1
|
Wei J, Ning H, Ramos‐Espinosa O, Eickhoff CS, Hou R, Wang Q, Fu M, Liu EY, Fan D, Hoft DF, Liu J. Tristetraprolin mediates immune evasion of mycobacterial infection in macrophages. FASEB Bioadv 2024; 6:249-262. [PMID: 39114448 PMCID: PMC11301268 DOI: 10.1096/fba.2024-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Immune evasion of Mycobacterium tuberculosis (Mtb) facilitates intracellular bacterial growth. The mechanisms of immune evasion, however, are still not fully understood. In this study, we reveal that tristetraprolin (TTP), one of the best characterized RNA-binding proteins controlling the stability of targeted mRNAs, mediates innate immune evasion of mycobacteria. We found that TTP knockout mice displayed reduced bacterial burden in the early stage after Mtb aerosol challenge. Macrophages deficient in TTP also showed an inhibition in intracellular mycobacterial growth. Live mycobacteria induced TTP protein expression in macrophages, which was blocked by the mTOR inhibitor rapamycin. Rapamycin and AZD8055 specifically blocked 4EBP1 phosphorylation in infected macrophages and suppressed intracellular BCG growth. Rapamycin promoted TTP protein degradation through the ubiquitination pathway, whereas the proteasome inhibitor MG-132 blocked rapamycin function and thus stabilized TTP protein. TTP induction suppressed the expression of iNOS/TNF-α/IL-12/IL-23, and weakened protective immune responses in macrophages, whereas rapamycin enhanced the bactericidal effects through TTP inhibition. Moreover, blocking TTP binding increased the expression of TNF-α and iNOS and suppressed intracellular mycobacterial growth. Overall, our study reveals a novel role for RNA-binding protein TTP in Mtb immune evasion mechanisms and provides a potential target for host-directed therapy against tuberculosis (TB).
Collapse
Affiliation(s)
- Jiawei Wei
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Octavio Ramos‐Espinosa
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Basic Medical Science, School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Ethan Y. Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Daping Fan
- Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| |
Collapse
|
2
|
Choi JH, Luo J, Hesketh GG, Guo S, Pistofidis A, Ladak RJ, An Y, Naeli P, Alain T, Schmeing TM, Gingras AC, Duchaine T, Zhang X, Sonenberg N, Jafarnejad SM. Repression of mRNA translation initiation by GIGYF1 via disrupting the eIF3-eIF4G1 interaction. SCIENCE ADVANCES 2024; 10:eadl5638. [PMID: 39018414 PMCID: PMC466957 DOI: 10.1126/sciadv.adl5638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Viruses can selectively repress the translation of mRNAs involved in the antiviral response. RNA viruses exploit the Grb10-interacting GYF (glycine-tyrosine-phenylalanine) proteins 2 (GIGYF2) and eukaryotic translation initiation factor 4E (eIF4E) homologous protein 4EHP to selectively repress the translation of transcripts such as Ifnb1, which encodes the antiviral cytokine interferon-β (IFN-β). Herein, we reveal that GIGYF1, a paralog of GIGYF2, robustly represses cellular mRNA translation through a distinct 4EHP-independent mechanism. Upon recruitment to a target mRNA, GIGYF1 binds to subunits of eukaryotic translation initiation factor 3 (eIF3) at the eIF3-eIF4G1 interaction interface. This interaction disrupts the eIF3 binding to eIF4G1, resulting in transcript-specific translational repression. Depletion of GIGYF1 induces a robust immune response by derepressing IFN-β production. Our study highlights a unique mechanism of translational regulation by GIGYF1 that involves sequestering eIF3 and abrogating its binding to eIF4G1. This mechanism has profound implications for the host response to viral infections.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jun Luo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Geoffrey G. Hesketh
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Shuyue Guo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Angelos Pistofidis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Reese Jalal Ladak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Yuxin An
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Thomas Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
3
|
Eke L, Tweedie A, Cutts S, Wise EL, Elliott G. Translational arrest and mRNA decay are independent activities of alphaherpesvirus virion host shutoff proteins. J Gen Virol 2024; 105:001976. [PMID: 38572740 PMCID: PMC11083458 DOI: 10.1099/jgv.0.001976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.
Collapse
Affiliation(s)
- Lucy Eke
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Alistair Tweedie
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Sophie Cutts
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Emma L. Wise
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Velasco BR, Izquierdo JM. T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms23147836. [PMID: 35887183 PMCID: PMC9318959 DOI: 10.3390/ijms23147836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology.
