol 2010; 89:426-36. [DOI: 10.1038/icb.2010.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Massé N, Davidson A, Ferron F, Alvarez K, Jacobs M, Romette JL, Canard B, Guillemot JC. Dengue virus replicons: Production of an interserotypic chimera and cell lines from different species, and establishment of a cell-based fluorescent assay to screen inhibitors, validated by the evaluation of ribavirin's activity. Antiviral Res 2010; 86:296-305. [DOI: 10.1016/j.antiviral.2010.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 03/08/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
33
|
A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 2010; 401:80-9. [DOI: 10.1016/j.virol.2010.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/30/2009] [Accepted: 02/05/2010] [Indexed: 11/20/2022]
|
34
|
Qing M, Liu W, Yuan Z, Gu F, Shi PY. A high-throughput assay using dengue-1 virus-like particles for drug discovery. Antiviral Res 2010; 86:163-71. [DOI: 10.1016/j.antiviral.2010.02.313] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 01/08/2010] [Accepted: 02/05/2010] [Indexed: 11/25/2022]
|
35
|
Corless L, Crump CM, Griffin SDC, Harris M. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J Gen Virol 2010; 91:362-72. [PMID: 19828764 PMCID: PMC7615705 DOI: 10.1099/vir.0.017285-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which infectious hepatitis C virus (HCV) particles are assembled and released from infected cells remain poorly characterized. In this regard, many other enveloped viruses, notably human immunodeficiency virus type 1, have been shown to utilize the host vacuolar protein sorting machinery (also known as the endosomal sorting complex required for transport; ESCRT) to traffic through the cell and effect the membrane rearrangements required for the formation of enveloped particles. We postulated that this might also apply to HCV. To test this hypothesis, we established a method of conditional virus-like particle assembly involving trans-complementation of an envelope-deleted JFH-1 genome using plasmid transfection. This system reliably produced virus particles that were infectious and could be enumerated easily by focus-forming assay in Huh7 cells. Following co-transfection with plasmids expressing various dominant-negative forms of either components of the ESCRT-III complex or Vps4 (the AAA ATPase that recycles the ESCRT complexes), a reduction in particle production was seen. No significant effect was observed after co-transfection of dominant-negative ESCRT-I or Alix, an ESCRT associated protein. Dominant-negative Vps4 or ESCRT-III components had no effect on either virus genome replication or the accumulation of intracellular infectious particles. These data were confirmed using cell culture infectious HCV and we conclude that HCV requires late components of the ESCRT pathway for release of infectious virus particles.
Collapse
Affiliation(s)
- Lynsey Corless
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| | - Colin M. Crump
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stephen D. C. Griffin
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| | - Mark Harris
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
36
|
A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 2010; 84:599-611. [PMID: 19864381 DOI: 10.1128/jvi.01063-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a "recombination trap," which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses but that its frequency appears to be very low and that therefore it probably does not represent a major risk in the use of live, attenuated flavivirus vaccines.
Collapse
|
37
|
Che P, Wang L, Li Q. The development, optimization and validation of an assay for high throughput antiviral drug screening against Dengue virus. Int J Clin Exp Med 2009; 2:363-373. [PMID: 20057980 PMCID: PMC2802053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
Dengue virus (DENV) is listed as one of the NIAID Category A priority pathogens. Dengue disease is endemic in most tropical countries, with an estimated 2.5 billion people living in areas at risk of DENV infection. Due to the lack of vaccines and antiviral drugs, it is now a huge public health burden around the world. In order to screen large compound libraries for the identification of novel antivirals targeting DENV, it is essential to develop a high throughput screening (HTS) amenable assay. Here, we present the development, optimization and validation of a cytopathic effect-based assay against Dengue virus serotype-2 (DENV-2). The assay conditions, including cell culturing conditions, DMSO tolerance and the multiplicity of infection, were optimized in both 96- and 384-well plates. Assay robustness and reproducibility were determined under the optimized conditions in 96-well plate, including Z'-value of 0.71, signal-to-background ratio of 6.88, coefficient of variation of 6.3% in mock-infected cells and 12.3% in DENV-2 infected cells. This assay was further miniaturized into a 384-well plate format with similar assay robustness and reproducibility comparing with these in the 96-well plate format. This assay was then validated using the LOPAC(1280) compound library, demonstrating its repeatability with comparable assay robustness and reproducibility. This fully developed and validated HTS amenable assay could be used in future studies to screen large compound libraries for the identification of novel antivirals against dengue disease.
