1
|
Saribas AS, Coric P, Hamazaspyan A, Davis W, Axman R, White MK, Abou-Gharbia M, Childers W, Condra JH, Bouaziz S, Safak M. Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses. J Cell Physiol 2016; 231:2115-27. [PMID: 26831433 DOI: 10.1002/jcp.25329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Agnoprotein is an important regulatory protein of polyomaviruses, including JCV, BKV, and SV40. In the absence of its expression, these viruses are unable to sustain their productive life cycle. It is a highly basic phosphoprotein that localizes mostly to the perinuclear area of infected cells, although a small amount of the protein is also found in nucleus. Much has been learned about the structure and function of this important regulatory protein in recent years. It forms highly stable dimers/oligomers in vitro and in vivo through its Leu/Ile/Phe-rich domain. Structural NMR studies revealed that this domain adopts an alpha-helix conformation and plays a critical role in the stability of the protein. It associates with cellular proteins, including YB-1, p53, Ku70, FEZ1, HP1α, PP2A, AP-3, PCNA, and α-SNAP; and viral proteins, including small t antigen, large T antigen, HIV-1 Tat, and JCV VP1; and significantly contributes the viral transcription and replication. This review summarizes the recent advances in the structural and functional properties of this important regulatory protein. J. Cell. Physiol. 231: 2115-2127, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Pascale Coric
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Anahit Hamazaspyan
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - William Davis
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Rachel Axman
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Martyn K White
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Jon H Condra
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Serge Bouaziz
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Pavlovic D, Patera AC, Nyberg F, Gerber M, Liu M. Progressive multifocal leukoencephalopathy: current treatment options and future perspectives. Ther Adv Neurol Disord 2015; 8:255-73. [PMID: 26600871 PMCID: PMC4643867 DOI: 10.1177/1756285615602832] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare but debilitating and frequently fatal viral disease of the central nervous system, primarily affecting individuals with chronically and severely suppressed immune systems. The disease was relatively obscure until the outbreak of HIV/AIDS, when it presented as one of the more frequent opportunistic infections in this immune deficiency syndrome. It attracted additional attention from the medical and scientific community following the discovery of significant PML risk associated with natalizumab, a monoclonal antibody used for treatment of relapsing-remitting multiple sclerosis. This was followed by association of PML with other immunosuppressive or immunomodulating drugs. PML is currently untreatable disease with poor outcomes, so it is a significant concern when developing new immunotherapies. Current prophylaxis and treatment of PML are focused on immune reconstitution, restoration of immune responses to JC virus infection, and eventual suppression of immune reconstitution inflammatory syndrome. This approach was successful in reducing the incidence of PML and improved survival of PML patients with HIV infection. However, the outcome for the majority of PML patients, regardless of their medical history, is still relatively poor. There is a high unmet need for both prophylaxis and treatment of PML. The aim of this review is to discuss potential drug candidates for prophylaxis and treatment of PML with a critical review of previously conducted and completed PML treatment studies as well as to provide perspectives for future therapies.
Collapse
Affiliation(s)
| | | | | | | | - Maggie Liu
- The Progressive Multifocal Leukeoncephalopathy Consortium Secretariat, Drinker Biddle & Reath LLP, 1500 K Street NW, Washington, DC, USA
| | | |
Collapse
|
3
|
The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses 2015; 7:1871-901. [PMID: 25866902 PMCID: PMC4411681 DOI: 10.3390/v7041871] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.