Collapse
|
5
|
Induction and modulation of the unfolded protein response during porcine deltacoronavirus infection. Vet Microbiol 2022; 271:109494. [PMID: 35752087 PMCID: PMC9192130 DOI: 10.1016/j.vetmic.2022.109494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that has the potential for cross-species infection. Many viruses have been reported to induce endoplasmic reticulum stress (ERS) and activate the unfolded protein response (UPR). To date, little is known about whether and, if so, how the UPR is activated by PDCoV infection. Here, we investigated the activation state of UPR pathways and their effects on viral replication during PDCoV infection. We found that PDCoV infection induced ERS and activated all three known UPR pathways (inositol-requiring enzyme 1 [IRE1], activating transcription factor 6 [ATF6], and PKR-like ER kinase [PERK]), as demonstrated by IRE1-mediated XBP1 mRNA cleavage and increased mRNA expression of XBP1s, ATF4, CHOP, GADD34, GRP78, and GRP94, as well as phosphorylated eIF2α expression. Through pharmacologic treatment, RNA interference, and overexpression experiments, we confirmed the negative role of the PERK-eIF2α pathway and the positive regulatory role of the ATF6 pathway, but found no obvious effect of IRE1 pathway, on PDCoV replication. Taken together, our results characterize, for the first time, the state of the ERS response during PDCoV infection and identify the PERK and ATF6 pathways as potential antiviral targets.
Collapse
|
6
|
Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. J Virol 2022; 96:e0208621. [PMID: 34985993 DOI: 10.1128/jvi.02086-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.
Collapse
|
7
|
Hu H, Zhao X, Cui Y, Li S, Gong Y. SpTIA-1 suppresses WSSV infection by promoting apoptosis in mud crab (Scylla paramamosain). Mol Immunol 2021; 140:158-166. [PMID: 34715578 DOI: 10.1016/j.molimm.2021.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
TIA-1 (T cell restricted intracellular antigen-1) is a kind of RNA-binding protein which serves as the downstream of CED-9 (a BCL2 homolog) and induces apoptosis under stress conditions. So far, the function of apoptosis mediated by TIA-1 has been extensively studied in higher animals, and apoptosis happens to be related to biological immune defense. However, the involvement of TIA-1 in the study of immune function during viral infection has not been clearly studied, especially in marine invertebrates. In the study, SpTIA-1 in mud crab (Scylla paramamosain) was specifically identified. The Open Reading Frame (ORF) of SpTIA-1 was consisted of 1116 nucleotide bases and encoded 372 amino acids. Besides, the results showed that the expression of SpTIA-1 was obviously up-regulated during WSSV (White Spot Syndrome Virus) infection in hemocytes of mud crab. Furthermore, through RNAi approach, we found that SpTIA-1 could activate Caspase-3 signaling and increase ROS levels to reduce mitochondrial membrane potential, resulting in the increase of apoptosis rate in hemocytes, which eventually suppressed WSSV multiplication in mud crab. The current study therefore improves the knowledge of antiviral immunity in mud crab and provides new insights into the innate immunity of marine crustaceans.
Collapse
Affiliation(s)
- Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinshan Zhao
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
9
|
Typical Stress Granule Proteins Interact with the 3' Untranslated Region of Enterovirus D68 To Inhibit Viral Replication. J Virol 2020; 94:JVI.02041-19. [PMID: 31941779 DOI: 10.1128/jvi.02041-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Stress granules (SGs) are formed in the cytoplasm under environmental stress, including viral infection. Human enterovirus D68 (EV-D68) is a highly pathogenic virus which can cause serious respiratory and neurological diseases. At present, there is no effective drug or vaccine against EV-D68 infection, and the relationship between EV-D68 infection and SGs is poorly understood. This study revealed the biological function of SGs in EV-D68 infection. Our results suggest that EV-D68 infection induced the accumulation of SG marker proteins Ras GTPase-activated protein-binding protein 1 (G3BP1), T cell intracellular antigen 1 (TIA1), and human antigen R (HUR) in the cytoplasm of infected host cells during early infection but inhibited their accumulation during the late stage. Simultaneously, we revealed that EV-D68 infection induces HUR, TIA1, and G3BP1 colocalization, which marks the formation of typical SGs dependent on protein kinase R (PKR) and eIF2α phosphorylation. In addition, we found that TIA1, HUR, and G3BP1 were capable of targeting the 3' untranslated regions (UTRs) of EV-D68 RNA to inhibit viral replication. However, the formation of SGs in response to arsenite (Ars) gradually decreased as the infection progressed, and G3BP1 was cleaved in the late stage as a strategy to antagonize SGs. Our findings have important implications in understanding the mechanism of interaction between EV-D68 and the host while providing a potential target for the development of antiviral drugs.IMPORTANCE EV-D68 is a serious threat to human health, and there are currently no effective treatments or vaccines. SGs play an important role in cellular innate immunity as a target with antiviral effects. This manuscript describes the formation of SGs induced by EV-D68 early infection but inhibited during the late stage of infection. Moreover, TIA1, HUR, and G3BP1 can chelate a specific site of the 3' UTR of EV-D68 to inhibit viral replication, and this interaction is sequence and complex dependent. However, this inhibition can be antagonized by overexpression of the minireplicon. These findings increase our understanding of EV-D68 infection and may help identify new antiviral targets that can inhibit viral replication and limit the pathogenesis of EV-D68.