Collapse
Affiliation(s)
- Pulin Che
- Department of Microbiology, Department of Medicine, University of Alabama at BirminghamAL 35294, USA
- Division of Infectious Diseases, Department of Medicine, University of Alabama at BirminghamAL 35294, USA
| | - Lihua Wang
- Division of Infectious Diseases, Department of Medicine, University of Alabama at BirminghamAL 35294, USA
| | - Qianjun Li
- Department of Microbiology, Department of Medicine, University of Alabama at BirminghamAL 35294, USA
- Division of Infectious Diseases, Department of Medicine, University of Alabama at BirminghamAL 35294, USA
| |
Collapse
|
38
|
Novel Therapeutics Against West Nile Virus. WEST NILE ENCEPHALITIS VIRUS INFECTION 2009. [PMCID: PMC7122128 DOI: 10.1007/978-0-387-79840-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
No effective therapy is currently available for clinical treatment of flavivirus infections. Recent advances in the structural and molecular biology of flaviviruses have provided new opportunities for the development of antiviral therapies. This chapter summarizes the current status of West Nile virus (WNV) therapeutics. First, strategies for identifying and characterizing small molecular inhibitors are reviewed. These strategies include structure-based rational design, biochemical enzyme-based screening, and reverse genetic system-based screening. Second, known WNV inhibitors are summarized. Both small and macromolecular inhibitors have been identified to inhibit WNV. The macromolecular inhibitors include WNV antibodies, interferon, and nucleic acid-based agents (i.e., antisense oligomer and siRNA). Since the antibody-based therapy is reviewed elsewhere in this book, this chapter emphasizes the nonantibody macromolecular and small molecular inhibitors. Finally, new potential antiviral targets and issues related to WNV therapeutics are discussed.
Collapse
|
39
|
Hoang-Le D, Smeenk L, Anraku I, Pijlman GP, Wang XJ, de Vrij J, Liu WJ, Le TT, Schroder WA, Khromykh AA, Suhrbier A. A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy. Gene Ther 2008; 16:190-9. [PMID: 19092857 DOI: 10.1038/gt.2008.169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently developed a non-cytopathic RNA replicon-based viral vector system based on the flavivirus Kunjin. Here, we illustrate the utility of the Kunjin replicon system for gene therapy. Intra-tumoral injections of Kunjin replicon virus-like particles encoding granulocyte colony-stimulating factor were able to cure >50% of established subcutaneous CT26 colon carcinoma and B16-OVA melanomas. Regression of CT26 tumours correlated with the induction of anti-cancer CD8 T cells, and treatment of subcutaneous CT26 tumours also resulted in the regression of CT26 lung metastases. Only a few immune-based strategies are able to cure these aggressive tumours once they are of a reasonable size, illustrating the potential of this vector system for intra-tumoral gene therapy applications.
Collapse
Affiliation(s)
- D Hoang-Le
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ansarah-Sobrinho C, Nelson S, Jost CA, Whitehead SS, Pierson TC. Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology 2008; 381:67-74. [PMID: 18801552 PMCID: PMC3428711 DOI: 10.1016/j.virol.2008.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/17/2008] [Accepted: 08/07/2008] [Indexed: 01/11/2023]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for 50 to 100 million human infections each year, highlighting the need for a safe and effective vaccine. In this study, we describe the production of pseudoinfectious DENV reporter virus particles (RVPs) using two different genetic complementation approaches, including the creation of cell lines that release reporter viruses in an inducible fashion. In contrast to studies with West Nile virus (WNV), production of infectious DENV RVPs was temperature-dependent; the yield of infectious DENV RVPs at 37 degrees C is significantly reduced in comparison to experiments conducted at lower temperatures or with WNV. This reflects both a significant reduction in the rate of infectious DENV RVP release over time, and the more rapid decay of infectious DENV RVPs at 37 degrees C. Optimized production approaches allow the production of DENV RVPs with titers suitable for the study of DENV entry, assembly, and the analysis of the humoral immune response of infected and vaccinated individuals.
