1
|
Han R, Dai B, Chen Y. Chemotaxis-driven stationary and oscillatory patterns in a diffusive HIV-1 model with CTL immune response and general sensitivity. CHAOS (WOODBURY, N.Y.) 2023; 33:073142. [PMID: 37463094 DOI: 10.1063/5.0150072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
In this paper, a reaction-diffusion-chemotaxis HIV-1 model with a cytotoxic T lymphocyte (CTL) immune response and general sensitivity is investigated. We first prove the global classical solvability and L∞-boundedness for the considered model in a bounded domain with arbitrary spatial dimensions, which extends the previous existing results. Then, we apply the global existence result to the case with a linear proliferation immune response and an incidence rate. We study the spatiotemporal dynamics about the three types of spatially homogeneous steady states: infection-free steady state S0, CTL-inactivated infection steady state S1, and CTL-activated infection steady state S∗. Our analyses indicate that S0 is globally asymptotically stable if the basic reproduction number R0 is less than 1; if R0 is between 1 and a threshold, then S1 is globally asymptotically stable. However, if R0 is larger than the threshold, then the chemoattraction and chemorepulsion can destabilize S∗, and thus, a spatiotemporal pattern forms as the chemotactic sensitivity crosses certain critical values. We obtain two kinds of important patterns, which are induced by chemotaxis: stationary Turing pattern and irregular oscillatory pattern. We also find that different chemotactic response functions can affect system's dynamics. Based on some empirical parameter values, numerical simulations are given to illustrate the effectiveness of the theoretical predications.
Collapse
Affiliation(s)
- Renji Han
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Binxiang Dai
- School of Mathematics and Statistics, Central South University, Changsha 410083, People's Republic of China
| | - Yuming Chen
- Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
2
|
Amoddeo A. A mathematical model and numerical simulation for SARS-CoV-2 dynamics. Sci Rep 2023; 13:4575. [PMID: 36941368 PMCID: PMC10027279 DOI: 10.1038/s41598-023-31733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Since its outbreak the corona virus-19 disease has been particularly aggressive for the lower respiratory tract, and lungs in particular. The dynamics of the abnormal immune response leading to lung damage with fatal outcomes is not yet fully understood. We present a mathematical model describing the dynamics of corona virus disease-19 starting from virus seeding inside the human respiratory tract, taking into account its interaction with the components of the innate immune system as classically and alternatively activated macrophages, interleukin-6 and -10. The numerical simulations have been performed for two different parameter values related to the pro-inflammatory interleukin, searching for a correlation among components dynamics during the early stage of infection, in particular pro- and anti-inflammatory polarizations of the immune response. We found that in the initial stage of infection the immune machinery is unable to stop or weaken the virus progression. Also an abnormal anti-inflammatory interleukin response is predicted, induced by the disease progression and clinically associated to tissue damages. The numerical results well reproduce experimental results found in literature.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università 'Mediterranea' di Reggio Calabria, Via Graziella 1, Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
3
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
4
|
Bohn-Wippert K, Tevonian EN, Megaridis MR, Dar RD. Similarity in viral and host promoters couples viral reactivation with host cell migration. Nat Commun 2017; 8:15006. [PMID: 28462923 PMCID: PMC5418578 DOI: 10.1038/ncomms15006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/20/2017] [Indexed: 11/29/2022] Open
Abstract
Viral–host interactomes map the complex architecture of an evolved arms race during host cell invasion. mRNA and protein interactomes reveal elaborate targeting schemes, yet evidence is lacking for genetic coupling that results in the co-regulation of promoters. Here we compare viral and human promoter sequences and expression to test whether genetic coupling exists and investigate its phenotypic consequences. We show that viral–host co-evolution is imprinted within promoter gene sequences before transcript or protein interactions. Co-regulation of human immunodeficiency virus (HIV) and human C-X-C chemokine receptor-4 (CXCR4) facilitates migration of infected cells. Upon infection, HIV can actively replicate or remain dormant. Migrating infected cells reactivate from dormancy more than non-migrating cells and exhibit differential migration–reactivation responses to drugs. Cells producing virus pose a risk for reinitiating infection within niches inaccessible to drugs, and tuning viral control of migration and reactivation improves strategies to eliminate latent HIV. Viral–host genetic coupling establishes a mechanism for synchronizing transcription and guiding potential therapies. The coevolution of viruses and host cells can be mapped with interactomics. Here the authors identify coupling of human and viral promoters, and show that HIV-reactivation from dormancy is coincident with migration of HIV-infected cells owing to coupling of human CXCR4 and HIV LTR promoters.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206W Gregory Drive, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Kadolsky UD, Yates AJ. How is the effectiveness of immune surveillance impacted by the spatial distribution of spreading infections? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0289. [PMID: 26150655 PMCID: PMC4528487 DOI: 10.1098/rstb.2014.0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