Collapse
|
10
|
Dauber B, Saffran HA, Smiley JR. The herpes simplex virus host shutoff (vhs) RNase limits accumulation of double stranded RNA in infected cells: Evidence for accelerated decay of duplex RNA. PLoS Pathog 2019; 15:e1008111. [PMID: 31626661 PMCID: PMC6821131 DOI: 10.1371/journal.ppat.1008111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
The herpes simplex virus virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs and blunts host innate antiviral responses. Previous work demonstrated that cells infected with vhs mutants display enhanced activation of the host double-stranded RNA (dsRNA)-activated protein kinase R (PKR), implying that vhs limits dsRNA accumulation in infected cells. Confirming this hypothesis, we show that partially complementary transcripts of the UL23/UL24 and UL30/31 regions of the viral genome increase in abundance when vhs is inactivated, giving rise to greatly increased levels of intracellular dsRNA formed by annealing of the overlapping portions of these RNAs. Thus, vhs limits accumulation of dsRNA at least in part by reducing the levels of complementary viral transcripts. We then asked if vhs also destabilizes dsRNA after its initial formation. Here, we used a reporter system employing two mCherry expression plasmids bearing complementary 3’ UTRs to produce defined dsRNA species in uninfected cells. The dsRNAs are unstable, but are markedly stabilized by co-expressing the HSV dsRNA-binding protein US11. Strikingly, vhs delivered by super-infecting HSV virions accelerates the decay of these pre-formed dsRNAs in both the presence and absence of US11, a novel and unanticipated activity of vhs. Vhs binds the host RNA helicase eIF4A, and we find that vhs-induced dsRNA decay is attenuated by the eIF4A inhibitor hippuristanol, providing evidence that eIF4A participates in the process. Our results show that a herpesvirus host shutoff RNase destabilizes dsRNA in addition to targeting partially complementary viral mRNAs, raising the possibility that the mRNA destabilizing proteins of other viral pathogens dampen the host response to dsRNA through similar mechanisms. Essentially all viruses produce double-stranded RNA (dsRNA) during infection. Host organisms therefore deploy a variety of dsRNA receptors to trigger innate antiviral defenses. Not surprisingly, viruses in turn produce an array of antagonists to block this host response. The best characterized of the viral antagonists function by binding to and masking dsRNA and/or blocking downstream signaling events. Other less studied viral antagonists appear to function by reducing the levels of dsRNA in infected cells, but exactly how they do so remains unknown. Here we show that one such viral antagonist, the herpes simplex virus vhs ribonuclease, reduces dsRNA levels in two distinct ways. First, as previously suggested, it dampens the accumulation of partially complementary viral mRNAs, reducing the potential for generating dsRNA. Second, it helps remove dsRNA after its formation, a novel and surprising activity of a protein best known for its activity on single-stranded mRNA. Many other viral pathogens produce proteins that target mRNAs for rapid destruction, and it will be important to determine if these also limit host dsRNA responses in similar ways.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Holly A. Saffran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - James R. Smiley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Mouse Norovirus Infection Arrests Host Cell Translation Uncoupled from the Stress Granule-PKR-eIF2α Axis. mBio 2019; 10:mBio.00960-19. [PMID: 31213553 PMCID: PMC6581855 DOI: 10.1128/mbio.00960-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrated stress response (ISR) is a cellular response system activated upon different types of stresses, including viral infection, to restore cellular homeostasis. However, many viruses manipulate this response for their own advantage. In this study, we investigated the association between murine norovirus (MNV) infection and the ISR and demonstrate that MNV regulates the ISR by activating and recruiting key ISR host factors. We observed that during MNV infection, there is a progressive increase in phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in the suppression of host translation, and yet MNV translation still progresses under these conditions. Interestingly, the shutoff of host translation also impacts the translation of key signaling cytokines such as beta interferon, interleukin-6, and tumor necrosis factor alpha. Our subsequent analyses revealed that the phosphorylation of eIF2α was mediated via protein kinase R (PKR), but further investigation revealed that PKR activation, phosphorylation of eIF2α, and translational arrest were uncoupled during infection. We further observed that stress granules (SGs) are not induced during MNV infection and that MNV can restrict SG nucleation and formation. We observed that MNV recruited the key SG nucleating protein G3BP1 to its replication sites and intriguingly the silencing of G3BP1 negatively impacts MNV replication. Thus, it appears that MNV utilizes G3BP1 to enhance replication but equally to prevent SG formation, suggesting an anti-MNV property of SGs. Overall, this study highlights MNV manipulation of SGs, PKR, and translational control to regulate cytokine translation and to promote viral replication.IMPORTANCE Viruses hijack host machinery and regulate cellular homeostasis to actively replicate their genome, propagate, and cause disease. In retaliation, cells possess various defense mechanisms to detect, destroy, and clear infecting viruses, as well as signal to neighboring cells to inform them of the imminent threat. In this study, we demonstrate that the murine norovirus (MNV) infection stalls host protein translation and the production of antiviral and proinflammatory cytokines. However, virus replication and protein translation still ensue. We show that MNV further prevents the formation of cytoplasmic RNA granules, called stress granules (SGs), by recruiting the key host protein G3BP1 to the MNV replication complex, a recruitment that is crucial to establishing and maintaining virus replication. Thus, MNV promotes immune evasion of the virus by altering protein translation. Together, this evasion strategy delays innate immune responses to MNV infection and accelerates disease onset.