Collapse
Affiliation(s)
- Camilo Ansarah-Sobrinho
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steevenson Nelson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christiane A. Jost
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Dong H, Zhang B, Shi PY. Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 2008; 80:1-10. [PMID: 18571739 DOI: 10.1016/j.antiviral.2008.05.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 12/17/2022]
Abstract
Many flaviviruses are significant human pathogens. No effective antiviral therapy is currently available for treatment of flavivirus infections. Development of antiviral treatment against these viruses is urgently needed. The flavivirus methyltransferase (MTase) responsible for N-7 and 2'-O methylation of the viral RNA cap has recently been mapped to the N-terminal region of nonstructural protein 5. Structural and functional studies suggest that the MTase represents a novel antiviral target. Here we review current understanding of flavivirus RNA cap methylation and its implications for development of antivirals. The 5' end of the flavivirus plus-strand RNA genome contains a type 1 cap structure (m(7)GpppAmG). Flaviviruses encode a single MTase domain that catalyzes two sequential methylations of the viral RNA cap, GpppA-RNA-->m(7)GpppA-RNA-->m(7)GpppAm-RNA, using S-adenosyl-L-methionine (SAM) as the methyl donor. The two reactions require different viral RNA elements and distinct biochemical assay conditions. Despite exhibiting two distinct methylation activities, flavivirus MTase contains a single binding site for SAM in its crystal structure. Therefore, substrate GpppA-RNA must be re-positioned to accept the N-7 and 2'-O methyl groups from SAM during the two methylation reactions. Structure-guided mutagenesis studies indeed revealed two distinct sets of amino acids on the enzyme surface that are specifically required for N-7 and 2'-O methylation. In the context of virus, West Nile viruses (WNVs) defective in N-7 methylation are non-replicative; however, WNVs defective in 2'-O methylation are attenuated and can protect mice from subsequent wild-type WNV challenge. Collectively, the results demonstrate that the N-7 MTase represents a novel target for flavivirus therapy.
Collapse
Affiliation(s)
- Hongping Dong
- Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12201, USA
| | | | | |
Collapse
|
42
|
Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus-like particles. J Virol 2008; 82:7034-46. [PMID: 18480457 DOI: 10.1128/jvi.00118-08] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recently, complete replication of hepatitis C virus (HCV) in tissue culture was established using the JFH1 isolate. To analyze determinants of HCV genome packaging and virion assembly, we developed a system that supports particle production based on trans-packaging of subgenomic viral RNAs. Using JFH1 helper viruses, we show that subgenomic JFH1 replicons lacking the entire core to NS2 coding region are efficiently encapsidated into infectious virus-like particles. Similarly, chimeric helper viruses with heterologous structural proteins trans-package subgenomic JFH1 replicons. Like authentic cell culture-produced HCV (HCVcc) particles, these trans-complemented HCV particles (HCV(TCP)) penetrate target cells in a CD81 receptor-dependent fashion. Since HCV(TCP) production was limited by competition between the helper and subgenomic RNA and to avoid contamination of HCV(TCP) stocks with helper viruses, we created HCV packaging cells. These cells encapsidate various HCV replicons with high efficiency, reaching infectivity titers up to 10(6) tissue culture infectious doses 50 per milliliter. The produced particles display a buoyant density comparable to HCVcc particles and can be propagated in the packaging cell line but support only a single-round infection in naïve cells. Together, this work demonstrates that subgenomic HCV replicons are assembly competent, thus excluding cis-acting RNA elements in the core-to-NS2 genomic region essential for RNA packaging. The experimental system described here should be helpful to decipher the mechanisms of HCV assembly and to identify RNA elements and viral proteins involved in particle formation. Similar to other vector systems of plus-strand RNA viruses, HCV(TCP) may prove valuable for gene delivery or vaccination approaches.
Collapse
|
43
|
Abstract
Dengue virus infection causes the most important arthropod-borne disease of humans. Currently, there are no dengue vaccines or antiviral therapies in clinical use, although their development is a global health priority. Using a technique known as ‘reverse genetics’, the dengue virus RNA genome can be manipulated, either by the introduction of specific mutations or the deletion and/or substitution of entire genes. This has led to the production of novel recombinant viruses that have potential as vaccines and the production of noninfectious viral subgenomes (termed replicons) useful for drug screening. Reverse genetics is also an invaluable tool for studying the role of dengue virus RNA elements and proteins in replication and pathogenesis. This review describes the contribution of reverse genetics to dengue virus research to date, highlighting the potential use of this technology in the development of effective control measures against dengue in the future.