Collapse
|
4
|
Suzuki T. [Investigation of Molecular Mechanism of JC virus Viroporin Activity]. Uirusu 2015; 65:135-144. [PMID: 26923968 DOI: 10.2222/jsv.65.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Viroporins are small and hydrophobic viral proteins that form pores on host cell membranes, and their expression can increase the permeability of cellular membranes and the production of progeny virus particles. JC virus (JCV) is the causative agent of progressive multifocal leukoenchephalopathy (PML). We demonstrate that JCV Agno, which is the small and hydrophobic protein, andincreases the plasma membrane permeability and virion release, acts as a viroporin. We also demonstrate that an interaction of Agno with a host cellular protein regulates the viroporin activity of Agno. These findings indicate a new paradigm in virus-host interactions regulating viroporin activity and viral replication.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases
| |
Collapse
|
5
|
Abstract
UNLABELLED The human fetal glial cell line SVG was generated in 1985 by transfecting primary fetal brain cells with a plasmid containing an origin-defective mutant of simian virus 40 (SV40). The cells, which express SV40 large T-antigen, support the replication of human JC polyomavirus (JCPyV) and have been used for JCPyV studies but also for other studies in which cells of neural origin were desirable. We intended to use the SVG p12 cells from ATCC for antiviral drug studies with JCPyV. However, during initial experiments, immunofluorescence microscopy controls unexpectedly revealed cells expressing the late viral proteins VP1, VP2/VP3, and agno. This was confirmed by Western blotting. Since our agnoprotein antiserum is specific for BKPyV agnoprotein, infection with BKPyV was suspected. Indeed, specific BKPyV PCR of SVG p12 supernatants revealed a viral load of >1 × 10(10) genomic equivalents/ml. Negative-staining electron microscopy showed characteristic polyomavirus virions, and infectious BKPyV was transmitted from SVG p12 supernatant to other cells. Long-range PCR covering the viral genome, followed by DNA sequencing, identified BKPyV strain UT as well as deletion derivatives. This was confirmed by next-generation sequencing. JCPyV (MAD-4) was found to infect apparently uninfected and BKPyV-infected SVG p12 cells. In total, 4 vials from 2 different ATCC lots of SVG p12 cells dating back to 2006 contained BKPyV, whereas the subclone SVG-A was negative. In conclusion, SVG p12 cells from ATCC contain infectious BKPyV. This may have affected results and interpretations of previous studies, and caution should be taken in future experiments. IMPORTANCE This work reveals that one of the most frequently used cell lines for JC polyomavirus (JCPyV) research, the SV40-immortalized human fetal glial cell line SVG p12 obtained directly from ATCC, contains infectious BK polyomavirus (BKPyV) of strain UT and a spectrum of defective mutants. Strain UT has been previously found in urine and in tumors of different patients but is also frequently used for research. It is therefore not clear if BKPyV was present in the brain tissue used to generate the cell line or if this is a contamination. Although productive JCPyV infection of SVG cells was not dependent on prior BKPyV infection, the unnoticed presence of BKPyV may have influenced the results of studies using these cells. The interpretation of past results should therefore be reconsidered and cells tested for BKPyV before new studies are initiated. The frequently used subclone SVG-A did not contain BKPyV and could be a useful substitute.
Collapse
|
6
|
Lin MC, Wang M, Fang CY, Chen PL, Shen CH, Chang D. Inhibition of BK virus replication in human kidney cells by BK virus large tumor antigen-specific shRNA delivered by JC virus-like particles. Antiviral Res 2014; 103:25-31. [PMID: 24406668 DOI: 10.1016/j.antiviral.2013.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022]
Abstract
Polyomavirus-associated nephropathy (PVAN) due to lytic infection by the BK polyomavirus (BKPyV) remains an important cause of allograft dysfunction and graft loss in renal transplant recipients. PVAN is commonly treated by reducing the dosage of immunosuppressive drugs and adding adjuvant antiviral agents, but the outcomes have been less than satisfactory. The BKPyV early protein large tumor antigen (LT) is indispensable for viral genome replication and viral late protein expression. Therefore, suppressing LT expression may be a way to inhibit BKPyV replication without harming the host human kidney cells. Previous studies have shown that JC polyomavirus (JCPyV) virus-like particles (VLPs), which have tropism for the human kidney, can package and transfer exogenous genes into human kidney cells for expression. In this study, we constructed an expression plasmid for a BKPyV LT-specific shRNA (shLT) and used JCPyV VLPs as a delivery vehicle to transduce the shLT plasmid into BKPyV-infected human kidney cells. The expression of BKPyV early (LT) and late (VP1) proteins was examined after transduction by immunofluorescence microscopy and Western blotting. We found that transduction with the shLT plasmid decreased the proportions of BKPyV LT- and VP1-expressing cells by 73% and 82%, respectively, relative to control. The viral genomes were also decreased by 56%. These results point to the promising possibility of developing shLT-transducing JCPyV VLPs as a specific anti-BKPyV approach for PVAN treatment.