Collapse
|
13
|
Mammalian orthoreovirus Infection is Enhanced in Cells Pre-Treated with Sodium Arsenite. Viruses 2019; 11:v11060563. [PMID: 31216693 PMCID: PMC6631071 DOI: 10.3390/v11060563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Following reovirus infection, cells activate stress responses that repress canonical translation as a mechanism to limit progeny virion production. Work by others suggests that these stress responses, which are part of the integrated stress response (ISR), may benefit rather than repress reovirus replication. Here, we report that compared to untreated cells, treating cells with sodium arsenite (SA) to activate the ISR prior to infection enhanced viral protein expression, percent infectivity, and viral titer. SA-mediated enhancement was not strain-specific, but was cell-type specific. While SA pre-treatment of cells offered the greatest enhancement, treatment within the first 4 h of infection increased the percent of cells infected. SA activates the heme-regulated eIF2α (HRI) kinase, which phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α) to induce stress granule (SG) formation. Heat shock (HS), another activator of HRI, also induced eIF2α phosphorylation and SGs in cells. However, HS had no effect on percent infectivity or viral yield but did enhance viral protein expression. These data suggest that SA pre-treatment perturbs the cell in a way that is beneficial for reovirus and that this enhancement is independent of SG induction. Understanding how to manipulate the cellular stress responses during infection to enhance replication could help to maximize the oncolytic potential of reovirus.
Collapse
|
14
|
Defining the Role of Stress Granules in Innate Immune Suppression by the Herpes Simplex Virus 1 Endoribonuclease VHS. J Virol 2018; 92:JVI.00829-18. [PMID: 29793959 DOI: 10.1128/jvi.00829-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
In response to virus-induced shutoff host protein synthesis, dynamic aggregates containing mRNA, RNA-binding proteins and translation factors termed stress granules (SGs) often accumulate within the cytoplasm. SGs typically form following phosphorylation and inactivation of the eukaryotic translation initiation factor 2α (eIF2α), a substrate of the double-stranded RNA (dsRNA)-activated kinase protein kinase R (PKR). The detection of innate immune sensors and effectors like PKR at SGs suggests a role in pathogen nucleic acid sensing. However, the functional importance of SGs in host innate responses is unclear and has primarily been examined in response to infection with select RNA viruses. During infection with the DNA virus herpes simplex virus 1 (HSV-1), the virus-encoded virion host shutoff (VHS) endoribonuclease is required to restrict interferon production, PKR activation, and SG formation, although the relationship between these activities remains incompletely understood. Here, we show that in cells infected with a VHS-deficient HSV-1 (ΔVHS) dsRNA accumulated and localized to SGs. Surprisingly, formation of dsRNA and its concentration at SGs was not required for beta interferon mRNA induction, indicating that suppression of type I interferon induction by VHS does not stem from its control of dsRNA accumulation. Instead, STING signaling downstream of cGMP-AMP synthase (cGAS)-dependent DNA sensing is required for beta interferon induction. In contrast, significantly less PKR activation is observed when SG assembly is disrupted by ISRIB, an inhibitor of phosphorylated eIF2α-mediated translation repression, or depleting SG scaffolding proteins G3BP1 or TIA1. This demonstrates that PKR activation is intimately linked to SG formation and that SGs form important hubs to potentiate PKR activation during infection.IMPORTANCE Formation of cytoplasmic stress granules that are enriched for innate immune sensors and effectors is suppressed during many viral infections. It is unclear, however, to what extent this is a side effect of viral efforts to maintain protein synthesis or intentional disruption of a hub for innate immune sensing. In this study, we utilize a herpes simplex virus 1 mutant lacking the RNA nuclease VHS which upon infection induces SGs, PKR activation, and beta interferon to address this question. We show that dsRNA is localized to SGs and that SGs can function to promote PKR activation in the context of a DNA virus infection, but we find no evidence to support their importance for interferon induction during HSV-1 infection.