What effect does the spatial distribution of infected cells have on the efficiency of their removal by immune cells, such as cytotoxic T lymphocytes (CTL)? If infected cells spread in clusters, CTL may initially be slow to locate them but subsequently kill more rapidly than in diffuse infections. We address this question using stochastic, spatially explicit models of CTL interacting with different patterns of infection. Rather than the effector : target ratio, we show that the relevant quantity is the ratio of a CTL's expected time to locate its next target (search time) to the average time it spends conjugated with a target that it is killing (handling time). For inefficient (slow) CTL, when the search time is always limiting, the critical density of CTL (that required to control 50% of infections, C(*)) is independent of the spatial distribution and derives from simple mass-action kinetics. For more efficient CTL such that handling time becomes limiting, mass-action underestimates C(*), and the more clustered an infection the greater is C(*). If CTL migrate chemotactically towards targets the converse holds-C(*) falls, and clustered infections are controlled most efficiently. Real infections are likely to spread patchily; this combined with even weak chemotaxis means that sterilizing immunity may be achieved with substantially lower numbers of CTL than standard models predict.
Collapse
Affiliation(s)
- Ulrich D Kadolsky
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Andrew J Yates
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
6
|
Abstract
The virological synapse (VS) is a tight adhesive junction between an HIV-infected cell and an uninfected target cell, across which virus can be efficiently transferred from cell to cell in the absence of cell-cell fusion. The VS has been postulated to resemble, in its morphology, the well-studied immunological synapse (IS). This review article discusses the structural similarities between IS and VS and the shared T cell receptor (TCR) signaling components that are found in the VS. However, the IS and the VS display distinct kinetics in disassembly and intracellular signaling events, possibly leading to different biological outcomes. Hence, HIV-1 exploits molecular components of IS and TCR signaling machinery to trigger unique changes in cellular morphology, migration, and activation that facilitate its transmission and cell-to-cell spread.
Collapse
|
7
|
Santosuosso M, Righi E, Hill ED, Leblanc PR, Kodish B, Mylvaganam HN, Siddappa NB, Stevceva L, Hu SL, Ghebremichael M, Chenine AL, Hovav AH, Ruprecht RM, Poznansky MC. R5-SHIV induces multiple defects in T cell function during early infection of rhesus macaques including accumulation of T reg cells in lymph nodes. PLoS One 2011; 6:e18465. [PMID: 21483689 PMCID: PMC3071731 DOI: 10.1371/journal.pone.0018465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.
Collapse
Affiliation(s)
- Michael Santosuosso
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Elda Righi
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - E. David Hill
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Pierre R. Leblanc
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Brett Kodish
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hari N. Mylvaganam
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Nagadenahalli B. Siddappa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Liljana Stevceva
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Musie Ghebremichael
- Department of Biostatistics and Computational Biology, Harvard School of Public Health and Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Agnes-L. Chenine
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Avi-Hai Hovav
- Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Ruth M. Ruprecht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mark C. Poznansky
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Methods for quantitation of leukocyte chemotaxis and fugetaxis. Methods Mol Biol 2010. [PMID: 20379872 DOI: 10.1007/978-1-60761-461-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chemoattraction and chemorepulsion are complex directional responses of a cell to external chemotactic stimuli. The decision of a cell to move towards or away from a chemokinetic source includes detection and quantitation of the gradient of the chemotactic agent, biochemical transmission of the stimulus, and translation into a directional migration. This chapter describes a number of in vitro and in vivo assays that can be used to generate and measure both chemoattraction and chemorepulsion of leucocytes. These tools may eventually allow the further characterisation of the mechanism of this complex and physiologically and pathologically important phenomenon.