Collapse
Affiliation(s)
- Mien-Chun Lin
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan; Department of Urology, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chiung-Yao Fang
- Department of Medical Research, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pei-Lain Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| | - Deching Chang
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan.
| |
Collapse
|
7
|
Takahashi K, Orba Y, Kimura T, Wang L, Kohsaka S, Tsuda M, Tanino M, Nishihara H, Nagashima K, Sawa H, Tanaka S. Relationship between methyl CpG binding protein 2 and JC viral proteins. Jpn J Infect Dis 2013; 66:126-32. [PMID: 23514909 DOI: 10.7883/yoken.66.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JC virus (JCV) is a causative agent of progressive multifocal leukoencephalopathy (PML). Methyl CpG binding protein 2 (MeCP2) is a transcriptional control nuclear protein that is abundantly expressed in neurons. We previously observed that the MeCP2 protein is expressed in JCV large T antigen (TAg)-expressing glial cells in PML brains. To investigate the relationship between MeCP2 and JCV TAg, we examined the promoter activity and mRNA and protein expression levels of MeCP2 in JCV TAg-expressing cells. We found that JCV TAg enhances the promoter activity of MeCP2, but does not enhance the mRNA and protein levels of MeCP2. These results suggest that post-transcriptional mechanisms may play a role in MeCP2 expression.
Collapse
Affiliation(s)
- Kenta Takahashi
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mizusawa H, Kishida S, Saijo M, Yukishita M, Shishido-Hara Y, Sawa H, Nagashima K, Nukuzuma S, Yamada M. [Progressive multifocal leukoencephalopathy (PML)]. Rinsho Shinkeigaku 2011; 51:1051-1057. [PMID: 22277475 DOI: 10.5692/clinicalneurol.51.1051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is caused by reactivation of latently infected JCV when hosts' immune system is impaired by HIV infection, hematologic diseases, collagen diseases, immunemodulatory therapy and so on. PML was rare but HIV infection and Natalizumab have made it much more common while the prognosis is much better than other PML. PML patients present with various signs and symptoms including hemiparesis, dementia, aphasia, visual disturbance, cranial nerve paresis, cerebellar signs and bladder bowel disturbance. Brain MRI reveals characteristic demyelinating lesions in the CNS white matter and CSF mild increase of protein with or without mild mononuclear pleocytosis. Detection of JCV genome from CSF is crucial for the clinical diagnosis of PML. PML was once thought to be fatal but some HIV infected PML patients showed halting progression or even recovery after introduction of HAART. In addition, anti-malarial drug mefloquine was found to be effective. Recovery of immunity may provoke some inflammatory responses known as immune reconstruction inflammatory syndrome (IRIS) which requires high dose corticosteroid. In Japan, we are providing free test of CSF-JCV genome and organized a unique system for surveillance and clinical research of PML. Using this system we hope to improve diagnosis and therapy of PML in Japan.
Collapse
Affiliation(s)
- Hidehiro Mizusawa
- Department of Neurology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tavazzi E, White MK, Khalili K. Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev Med Virol 2011; 22:18-32. [PMID: 21936015 DOI: 10.1002/rmv.710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 12/12/2022]
Abstract
The fatal CNS demyelinating disease, progressive multifocal leukoencephalopathy (PML), is rare and appears to occur almost always as a consequence of immune dysfunction. Thus, it is associated with HIV/AIDS and also as a side effect of certain immunomodulatory monoclonal antibody therapies. In contrast to the rarity of PML, the etiological agent of the disease, the polyomavirus JC (JCV), is widespread in populations worldwide. In the 40 years since JCV was first isolated, much has been learned about the virus and the disease from laboratory and clinical observations. However, there are many aspects of the viral life cycle and of the pathogenesis of the disease that remain unclear, and our understanding is constantly evolving. In this review, we will discuss our current understanding of the clinical features of PML and molecular characteristics of JCV and of how they relate to each other. Clinical observations can inform molecular studies of the virus, and likewise, molecular findings concerning the life cycle of the virus can guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Chang CF, Wang M, Ou WC, Chen PL, Shen CH, Lin PY, Fang CY, Chang D. Human JC virus-like particles as a gene delivery vector. Expert Opin Biol Ther 2011; 11:1169-75. [DOI: 10.1517/14712598.2011.583914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene Ther 2010; 17:1033-41. [PMID: 20410928 DOI: 10.1038/gt.2010.50] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The JC virus (JCV) may infect human oligodendrocytes and consequently cause progressive multifocal leukoencephalopathy (PML) in patients with immune deficiency. In addition, the virus has also been detected in other human tissues, including kidney, B lymphocytes, and gastrointestinal tissue. The recombinant major structural protein, VP1, of JCV is able to self-assemble to form a virus-like particle (VLP). It has been shown that the VLP is capable of packaging and delivering exogenous DNA into human cells for gene expression. However, gene transfer is not efficient when using in vitro DNA packaging methods with VLPs. In this study, a novel in vivo DNA packaging method using the JCV VLP was used to obtain high efficiency gene transfer. A reporter gene, the green fluorescence protein, and a suicide gene, the herpes simplex virus thymidine kinase (tk), were encapsidated into VLPs in Escherichia coli. The VLP was used to specifically target human colon carcinoma (COLO-320 HSR) cells in a nude mouse model. Intraperitoneal administration of ganciclovir in the tk-VLP-treated mice greatly reduced tumor volume. These findings suggest that it will be possible to develop the JCV VLP as a gene delivery vector for human colon cancer therapy in the future.