Collapse
|
15
|
Sadek J, Read GS. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections. J Virol 2016; 90:10844-10856. [PMID: 27681125 PMCID: PMC5110170 DOI: 10.1128/jvi.01302-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5' or 3' end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections.
Collapse
Affiliation(s)
- Jouliana Sadek
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - G Sullivan Read
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
16
|
Fred RG, Mehrabi S, Adams CM, Welsh N. PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability. Heliyon 2016; 2:e00159. [PMID: 27699280 PMCID: PMC5035359 DOI: 10.1016/j.heliyon.2016.e00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. METHODS AND RESULTS To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro. We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. CONCLUSIONS These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.
Collapse
Affiliation(s)
- Rikard G Fred
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Syrina Mehrabi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christopher M Adams
- Department of Biological and Medical Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Herpes Simplex Virus 2 Virion Host Shutoff Endoribonuclease Activity Is Required To Disrupt Stress Granule Formation. J Virol 2016; 90:7943-55. [PMID: 27334584 DOI: 10.1128/jvi.00947-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED We previously established that cells infected with herpes simplex virus 2 (HSV-2) are disrupted in their ability to form stress granules (SGs) in response to oxidative stress and that this disruption is mediated by virion host shutoff protein (vhs), a virion-associated endoribonuclease. Here, we test the requirement for vhs endoribonuclease activity in disruption of SG formation. We analyzed the ability of HSV-2 vhs carrying the point mutation D215N, which ablates its endoribonuclease activity, to disrupt SG formation in both transfected and infected cells. We present evidence that ablation of vhs endoribonuclease activity results in defects in vhs-mediated disruption of SG formation. Furthermore, we demonstrate that preformed SGs can be disassembled by HSV-2 infection in a manner that requires vhs endoribonuclease activity and that, befitting this ability to promote SG disassembly, vhs is able to localize to SGs. Together these data indicate that endoribonuclease activity must be maintained in order for vhs to disrupt SG formation. We propose a model whereby vhs-mediated destruction of SG mRNA promotes SG disassembly and may also prevent SG assembly. IMPORTANCE Stress granules (SGs) are transient cytoplasmic structures that form when a cell is exposed to stress. SGs are emerging as potential barriers to viral infection, necessitating a more thorough understanding of their basic biology. We identified virion host shutoff protein (vhs) as a herpes simplex virus 2 (HSV-2) protein capable of disrupting SG formation. As mRNA is a central component of SGs and the best-characterized activity of vhs is as an endoribonuclease specific for mRNA in vivo, we investigated the requirement for vhs endoribonuclease activity in disruption of SG formation. Our studies demonstrate that endoribonuclease activity is required for vhs to disrupt SG formation and, more specifically, that SG disassembly can be driven by vhs endoribonuclease activity. Notably, during the course of these studies we discovered that there is an ordered departure of SG components during their disassembly and, furthermore, that vhs itself has the capacity to localize to SGs.
Collapse
|
18
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
19
|
The Herpes Simplex Virus Virion Host Shutoff Protein Enhances Translation of Viral True Late mRNAs Independently of Suppressing Protein Kinase R and Stress Granule Formation. J Virol 2016; 90:6049-6057. [PMID: 27099317 DOI: 10.1128/jvi.03180-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. IMPORTANCE The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism.