Collapse
|
9
|
Abstract
Binding of the HIV-1 envelope to its chemokine coreceptors mediates two major biological events: membrane fusion and signaling transduction. The fusion process has been well studied, yet the role of chemokine coreceptor signaling in viral infection has remained elusive through the past decade. With the recent demonstration of the signaling requirement for HIV latent infection of resting CD4 T cells, the issue of coreceptor signaling needs to be thoroughly revisited. It is likely that virus-mediated signaling events may facilitate infection in various immunologic settings in vivo where cellular conditions need to be primed; in other words, HIV may exploit the chemokine signaling network shared among immune cells to gain access to downstream cellular components, which can then serve as effective tools to break cellular barriers. This virus-hijacked aberrant signaling process may in turn facilitate pathogenesis. In this review, we summarize past and present studies on HIV coreceptor signaling. We also discuss possible roles of coreceptor signaling in facilitating viral infection and pathogenesis.
Collapse
|
10
|
X4 human immunodeficiency virus type 1 gp120 down-modulates expression and immunogenicity of codelivered antigens. J Virol 2009; 83:10941-50. [PMID: 19692474 DOI: 10.1128/jvi.00394-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to increase the immune breadth of human immunodeficiency virus (HIV) vaccines, strategies such as immunization with several HIV antigens or centralized immunogens have been examined. HIV-1 gp120 protein is a major immunogen of HIV and has been routinely considered for inclusion in both present and future AIDS vaccines. However, recent studies proposed that gp120 interferes with the generation of immune response to codelivered antigens. Here, we investigate whether coimmunization with plasmid-encoded gp120 alters the immune response to other coadministered plasmid encoded antigens such as luciferase or ovalbumin in a mouse model. We found that the presence of gp120 leads to a significant reduction in the expression level of the codelivered antigen in vivo. Antigen presentation by antigen-presenting cells was also reduced and resulted in the induction of weak antigen-specific cellular and humoral immune responses. Importantly, gp120-mediated immune interference was observed after administration of the plasmids at the same or at distinct locations. To characterize the region in gp120 mediating these effects, we used plasmid constructs encoding gp120 that lacks the V1V2 loops (DeltaV1V2) or the V3 loop (DeltaV3). After immunization, the DeltaV1V2, but not the DeltaV3 construct, was able to reduce antigen expression, antigen presentation, and subsequently the immunogenicity of the codelivered antigen. The V3 loop dependence of this phenomenon seems to be limited to V3 loops known to interact with the CXCR4 molecule but not with CCR5. Our study presents a novel mechanism by which HIV-1 gp120 interferes with the immune response against coadministered antigen in a polyvalent vaccine preparation.
Collapse
|
11
|
Wu Y. The co-receptor signaling model of HIV-1 pathogenesis in peripheral CD4 T cells. Retrovirology 2009; 6:41. [PMID: 19409100 PMCID: PMC2679705 DOI: 10.1186/1742-4690-6-41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/01/2009] [Indexed: 01/21/2023] Open
Abstract
HIV-mediated CD4 depletion is the hallmark of AIDS and is the most reliable predictor of disease progression. While HIV replication is associated with CD4 depletion in general, plasma viremia by itself predicts the rate of CD4 loss only minimally in untreated patients. To resolve this paradox, I hypothesize the existence of a subpopulation of R5X4-signaling viruses. I also suggest that the gradual evolution and emergence of this subpopulation are largely responsible for the slow depletion of peripheral CD4 T cells.
Collapse
Affiliation(s)
- Yuntao Wu
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
12
|
Stevceva L, Yoon V, Carville A, Pacheco B, Santosuosso M, Korioth-Schmitz B, Mansfield K, Poznansky MC. The efficacy of T cell-mediated immune responses is reduced by the envelope protein of the chimeric HIV-1/SIV-KB9 virus in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 181:5510-21. [PMID: 18832708 DOI: 10.4049/jimmunol.181.8.5510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may contribute to the failure of the immune system to fully control and ultimately clear the virus. Herein, we show for the first time that lymphoid tissues from acutely HIV-1/SIV (SHIV)-KB9-infected macaques contain deposits of gp120 at concentrations that are high enough to induce suppressive effects on T cells, thus negatively regulating the antiviral CTL response and contributing to virus survival and persistence. We also demonstrate that SHIV-KB9 gp120 influences functional T cell responses during SHIV infection in a manner that suppresses degranulation and cytokine secretion by CTLs. Finally, we show that regulatory T cells accumulate in lymphoid tissues during acute infection and that they respond to gp120 by producing TGFbeta, a known suppressant of cytotoxic T cell activity. These findings have significant implications for our understanding of the contribution of non-entry-related functions of HIV-1 gp120 to the pathogenesis of HIV/AIDS.