Collapse
|
12
|
Suzuki T, Orba Y, Okada Y, Sunden Y, Kimura T, Tanaka S, Nagashima K, Hall WW, Sawa H. The human polyoma JC virus agnoprotein acts as a viroporin. PLoS Pathog 2010; 6:e1000801. [PMID: 20300659 PMCID: PMC2837404 DOI: 10.1371/journal.ppat.1000801] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 02/01/2010] [Indexed: 11/18/2022] Open
Abstract
Virus infections can result in a range of cellular injuries and commonly this involves both the plasma and intracellular membranes, resulting in enhanced permeability. Viroporins are a group of proteins that interact with plasma membranes modifying permeability and can promote the release of viral particles. While these proteins are not essential for virus replication, their activity certainly promotes virus growth. Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease resulting from lytic infection of oligodendrocytes by the polyomavirus JC virus (JCV). The genome of JCV encodes six major proteins including a small auxiliary protein known as agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to viral propagation at various stages in the replication cycle, including transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. Previous studies from our and other laboratories have indicated that JCV agnoprotein plays an important, although as yet incompletely understood role in the propagation of JCV. Here, we demonstrate that agnoprotein possesses properties commonly associated with viroporins. Our findings demonstrate that: (i) A deletion mutant of agnoprotein is defective in virion release and viral propagation; (ii) Agnoprotein localizes to the ER early in infection, but is also found at the plasma membrane late in infection; (iii) Agnoprotein is an integral membrane protein and forms homo-oligomers; (iv) Agnoprotein enhances permeability of cells to the translation inhibitor hygromycin B; (v) Agnoprotein induces the influx of extracellular Ca(2+); (vi) The basic residues at amino acid positions 8 and 9 of agnoprotein key are determinants of the viroporin activity. The viroporin-like properties of agnoprotein result in increased membrane permeability and alterations in intracellular Ca(2+) homeostasis leading to membrane dysfunction and enhancement of virus release.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yasuko Orba
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- Global COE Program for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Okada
- Career-Path Promotion Unit for Young Life Scientists, ICDO, Kyoto University, Kyoto, Japan
| | - Yuji Sunden
- Laboratory of Comparative Pathology, Hokkaido University School of Veterinary Medicine, Sapporo, Japan
| | - Takashi Kimura
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Shinya Tanaka
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Kazuo Nagashima
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - William W. Hall
- Centre for Research in Infectious Diseases, University College Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- Global COE Program for Zoonosis Control, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
13
|
Nukuzuma S, Nakamichi K, Nukuzuma C, Takegami T. Inhibitory effect of serotonin antagonists on JC virus propagation in a carrier culture of human neuroblastoma cells. Microbiol Immunol 2009; 53:496-501. [PMID: 19703243 DOI: 10.1111/j.1348-0421.2009.00156.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human polyomavirus, JCV, causes fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). It has been shown that 5HT(2A)R acts as a cellular receptor for JCV on human glial cells. In the current study, we examined the inhibitory effects of 5HT(2A)R antagonists, ketanserin and ritanserin, both on JCV infection and on propagation by using human neuroblastoma cells IMR-32 and JCI, which continuously produce JCV. Transcriptional analysis revealed that 5HT(2A)R was constitutively expressed in JCI cells. Treatments with 5HT(2A)R antagonists led to a significant reduction in the titers of progeny viruses and the population of infected JCI cells. In addition, the amount of JCV genomic DNA was decreased in JCI cells in the presence of 5HT(2A)R antagonists. These results indicate that 5HT(2A)R antagonists have an inhibitory effect on JCV infection and reproduction, and JCI cells are applicable to an experimental model for pharmacological evaluation of antiviral agents against JCV.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Microbiology, Kobe Institute of Health, Kobe, Hyogo, Japan.