Collapse
|
20
|
Finnen RL, Banfield BW. Alphaherpesvirus Subversion of Stress-Induced Translational Arrest. Viruses 2016; 8:81. [PMID: 26999187 PMCID: PMC4810271 DOI: 10.3390/v8030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In this article, we provide an overview of translational arrest in eukaryotic cells in response to stress and the tactics used specifically by alphaherpesviruses to overcome translational arrest. One consequence of translational arrest is the formation of cytoplasmic compartments called stress granules (SGs). Many viruses target SGs for disruption and/or modification, including the alphaherpesvirus herpes simplex virus type 2 (HSV-2). Recently, it was discovered that HSV-2 disrupts SG formation early after infection via virion host shutoff protein (vhs), an endoribonuclease that is packaged within the HSV-2 virion. We review this discovery and discuss the insights it has provided into SG biology as well as its potential significance in HSV-2 infection. A model for vhs-mediated disruption of SG formation is presented.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Bruce W Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
21
|
Abstract
Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
22
|
Muller M, Hutin S, Marigold O, Li KH, Burlingame A, Glaunsinger BA. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases. PLoS Pathog 2015; 11:e1004899. [PMID: 25965334 PMCID: PMC4428876 DOI: 10.1371/journal.ppat.1004899] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonuclease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs escape SOX-induced cleavage and remain robustly expressed. Prominent among these is interleukin-6 (IL-6), a growth factor important for survival of KSHV infected B cells. IL-6 escape is notable because it contains a sequence within its 3' untranslated region (UTR) that can confer protection when transferred to a SOX-targeted mRNA, and thus overrides the endonuclease targeting mechanism. Here, we pursued how this protective RNA element functions to maintain mRNA stability. Using affinity purification and mass spectrometry, we identified a set of proteins that associate specifically with the protective element. Although multiple proteins contributed to the escape mechanism, depletion of nucleolin (NCL) most severely impacted protection. NCL was re-localized out of the nucleolus during lytic KSHV infection, and its presence in the cytoplasm was required for protection. After loading onto the IL-6 3' UTR, NCL differentially bound to the translation initiation factor eIF4H. Disrupting this interaction, or depleting eIF4H, reinstated SOX targeting of the RNA, suggesting that interactions between proteins bound to distant regions of the mRNA are important for escape. Finally, we found that the IL-6 3' UTR was also protected against mRNA degradation by the vhs endonuclease encoded by herpes simplex virus, despite the fact that its mechanism of mRNA targeting is distinct from SOX. These findings highlight how a multitude of RNA-protein interactions can impact endonuclease targeting, and identify new features underlying the regulation of the IL-6 mRNA.
Collapse
Affiliation(s)
- Mandy Muller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Stephanie Hutin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Oliver Marigold
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
23
|
King PH, Chen CY. Role of KSRP in control of type I interferon and cytokine expression. J Interferon Cytokine Res 2015; 34:267-74. [PMID: 24697204 DOI: 10.1089/jir.2013.0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokines and chemokines are key participants in pathways that drive inflammatory, immune, and other cellular responses to exogenous insults such as infection, trauma, and physiological stress. Persistent and aberrant expression of these factors has been linked to autoimmune, degenerative, and neoplastic diseases. Consequently, cytokine and chemokine expression is tightly governed at each level of gene regulation. Recent studies have demonstrated a role for KH-type splicing regulatory protein (KSRP) in curtailing cytokine and chemokine expression through transcriptional and post-transcriptional mechanisms, including promotion of microRNA maturation. Understanding the role of KSRP in cytokine mRNA metabolism should identify promising targets for the modulation of immune and inflammatory responses.
Collapse
Affiliation(s)
- Peter H King
- 1 Department of Neurology, University of Alabama at Birmingham , Birmingham, Alabama
| | | |
Collapse
|
24
|
Tristetraprolin Recruits the Herpes Simplex Virion Host Shutoff RNase to AU-Rich Elements in Stress Response mRNAs To Enable Their Cleavage. J Virol 2015; 89:5643-50. [PMID: 25762736 DOI: 10.1128/jvi.00091-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Herpes simplex viruses (HSV) package and bring into cells an RNase designated virion host shutoff (VHS) RNase. In infected cells, the VHS RNase targets primarily stress response mRNAs characterized by the presence of AU-rich elements in their 3' untranslated regions (UTRs). In uninfected cells, these RNAs are sequestered in exosomes or P bodies by host proteins that bind to the AU-rich elements. In infected cells, the AU-rich RNAs are deadenylated and cleaved close to the AU-rich elements, leading to long-term persistence of nontranslatable RNAs consisting of the 5' portions of the cleavage products. The host proteins that bind to the AU-rich elements are either resident in cells (e.g., TIA-1) or induced (e.g., tristetraprolin). Earlier, this laboratory reported that tristetraprolin binds VHS RNase. To test the hypothesis that tristetraprolin directs VHS RNase to the AU-rich elements, we mapped the domains of VHS and tristetraprolin required for their interactions. We report that VHS binds to the domain of tristetraprolin that enables its interaction with RNA. A single amino acid substitution in that domain abolished the interaction with RNA but did not block the binding to VHS RNase. In transfected cells, the mutant but not the wild-type tristetraprolin precluded the degradation of the AU-rich RNAs by VHS RNase. We conclude that TTP mediates the cleavage of the 3' UTRs of stress response mRNAs by recruiting the VHS RNase to the AU-rich elements. IMPORTANCE The primary host response to HSV infection is the synthesis of stress response mRNAs characterized by the presence of AU-rich elements in their 3' UTRs. These mRNAs are the targets of the virion host shutoff (VHS) RNase. The VHS RNase binds both to mRNA cap structure and to tristetraprolin, an inducible host protein that sequesters AU-rich mRNAs in exosomes or P bodies. Here we show that tristetraprolin recruits VHS RNase to the AU-rich elements and enables the degradation of the stress response mRNAs.