Collapse
Affiliation(s)
- Rebecca Ward
- University of Bristol, Department of Cellular & Molecular Medicine, School of Medical & Veterinary Sciences, BS8 1TD, UK
| | - Andrew D Davidson
- University of Bristol, Department of Cellular & Molecular Medicine, School of Medical & Veterinary Sciences, BS8 1TD, UK
| |
Collapse
|
44
|
Ishii K, Murakami K, Hmwe SS, Zhang B, Li J, Shirakura M, Morikawa K, Suzuki R, Miyamura T, Wakita T, Suzuki T. Trans-encapsidation of hepatitis C virus subgenomic replicon RNA with viral structure proteins. Biochem Biophys Res Commun 2008; 371:446-50. [PMID: 18445476 DOI: 10.1016/j.bbrc.2008.04.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 01/30/2023]
Abstract
A trans-packaging system for hepatitis C virus (HCV) subgenomic replicon RNAs was developed. HCV subgenomic replicon was efficiently encapsidated by the HCV structural proteins that were stably expressed in trans under the control of a mammalian promoter. Infectious HCV-like particles (HCV-LPs), established a single-round infection, were produced and released into culture medium in titers of up to 10(3) focus forming units/ml. Expression of NS2 protein with structural proteins (core, E1, E2, and p7) was shown to be critical for the infectivity of HCV-LPs. Anti-CD81 treatment decreased the number of infected cells, suggesting that HCV-LPs infected cells in a CD81-dependent manner. The packaging cell line should be useful both for the production of single-round infectious HCV-LPs to elucidate the mechanisms of HCV assembly, particle formation and infection to host cells, and for the development of HCV replicon-based vaccines.
Collapse
Affiliation(s)
- Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Anraku I, Mokhonov VV, Rattanasena P, Mokhonova EI, Leung J, Pijlman G, Cara A, Schroder WA, Khromykh AA, Suhrbier A. Kunjin replicon-based simian immunodeficiency virus gag vaccines. Vaccine 2008; 26:3268-76. [PMID: 18462846 PMCID: PMC7115363 DOI: 10.1016/j.vaccine.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/18/2008] [Accepted: 04/03/2008] [Indexed: 12/15/2022]
Abstract
An RNA-based, non-cytopathic replicon vector system, based on the flavivirus Kunjin, has shown considerable promise as a new vaccine delivery system. Here we describe the testing in mice of four different SIVmac239 gag vaccines delivered by Kunjin replicon virus-like-particles. The four vaccines encoded the wild type gag gene, an RNA-optimised gag gene, a codon-optimised gag gene and a modified gag-pol gene construct. The vaccines behaved quite differently for induction of effector memory and central memory responses, for mediation of protection, and with respect to insert stability, with the SIV gag-pol vaccine providing the optimal performance. These results illustrate that for an RNA-based vector the RNA sequence of the antigen can have profound and unforeseen consequences on vaccine behaviour.
Collapse
Affiliation(s)
- Itaru Anraku
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, Friebe P, Kallis S, Engel U, Bartenschlager R. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 2008; 4:e1000035. [PMID: 18369481 PMCID: PMC2268006 DOI: 10.1371/journal.ppat.1000035] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/03/2008] [Indexed: 12/16/2022] Open
Abstract
Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis. The hepatitis C virus (HCV) is a major cause of acute and chronic liver diseases worldwide. In spite of high medical need there is no selective antiviral therapy available and a prophylactic vaccine is not in sight. Their development requires cellular replication systems that have become available just recently. One of the most fascinating insights gained with these systems is the finding that infectious HCV particles assemble in close association with an intracellular lipid storage compartment termed lipid droplets. In this study we show that nonstructural protein 5A (NS5A), a component of the viral RNA replication machinery is a key factor for the formation of infectious HCV particles. We identify a distinct domain in NS5A as the primary “assembly determinant” and show that NS5A and the core protein, which is a major constituent of the virus particle, accumulate on the surface of lipid droplets. Deletions in NS5A disrupting the colocalization of core and NS5A on lipid droplets abrogate infectious HCV production. These studies unravel a unique pathway of infectious virus formation and identify NS5A as a factor modulating HCV replication and assembly and thus viral fitness.
Collapse
Affiliation(s)
- Nicole Appel
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Margarita Zayas
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Sven Miller
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Torsten Schaller
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Peter Friebe
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Stephanie Kallis
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Engel
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
47
|
Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 2008. [PMID: 18369481 DOI: 10.1371/journal.ppat.1000035.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.