| | | | | | | |
Collapse
|
14
|
Abstract
Polyomaviruses are a growing family of small DNA viruses with a narrow tropism for both the host species and the cell type in which they productively replicate. Species host range may be constrained by requirements for precise molecular interactions between the viral T antigen, host replication proteins, including DNA polymerase, and the viral origin of replication, which are required for viral DNA replication. Cell type specificity involves, at least in part, transcription factors that are necessary for viral gene expression and restricted in their tissue distribution. In the case of the human polyomaviruses, BK virus (BKV) replication occurs in the tubular epithelial cells of the kidney, causing nephropathy in kidney allograft recipients, while JC virus (JCV) replication occurs in the glial cells of the central nervous system, where it causes progressive multifocal leukoencephalopathy. Three new human polyomaviruses have recently been discovered: MCV was found in Merkel cell carcinoma samples, while Karolinska Institute Virus and Washington University Virus were isolated from the respiratory tract. We discuss control mechanisms for gene expression in primate polyomaviruses, including simian vacuolating virus 40, BKV, and JCV. These mechanisms include not only modulation of promoter activities by transcription factor binding but also enhancer rearrangements, restriction of DNA methylation, alternate early mRNA splicing, cis-acting elements in the late mRNA leader sequence, and the production of viral microRNA.
Collapse
|
15
|
Dang LT, Kondo H, Hirono I, Aoki T. Inhibition of red seabream iridovirus (RSIV) replication by small interfering RNA (siRNA) in a cell culture system. Antiviral Res 2008; 77:142-9. [DOI: 10.1016/j.antiviral.2007.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 11/26/2022]
|
16
|
Matoba T, Orba Y, Suzuki T, Makino Y, Shichinohe H, Kuroda S, Ochiya T, Itoh H, Tanaka S, Nagashima K, Sawa H. An siRNA against JC virus (JCV) agnoprotein inhibits JCV infection in JCV-producing cells inoculated in nude mice. Neuropathology 2007; 28:286-94. [PMID: 18179406 DOI: 10.1111/j.1440-1789.2007.00878.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) is the etiological agent of the demyelinating disease progressive multifocal leukoencephalopathy (PML). Because JCV has a very narrow host range, it has been difficult to develop an animal model of JCV infection; as a result, no effective therapy for PML has been established. In this study, we have tried to create an animal model that replaces an in vivo JCV infection. As a result, we have obtained a stable persistence of JCV-infected human cells in the mouse brain by inoculating the virus-infected cells into the nude mice brains. In this model, the JCV-infected cells were well preserved in the nude mouse brains for 2 weeks. We then treated JCV-injected brains with an siRNA against the JCV agnoprotein that is known to be an effective inhibitor of JCV infection in vitro. A highly purified type I collagen, atelocollagen, was used as a carrier for the siRNA. The siRNA inhibited the expression of JCV protein in inoculated JCV-infected cells in the mouse brain, compared to the medium containing only atelocollagen used as a placebo. Thus, the combination of siRNA and atelocollagen might be a candidate therapeutic agent for the treatment of JCV infection.
Collapse
Affiliation(s)
- Tomoko Matoba
- Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Orba Y, Sunden Y, Suzuki T, Nagashima K, Kimura T, Tanaka S, Sawa H. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation. Virology 2007; 370:173-83. [PMID: 17919676 DOI: 10.1016/j.virol.2007.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML).
Collapse
Affiliation(s)
- Yasuko Orba
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, N18, W9, Kita-ku, 060-0818, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Sunden Y, Semba S, Suzuki T, Okada Y, Orba Y, Nagashima K, Umemura T, Sawa H. DDX1 promotes proliferation of the JC virus through transactivation of its promoter. Microbiol Immunol 2007; 51:339-47. [PMID: 17380054 DOI: 10.1111/j.1348-0421.2007.tb03907.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we demonstrated that the DEAD box protein 1 (DDX1), an RNA helicase, and the cleavage stimulation factor (CstF) form a complex that binds to the JC virus transcriptional control region (JCV-TCR). Here, we examined the function of DDX1, which is expressed at much higher levels in the JCV-susceptible cell line IMR-32 than in non-susceptible cell lines. DDX1 had no effect on the replication efficiency of JCV, but overexpression of DDX1 significantly increased transactivation of the JCV promoter. Furthermore, DDX1 enhanced the expression of JCV proteins in JCV infected cells, and knockdown of DDX1 using small interfering (si) RNA suppressed the expression of JCV proteins. Our results clearly demonstrate that DDX1 regulates proliferation of JCV in vitro through transcriptional activation.