Collapse
Affiliation(s)
- Liljana Stevceva
- Partners AIDS Research Center and Infectious Diseases Medicine, Massachusetts General Hospital (East), Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wu Y, Yoder A, Yu D, Wang W, Liu J, Barrett T, Wheeler D, Schlauch K. Cofilin activation in peripheral CD4 T cells of HIV-1 infected patients: a pilot study. Retrovirology 2008; 5:95. [PMID: 18928553 PMCID: PMC2576353 DOI: 10.1186/1742-4690-5-95] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/17/2008] [Indexed: 01/15/2023] Open
Abstract
Cofilin is an actin-depolymerizing factor that regulates actin dynamics critical for T cell migration and T cell activation. In unstimulated resting CD4 T cells, cofilin exists largely as a phosphorylated inactive form. Previously, we demonstrated that during HIV-1 infection of resting CD4 T cells, the viral envelope-CXCR4 signaling activates cofilin to overcome the static cortical actin restriction. In this pilot study, we have extended this in vitro observation and examined cofilin phosphorylation in resting CD4 T cells purified from the peripheral blood of HIV-1-infected patients. Here, we report that the resting T cells from infected patients carry significantly higher levels of active cofilin, suggesting that these resting cells have been primed in vivo in cofilin activity to facilitate HIV-1 infection. HIV-1-mediated aberrant activation of cofilin may also lead to abnormalities in T cell migration and activation that could contribute to viral pathogenesis.
Collapse
Affiliation(s)
- Yuntao Wu
- Department of Molecular and Microbiology, George Mason University, Manassas, VA, 20110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schimanski CC, Galle PR, Moehler M. Chemokine receptor CXCR4-prognostic factor for gastrointestinal tumors. World J Gastroenterol 2008; 14:4721-4. [PMID: 18720530 PMCID: PMC2739331 DOI: 10.3748/wjg.14.4721] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To review the implication of CXCR4 for gastrointestinal cancer, a “Pubmed” analysis was performed in order to evaluate the relevance of CXCR4 and its ligands for gastrointestinal cancers. Search terms applied were “cancer, malignoma, esophageal, gastric, colon, colorectal, hepatic, pancreatic, CXCR4, SDF-1α, and SDF-1β”. CXCR4 expression correlated with dissemination of diverse gastrointestinal malignomas. The CXCR4 ligand SDF-1α might act as “chemorepellent” while SDF-1β might act as "chemorepellent" for CTLs, inducing tumor rejection. The paracrine expression of SDF-1α was furthermore closely associated with neoangiogenesis. CXCR4 and its ligands influence the dissemination, immune rejection, and neoangiogenesis of human gastrointestinal cancers. Inhibition of CXCR4 might be an interesting therapeutic option.
Collapse
|
15
|
Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol 2008; 82:9445-57. [PMID: 18632854 DOI: 10.1128/jvi.00835-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4(+) T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4(+) T cells.
Collapse
|
16
|
Papeta N, Chen T, Vianello F, Gererty L, Malik A, Mok YT, Tharp WG, Bagley J, Zhao G, Stevceva L, Yoon V, Sykes M, Sachs D, Iacomini J, Poznansky MC. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation 2007; 83:174-83. [PMID: 17264814 DOI: 10.1097/01.tp.0000250658.00925.c8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. METHODS Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. RESULTS Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. CONCLUSIONS This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.
Collapse
Affiliation(s)
- Natalia Papeta
- Infectious Diseases Medicine Division and Partner AIDS Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Takano Y, Shimokado K, Hata Y, Yoshida M. HIV envelope protein gp120-triggered CD4+ T-cell adhesion to vascular endothelium is regulated via CD4 and CXCR4 receptors. Biochim Biophys Acta Mol Basis Dis 2007; 1772:549-55. [PMID: 17346946 DOI: 10.1016/j.bbadis.2007.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/28/2006] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Activation of T-lymphocytes is an important component of inflammatory and infectious processes, including HIV infection. It is regulated via the actions of various cell-surface receptors, including CD4 and CXCR4. We examined the roles of CD4 and CXCR4 in the adhesive interaction of CD4+T-cells with the vascular endothelium. CD4+Jurkat cells were incubated in the presence or absence of anti-CD4 to stimulate CD4, or with SDF-1 alpha, a cognate ligand of CXCR4. Stimulation of CD4 or CXCR4 each significantly enhanced cell adhesion. We next stimulated the two receptors together, using gp120, a component of HIV. This enhanced cell adhesion was greater than stimulation of CD4 or CXCR4 individually. Western blotting revealed that stimulation of CXCR4 by SDF-1 alpha significantly increased the phosphorylation of ERK1/2 in Jurkat cells. Treatment with anti-CD4 also activated ERK1/2, although to a lesser extent. When the expression of CD4 was reduced by siRNA transfection, both CD4-dependent adhesion and MAPK activation were diminished. Furthermore, pre-treatment with fluvastatin, significantly attenuated observed Jurkat cell adhesion. These findings indicate novel mechanisms of CD4+ T-cells recruitment to activated endothelium via CD4 and CXCR4, which are modulated by statin.