Collapse
|
48
|
Yun SI, Choi YJ, Yu XF, Song JY, Shin YH, Ju YR, Kim SY, Lee YM. Engineering the Japanese encephalitis virus RNA genome for the expression of foreign genes of various sizes: implications for packaging capacity and RNA replication efficiency. J Neurovirol 2008; 13:522-35. [PMID: 18097884 DOI: 10.1080/13550280701684651] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Using the RNA replication machinery of Japanese encephalitis virus (JEV), the authors have established and characterized three strategies for the expression of foreign genes. Initially, approximately 11 kb genomic RNA was engineered to express heterologous genes of various sizes by preferentially inserting a new cistron at the beginning of the 3' nontranslated variable region. RNA transfection yielded recombinant viruses that initiated foreign gene expression after infecting permissive cells. JEV was capable of packaging recombinant genomes as large as approximately 15 kb. However, larger genome size was inversely correlated with RNA replication efficiency and cytopathogenicity, with no significant change in infectivity. Second, a variety of self-replicating propagation-deficient viral replicons were constructed by introducing one to three in-frame deletions into the ectodomains of all the structural proteins of JEV. These replicons displayed a spectrum of RNA replication efficiency upon transfection, suggesting that remnant transmembrane domains play a suppressive role in this process. Third, the authors generated a panel of stable packaging cell lines (PCLs) providing all three JEV structural proteins in trans. These PCLs efficiently packaged viral replicon RNAs into single-round infectious viral replicon particles. These JEV-based virus/vector systems may provide useful tools for a variety of biological applications, including foreign gene expression, antiviral compound screening, and genetic immunization.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part of the replication complex and inhibits interferon induction. Previously, we have shown that an isoleucine (I)-to-asparagine (N) substitution at position 59 of the NS2A protein blocked the production of secreted virus particles in cells electroporated with viral RNA carrying this mutation. We now show that prolonged incubation of mutant KUN NS2A-I59N replicon RNA, in an inducible BHK-derived packaging cell line (expressing KUN structural proteins C, prM, and E), generated escape mutants that rescued the secretion of infectious virus-like particles. Sequencing identified three groups of revertants that included (i) reversions to wild-type, hydrophobic Ile, (ii) pseudorevertants to more hydrophobic residues (Ser, Thr, and Tyr) at codon 59, and (iii) pseudorevertants retaining Asn at NS2A codon 59 but containing a compensatory mutation (Thr-to-Pro) at NS2A codon 149. Engineering hydrophobic residues at NS2A position 59 or the compensatory T149P mutation into NS2A-I59N replicon RNA restored the assembly of secreted virus-like particles in packaging cells. T149P mutation also rescued virus production when introduced into the full-length KUN RNA containing an NS2A-I59N mutation. Immunofluorescence and electron microscopy analyses of NS2A-I59N replicon-expressing cells showed a distinct lack of virus-induced membranes normally present in cells expressing wild-type replicon RNA. The compensatory mutation NS2A-T149P restored the induction of membrane structures to a level similar to those observed during wild-type replication. The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS2A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus-induced membranes in virus assembly.
Collapse
|
50
|
Kent SJ, De Rose R, Mokhonov VV, Mokhonova EI, Fernandez CS, Alcantara S, Rollman E, Mason RD, Loh L, Peut V, Reece JC, Wang XJ, Wilson KM, Suhrbier A, Khromykh A. Evaluation of recombinant Kunjin replicon SIV vaccines for protective efficacy in macaques. Virology 2008; 374:528-34. [PMID: 18272194 DOI: 10.1016/j.virol.2008.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/02/2008] [Accepted: 01/05/2008] [Indexed: 01/03/2023]
Abstract
Persistent gag-specific T cell immunity would be a useful component of an effective HIV vaccine. The Flavivirus Kunjin replicon was previously engineered to persistently express HIV gag and was shown to induce protective responses in mice. We evaluated Kunjin replicon virus-like-particles expressing SIVgag-pol in pigtail macaques. Kunjin-specific antibodies were induced, but no SIV-specific T cell immunity were detected. Following SIVmac251 challenge, there was no difference in SIV viremia or retention of CD4 T cells between Kunjin-SIVgag-pol vaccine immunized animals and controls. An amnestic SIV gag-specific CD8 T cell response associated with control of viremia was observed in 1 of 6 immunized animals. Refinements of this vector system and optimization of the immunization doses, routes, and schedules are required prior to clinical trials.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, 3010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|