Collapse
Affiliation(s)
- Yuji Sunden
- Laboratory of Comparative Pathology, Hokkaido University School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sunden Y, Semba S, Suzuki T, Okada Y, Orba Y, Nagashima K, Umemura T, Sawa H. Identification of DDX1 as a JC virus transcriptional control region-binding protein. Microbiol Immunol 2007; 51:327-37. [PMID: 17380053 DOI: 10.1111/j.1348-0421.2007.tb03915.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the mechanism behind JC virus (JCV) cell specificity we performed electrophoretic mobility shift assays (EMSA) using probes derived from the JCV transcriptional control region (JCV-TCR). Using nuclear extracts from the JCV-susceptible neuroblastoma cell line IMR-32, EMSA revealed a 670 kDa JCV-TCR-binding protein complex designated as #3-bp. This complex could not be detected in nuclear extracts from non-susceptible cell lines. Using column chromatographic purifi-cation and microsequencing, we identified cleavage stimulation factor (CstF) as a component of #3-bp. However, as CstF is present in many cell types, we speculated that the IMR-32-specific component(s) of #3-bp bind CstF. We performed a yeast two-hybrid assay using CstF-77 as the bait against a HeLa cDNA-subtracted IMR-32 cDNA library. This analysis detected binding between CstF-77 and the RNA helicase DDX1. Subsequently, biotinylated DNA affinity precipitation and chromatin immunoprecipitation assays also confirmed that DDX1 binds specifically to JCV-TCR. Our findings indicate that an association between DDX1 and the JCV-TCR may play a significant role in JCV infection in IMR-32 cells.
Collapse
Affiliation(s)
- Yuji Sunden
- Laboratory of Comparative Pathology, Hokkaido University School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double‐stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene‐specific therapeutics. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mali Ketzinel‐Gilad
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
21
|
Akan I, Sariyer IK, Biffi R, Palermo V, Woolridge S, White MK, Amini S, Khalili K, Safak M. Human polyomavirus JCV late leader peptide region contains important regulatory elements. Virology 2006; 349:66-78. [PMID: 16497349 DOI: 10.1016/j.virol.2006.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/01/2005] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader peptide region, indicating the critical importance of these two protected regions in JCV regulation. Altogether, these findings suggest that the late leader peptide region contains important regulatory elements to which transcription factors bind and contribute to the JCV gene regulation and replication.
Collapse
Affiliation(s)
- Ilhan Akan
- Department of Neuroscience, Center for Neurovirology, Laboratory of Molecular Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
23
|
van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006; 24:186-93. [PMID: 16503061 DOI: 10.1016/j.tibtech.2006.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/25/2005] [Accepted: 02/13/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a mechanism for sequence-specific gene silencing guided by double-stranded RNA. In plants and insects it is well established that RNAi is instrumental in the response to viral infections; whether RNAi has a similar function in mammals is under intense investigation. Recent studies to address this question have identified some unanticipated interactions between the RNAi machinery and mammalian viruses. Furthermore, introduction of virus-specific small interfering RNAs (siRNAs) into cells, thus programming the RNAi machinery to target viruses, is an effective therapeutic approach to inhibit virus replication in vitro and in animal models. Although several issues remain to be addressed, such as delivery and viral escape, these findings hold tremendous potential for the development of RNAi-based antiviral therapeutics.
Collapse
Affiliation(s)
- Ronald P van Rij
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
24
|
Munir S, Kaur K, Kapur V. Avian metapneumovirus phosphoprotein targeted RNA interference silences the expression of viral proteins and inhibits virus replication. Antiviral Res 2005; 69:46-51. [PMID: 16310868 PMCID: PMC7114220 DOI: 10.1016/j.antiviral.2005.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/15/2005] [Accepted: 09/15/2005] [Indexed: 01/01/2023]
Abstract
Avian metapneumovirus (aMPV) is one of the major causes of serious respiratory infections of poultry and leads to considerable economic losses to food animal production worldwide. Here, we show that double stranded short interfering RNA (siRNA) molecules corresponding to aMPV phosphoprotein (P) gene silence P RNA and protein expression. These siRNAs broadly reduced the expression of other viral proteins in addition to P, but did not have a discernable effect on cellular protein expression. The exposure of cells to P-specific siRNAs also led to inhibition of virus replication as evidenced by marked reduction in the progeny virion titers. Taken together, the findings suggest that exogenous P silencing siRNAs can inhibit aMPV replication with potential implications in the design of novel siRNA based prophylactics.