Collapse
Affiliation(s)
- Yoshio Takano
- Department of Vascular Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
18
|
Vianello F, Papeta N, Chen T, Kraft P, White N, Hart WK, Kircher MF, Swart E, Rhee S, Palù G, Irimia D, Toner M, Weissleder R, Poznansky MC. Murine B16 Melanomas Expressing High Levels of the Chemokine Stromal-Derived Factor-1/CXCL12 Induce Tumor-Specific T Cell Chemorepulsion and Escape from Immune Control. THE JOURNAL OF IMMUNOLOGY 2006; 176:2902-14. [PMID: 16493048 DOI: 10.4049/jimmunol.176.5.2902] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The chemokine, stromal-derived factor-1/CXCL12, is expressed by normal and neoplastic tissues and is involved in tumor growth, metastasis, and modulation of tumor immunity. T cell-mediated tumor immunity depends on the migration and colocalization of CTL with tumor cells, a process regulated by chemokines and adhesion molecules. It has been demonstrated that T cells are repelled by high concentrations of the chemokine CXCL12 via a concentration-dependent and CXCR4 receptor-mediated mechanism, termed chemorepulsion or fugetaxis. We proposed that repulsion of tumor Ag-specific T cells from a tumor expressing high levels of CXCL12 allows the tumor to evade immune control. Murine B16/OVA melanoma cells (H2b) were engineered to constitutively express CXCL12. Immunization of C57BL/6 mice with B16/OVA cells lead to destruction of B16/OVA tumors expressing no or low levels of CXCL12 but not tumors expressing high levels of the chemokine. Early recruitment of adoptively transferred OVA-specific CTL into B16/OVA tumors expressing high levels of CXCL12 was significantly reduced in comparison to B16/OVA tumors, and this reduction was reversed when tumor-specific CTLs were pretreated with the specific CXCR4 antagonist, AMD3100. Memory OVA-specific CD8+ T cells demonstrated antitumor activity against B16/OVA tumors but not B16/OVA.CXCL12-high tumors. Expression of high levels of CXCL12 by B16/OVA cells significantly reduced CTL colocalization with and killing of target cells in vitro in a CXCR4-dependent manner. The repulsion of tumor Ag-specific T cells away from melanomas expressing CXCL12 confirms the chemorepellent activity of high concentrations of CXCL12 and may represent a novel mechanism by which certain tumors evade the immune system.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Migration Inhibition
- Cell Proliferation
- Chemokine CXCL12
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/physiology
- Chemotaxis, Leukocyte/immunology
- Cytotoxicity, Immunologic
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte
- Immunotherapy, Adoptive
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Fabrizio Vianello
- Partners AIDS Research Center, Infectious Diseases Division, and Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Koeppe JR, Campbell TB, Rapaport EL, Wilson CC. HIV-1-Specific CD4+ T-Cell Responses Are Not Associated With Significant Viral Epitope Variation in Persons With Persistent Plasma Viremia. J Acquir Immune Defic Syndr 2006; 41:140-8. [PMID: 16394844 DOI: 10.1097/01.qai.0000195608.32885.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine whether increased sequence variation occurs in regions of endogenous HIV-1 targeted by HIV-1-specific CD4 T cells. The presence of increased variation would be suggestive of immune evasion by HIV-1. DESIGN We performed a cross-sectional study of untreated HIV-1-infected subjects measuring HIV-1-specific interferon (IFN)-gamma-secreting CD4 T-cell responses against epitopes in Gag p17 and p24 and concurrent endogenous plasma HIV-1 RNA epitope sequence variation. METHODS CD8- depleted IFNgamma enzyme-linked immunospot assays were used to identify regions of HIV-1 Gag recognized by CD4 T cells. Reverse transcriptase polymerase chain reaction and TA cloning were used to sequence endogenous plasma HIV-1 virus and identify variants. RESULTS CD4 T-cell epitopes in Gag p17 and p24 were identified in 5 individuals, and concurrent sequence information on endogenous HIV-1 was obtained in 4 of these individuals. Endogenous plasma HIV-1 RNA sequencing revealed no intrapatient amino acid sequence variation through identified epitopes. CONCLUSIONS In these chronically infected viremic subjects, circulating IFNgamma-secreting CD4 T-cell responses were directed against epitope sequences found in the predominant strain of endogenous circulating plasma HIV-1, suggesting that escape from CD4 T-cell responses is not a common process in vivo.