Collapse
|
25
|
Panas MD, Schulte T, Thaa B, Sandalova T, Kedersha N, Achour A, McInerney GM. Viral and cellular proteins containing FGDF motifs bind G3BP to block stress granule formation. PLoS Pathog 2015; 11:e1004659. [PMID: 25658430 PMCID: PMC4450067 DOI: 10.1371/journal.ppat.1004659] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
The Ras-GAP SH3 domain-binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP.
Collapse
Affiliation(s)
- Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
26
|
Banfield BW, Mouland AJ, McCormick C. 1st International Symposium on Stress-associated RNA Granules in Human Disease and Viral Infection. Viruses 2014; 6:3500-13. [PMID: 25256393 PMCID: PMC4189036 DOI: 10.3390/v6093500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022] Open
Abstract
In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.
Collapse
Affiliation(s)
- Bruce W Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
27
|
The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. J Virol 2014; 88:12727-39. [PMID: 25142597 DOI: 10.1128/jvi.01554-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. IMPORTANCE Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation.
Collapse
|
28
|
The nuclear-cytoplasmic shuttling of virion host shutoff RNase is enabled by pUL47 and an embedded nuclear export signal and defines the sites of degradation of AU-rich and stable cellular mRNAs. J Virol 2013; 87:13569-78. [PMID: 24109211 DOI: 10.1128/jvi.02603-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.
Collapse
|
29
|
Read GS. Virus-encoded endonucleases: expected and novel functions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:693-708. [PMID: 23900973 DOI: 10.1002/wrna.1188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022]
Abstract
Endonucleases catalyze critical steps in the processing, function, and turnover of many cellular RNAs. It is, therefore, not surprising that a number of viruses encode endonucleases that play important roles in viral gene expression. The virion host shutoff (Vhs) endonuclease of herpes simplex virus, the SOX protein of Kaposi Sarcoma Herpesvirus (KSHV), and the influenza virus PB1 endonuclease have well-characterized functions that stem from their abilities to cleave RNA. Vhs accelerates turnover of many cellular and viral mRNAs, redirecting the cell from host to viral gene expression, counteracting key elements of the innate immune response, and facilitating sequential expression of different classes of viral genes. SOX reduces synthesis of many host proteins during the lytic phase of KSHV infections. PB1 is a component of the influenza RNA polymerase that snatches capped oligonucleotides from cellular pre-mRNAs to serve as primers during viral mRNA synthesis. However, all three proteins have important second functions. Vhs stimulates translation of the 3' cistron of bicistronic mRNAs that have selected cellular internal ribosome entry sites, and stimulates polysome loading and translation of selected viral mRNAs at late times during productive infections. SOX has an alkaline exonuclease activity that is important for processing and maturation of newly synthesized copies of the KSHV genome. The influenza RNA polymerase binds the cap and 5' region of viral mRNAs and recruits eIF4G and other factors to viral mRNAs, allowing them to be translated under conditions of reduced eIF4E functionality. This review will discuss the novel and expected functions of these viral endonucleases.
Collapse
Affiliation(s)
- G Sullivan Read
- Division of Cell Biology and Biophysics, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
30
|
Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. Proc Natl Acad Sci U S A 2013; 110:E1669-75. [PMID: 23589852 DOI: 10.1073/pnas.1305475110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) encodes an endoribonuclease that is responsible for the shutoff of host protein synthesis [virion host shutoff (VHS)-RNase]. The VHS-RNase released into cells during infection targets differentially four classes of mRNAs. Thus, (a) VHS-RNase degrades stable cellular mRNAs and α (immediate early) viral mRNAs; (b) it stabilizes host stress response mRNAs after deadenylation and subsequent cleavage near the adenylate-uridylate (AU)-rich elements; (c) it does not effectively degrade viral β or γ mRNAs; and (d) it selectively spares from degradation a small number of cellular mRNAs. Current evidence suggests that several viral and at least one host protein (tristetraprolin) regulate its activity. Thus, virion protein (VP) 16 and VP22 neutralize the RNase activity at late times after infection. By binding to AU-rich elements via its interaction with tristetraprolin, the RNase deadenylates and cleaves the mRNAs in proximity to the AU-rich elements. In this report we show that another virion protein, UL47, brought into the cell during infection, attenuates the VHS-RNase activity with respect to stable host and viral α mRNAs and effectively blocks the degradation of β and γ mRNAs, but it has no effect on the processing of AU-rich mRNAs. The properties of UL47 suggest that it, along with the α protein infected cell protein 27, attenuates degradation of mRNAs by the VHS-RNase through interaction with the enzyme in polyribosomes. Mutants lacking both VHS-RNase and UL47 overexpress α genes and delay the expression of β and γ genes, suggesting that overexpression of α genes inhibits the downstream expression of early and late genes.