Collapse
Affiliation(s)
- Shirin Munir
- Department of Microbiology and Biomedical Genomics Center, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
25
|
Thakker DR, Hoyer D, Cryan JF. Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther 2005; 109:413-38. [PMID: 16183135 DOI: 10.1016/j.pharmthera.2005.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 12/31/2022]
Abstract
Psychiatric and neurological disorders are among the most complex, poorly understood, and debilitating diseases in medicine. The burgeoning advances in functional genomic technologies have led to the identification of a vast number of novel genes that are potentially implicated in the pathophysiology of such disorders. However, many of these candidate genes have not yet been functionalized and require validation in vivo. Traditionally, abrogating gene function is one of the primary means of examining the physiological significance of a given gene product. Several methods have been developed for gene ablation or knockdown, however, with limited levels of success. The recent discovery of RNA interference (RNAi), as a highly efficient method for gene knockdown, has been one of the major breakthroughs in molecular medicine. In vivo application of RNAi is further demonstrating the promise of this technology. Recent efforts have focused on applying RNAi-based knockdown to understand the genes implicated in neuropsychiatric disorders. However, the greatest challenge with this approach is translating the success of RNAi from mammalian cell cultures to the brain in animal models of disease and, subsequently, in patients. In this review, we describe the various methods that are being developed to deliver RNAi into the brain for down-regulating gene expression and subsequent phenotyping of genes in vivo. We illustrate the utility of various approaches with a few successful examples and also discuss the potential benefits and pitfalls associated with the use of each delivery approach. Appropriate tailoring of tools that deliver RNAi in the brain may not only aid our understanding of the complex pathophysiology of neuropsychiatric disorders, but may also serve as a valuable therapy for disorders, where there is an immense unmet medical need.
Collapse
Affiliation(s)
- Deepak R Thakker
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
26
|
Okada Y, Suzuki T, Sunden Y, Orba Y, Kose S, Imamoto N, Takahashi H, Tanaka S, Hall WW, Nagashima K, Sawa H. Dissociation of heterochromatin protein 1 from lamin B receptor induced by human polyomavirus agnoprotein: role in nuclear egress of viral particles. EMBO Rep 2005; 6:452-7. [PMID: 15864296 PMCID: PMC1299312 DOI: 10.1038/sj.embor.7400406] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 03/21/2005] [Accepted: 03/24/2005] [Indexed: 11/08/2022] Open
Abstract
The nuclear envelope is one of the chief obstacles to the translocation of macromolecules that are larger than the diameter of nuclear pores. Heterochromatin protein 1 (HP1) bound to the lamin B receptor (LBR) is thought to contribute to reassembly of the nuclear envelope after cell division. Human polyomavirus agnoprotein (Agno) has been shown to bind to HP1alpha and to induce its dissociation from LBR, resulting in destabilization of the nuclear envelope. Fluorescence recovery after photobleaching showed that Agno increased the lateral mobility of LBR in the inner nuclear membrane. Biochemical and immunofluorescence analyses showed that Agno is targeted to the nuclear envelope and facilitates the nuclear egress of polyomavirus-like particles. These results indicate that dissociation of HP1alpha from LBR and consequent perturbation of the nuclear envelope induced by polyomavirus Agno promote the translocation of virions out of the nucleus.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Molecular and Cellular Pathology, and Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- CREST, JST, Sapporo 060-8638, Japan
- These authors contributed equally to this work
| | - Tadaki Suzuki
- Laboratory of Molecular and Cellular Pathology, and Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- CREST, JST, Sapporo 060-8638, Japan
- These authors contributed equally to this work
| | - Yuji Sunden
- Laboratory of Molecular and Cellular Pathology, and Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- CREST, JST, Sapporo 060-8638, Japan
| | - Yasuko Orba
- Laboratory of Molecular and Cellular Pathology, and Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- CREST, JST, Sapporo 060-8638, Japan
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN, Discovery Research Institute, Wako, Saitama 351-0198, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN, Discovery Research Institute, Wako, Saitama 351-0198, Japan
| | | | - Shinya Tanaka
- Laboratory of Molecular and Cellular Pathology, and Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- CREST, JST, Sapporo 060-8638, Japan
| | - William W Hall