Collapse
Affiliation(s)
- John R Koeppe
- Division of Infectious Diseases and Clinical Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
20
|
Vianello F, Olszak IT, Poznansky MC. Fugetaxis: active movement of leukocytes away from a chemokinetic agent. J Mol Med (Berl) 2005; 83:752-63. [PMID: 16142473 DOI: 10.1007/s00109-005-0675-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 03/03/2005] [Indexed: 01/15/2023]
Abstract
Chemotaxis or active movement of leukocytes toward a stimulus has been shown to occur in response to chemokinetic agents including members of the recently identified superfamily of proteins called chemokines. Leukocyte chemotaxis is thought to play a central role in a wide range of physiological and pathological processes including the homing of immune cells to lymph nodes and the accumulation of these cells at sites of tissue injury and pathogen or antigen challenge. We have recently identified a novel biological mechanism, which we term fugetaxis (fugere, to flee from; taxis, movement) or chemorepulsion, which describes the active movement of leukocytes away from chemokinetic agents including the chemokine, stromal cell derived factor-1, and the HIV-1 envelope protein, gp120. In this article, we review the evidence that supports the observation that leukocyte fugetaxis occurs in vitro and in vivo and suggestions that this novel mechanism can be exploited to modulate the immune response. We propose that leukocyte fugetaxis plays a critical role in both physiological and pathological processes in which leukocytes are either excluded or actively repelled from specific sites in vivo including thymic emigration, the establishment of immune privileged sites and immune evasion by viruses and cancer. We believe that current data support the thesis that a greater understanding of leukocyte fugetaxis will lead to the development of novel therapeutic approaches for a wide range of human diseases.
Collapse
Affiliation(s)
- Fabrizio Vianello
- Partners AIDS Research Center, Massachusetts General Hospital (East), Charlestown Navy Yard, 02129, USA
| | | | | |
Collapse
|
21
|
Balabanian K, Harriague J, Décrion C, Lagane B, Shorte S, Baleux F, Virelizier JL, Arenzana-Seisdedos F, Chakrabarti LA. CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 173:7150-60. [PMID: 15585836 DOI: 10.4049/jimmunol.173.12.7150] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interaction of HIV-1 envelope glycoprotein gp120 with the chemokine receptor CXCR4 triggers not only viral entry but also an array of signal transduction cascades. Whether gp120 induces an incomplete or aberrant set of signals, or whether it can function as a full CXCR4 agonist, remains unclear. We report that, in unstimulated human primary CD4(+) T cells, the spectrum of signaling responses induced by gp120 through CXCR4 paralleled that induced by the natural ligand stromal cell-derived factor 1/CXCL12. gp120 activated heterotrimeric G proteins and the major G protein-dependent pathways, including calcium mobilization, phosphoinositide-3 kinase, and Erk-1/2 MAPK activation. Interestingly, gp120 caused rapid actin cytoskeleton rearrangements and profuse membrane ruffling, as evidenced by dynamic confocal imaging. This coordinated set of events resulted in a bona fide chemotactic response. Inactivated HIV-1 virions that harbored conformationally intact envelope glycoproteins also caused actin polymerization and chemotaxis, while similar virions devoid of envelope glycoproteins did not. Thus gp120, in monomeric as well as oligomeric, virion-associated form, elicited a complex cellular response that mimicked the effects of a chemokine. HIV-1 has therefore the capacity to dysregulate the vast CD4(+) T cell population that expresses CXCR4. In addition, HIV-1 may exploit its chemotactic properties to retain potential target cells and locally perturb their cytoskeleton, thereby facilitating viral transmission.
Collapse
|