- Department of Medical Microbiology, University College, Dublin 4, Ireland
| | - Kazuo Nagashima
- Laboratory of Molecular and Cellular Pathology, and Laboratory of Comparative Pathology, Graduate School of Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
- CREST, JST, Sapporo 060-8638, Japan
| | - Hirofumi Sawa
- CREST, JST, Sapporo 060-8638, Japan
- 21st Century COE Program for Zoonosis Control, Graduate School of Hokkaido University, Sapporo 060-8638, Japan
- Department of Molecular Biology and Diagnosis, Hokkaido University Research Center for Zoonosis Control, Sapporo 060-8638, Japan
| |
Collapse
|
27
|
Suzuki T, Okada Y, Semba S, Orba Y, Yamanouchi S, Endo S, Tanaka S, Fujita T, Kuroda S, Nagashima K, Sawa H. Identification of FEZ1 as a protein that interacts with JC virus agnoprotein and microtubules: role of agnoprotein-induced dissociation of FEZ1 from microtubules in viral propagation. J Biol Chem 2005; 280:24948-56. [PMID: 15843383 DOI: 10.1074/jbc.m411499200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human polyomavirus JC virus (JCV) is the causative agent of a fatal demyelinating disease, progressive multifocal leukoencephalopathy, and encodes six major proteins, including agnoprotein. Agnoprotein colocalizes with microtubules in JCV-infected cells, but its function is not fully understood. We have now identified fasciculation and elongation protein zeta 1 (FEZ1) as a protein that interacted with JCV agnoprotein in a yeast two-hybrid screen of a human brain cDNA library. An in vitro binding assay showed that agnoprotein interacted directly with FEZ1 and microtubules. A microtubule cosedimentation assay revealed that FEZ1 also associates with microtubules and that agnoprotein induces the dissociation of FEZ1 from microtubules. Agnoprotein inhibited the promotion by FEZ1 of neurite outgrowth in PC12 cells. Conversely, overexpression of FEZ1 suppressed JCV protein expression and intracellular trafficking in JCV-infected cells. These results suggest that FEZ1 promotes neurite extension through its interaction with microtubules, and that agnoprotein facilitates JCV propagation by inducing the dissociation of FEZ1 from microtubules.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Laboratory of Molecular and Cellular Pathology, School of Medicine, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moens U, Van Ghelue M. Polymorphism in the genome of non-passaged human polyomavirus BK: implications for cell tropism and the pathological role of the virus. Virology 2005; 331:209-31. [PMID: 15629766 DOI: 10.1016/j.virol.2004.10.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/04/2004] [Accepted: 10/12/2004] [Indexed: 11/20/2022]
Abstract
Worldwide studies have demonstrated that the human polyomavirus BK resides ubiquitously in the human population. After primary infection, which occurs mainly during childhood, the virus seems to establish a life-long harmless infection in the host. However, impaired immune functions may lead to reactivation of BK virus. The recent findings that associate BK virus with an increasing number of clinical conditions, including renal, pulmonary, ophthalmologic, hepatic, neurological, and autoimmune diseases, has resuscitated the interest in this virus as a pathogenic agent. This review focuses on polymorphisms in the genomes of non-passaged BK virus isolates from nonneoplastic tissues, with special focus on the transcriptional control region, the regulatory proteins large T-antigen and agnoprotein, and the major capsid protein VP1. The possible implications of genome diversity with respect to cell tropism, pathogenicity, and therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | |
Collapse
|
29
|
Khalili K, White MK, Sawa H, Nagashima K, Safak M. The agnoprotein of polyomaviruses: a multifunctional auxiliary protein. J Cell Physiol 2004; 204:1-7. [PMID: 15573377 DOI: 10.1002/jcp.20266] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The late region of the three primate polyomaviruses (JCV, BKV, and SV40) encodes a small, highly basic protein known as agnoprotein. While much attention during the last two decades has focused on the transforming proteins encoded by the early region (small and large T-antigens), it has become increasingly evident that agnoprotein has a critical role in the regulation of viral gene expression and replication, and in the modulation of certain important host cell functions including cell cycle progression and DNA repair. The importance of agnoprotein is underscored by its expression during lytic infection of glial cells by JCV that occurs in progressive multifocal leukoencephalopathy (PML), and also in some JCV-associated human neural tumors particularly medulloblastoma. In this review, we will discuss the structure and function of agnoprotein in the viral life cycle during the course of lytic infection and the consequences of agnoprotein expression for the host cell.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|