Collapse
|
31
|
The herpes simplex virus host shutoff RNase degrades cellular and viral mRNAs made before infection but not viral mRNA made after infection. J Virol 2013; 87:4516-22. [PMID: 23388723 DOI: 10.1128/jvi.00005-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A herpes simplex virus tegument protein brought into the cell during infection and designated the virion host shutoff protein (VHS) is an endoribonuclease that degrades mRNA. The prevailing view for many years has been that the VHS-RNase does not discriminate between cellular and viral RNAs and that the viruses prevail because the accumulation of viral transcripts outpaces their degradation. Here we report the following. (i) The degradation of viral mRNA made during infection of Vero or HEp-2 cells proceeds at a much-reduced rate compared to that of cellular mRNA. In effect, viral mRNAs are largely stable, whereas cellular mRNAs are rapidly degraded or, in the case of AU-rich mRNA, cleaved and rendered dysfunctional. (ii) In contrast to viral mRNAs made after infection, viral mRNAs expressed by plasmids transfected into cells prior to infection are degraded after infection at a rate comparable to that of cellular mRNAs. Moreover, the mRNA encoded by the transfected plasmid is hyperadenylated in the infected cell. Hyperadenylation but not degradation of mRNAs is blocked by actinomycin D. The results indicate that VHS-mRNA discriminates between viral and cellular mRNA but only in the context of infection and that discrimination is not based on the sequence of the mRNA but most likely on one or more viral factors expressed in the infected cell.
Collapse
|
32
|
mRNA decay during herpes simplex virus (HSV) infections: mutations that affect translation of an mRNA influence the sites at which it is cleaved by the HSV virion host shutoff (Vhs) protein. J Virol 2012; 87:94-109. [PMID: 23077305 DOI: 10.1128/jvi.01557-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lytic infections, the herpes simplex virus (HSV) virion host shutoff (Vhs) endoribonuclease degrades many host and viral mRNAs. Within infected cells it cuts mRNAs at preferred sites, including some in regions of translation initiation. Vhs binds the translation initiation factors eIF4H, eIF4AI, and eIF4AII, suggesting that its mRNA degradative function is somehow linked to translation. To explore how Vhs is targeted to preferred sites, we examined the in vitro degradation of a target mRNA in rabbit reticulocyte lysates containing in vitro-translated Vhs. Vhs caused rapid degradation of mRNAs beginning with cleavages at sites in the first 250 nucleotides, including a number near the start codon and in the 5' untranslated region. Ligation of the ends to form a circular mRNA inhibited Vhs cleavage at the same sites at which it cuts capped linear molecules. This was not due to an inability to cut any circular RNA, since Vhs cuts circular mRNAs containing an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) at the same sites as linear molecules with the IRES. Cutting linear mRNAs at preferred sites was augmented by the presence of a 5' cap. Moreover, mutations that altered the 5' proximal AUG abolished Vhs cleavage at nearby sites, while mutations that changed sequences surrounding the AUG to improve their match to the Kozak consensus sequence enhanced Vhs cutting near the start codon. The results indicate that mutations in an mRNA that affect its translation affect the sites at which it is cut by Vhs and suggest that Vhs is directed to its preferred cut sites during translation initiation.
Collapse
|
33
|
Valiente-Echeverría F, Melnychuk L, Mouland AJ. Viral modulation of stress granules. Virus Res 2012; 169:430-7. [PMID: 22705970 PMCID: PMC7114395 DOI: 10.1016/j.virusres.2012.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022]
Abstract
Following viral infection, the host responds by mounting a robust anti-viral response with the aim of creating an unfavorable environment for viral replication. As a countermeasure, viruses have elaborated mechanisms to subvert the host response in order to maintain viral protein synthesis and production. In the last decade, several reports have shown that viruses modulate the assembly of stress granules (SGs), which are translationally silent ribonucleoproteins (RNPs) and sites of RNA triage. This review discusses recent advances in our understanding of the interactions between viruses and the host response and how virus-induced modulations in SG abundance play fundamental roles in dictating the success of viral replication.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
34
|
Abstract
Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle.
Collapse
|
35
|
Ohn T, Anderson P. The role of posttranslational modifications in the assembly of stress granules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:486-93. [PMID: 21956944 PMCID: PMC7169689 DOI: 10.1002/wrna.23] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress granules (SGs) are aggregates of translationally silenced messenger ribonucleoprotein (mRNP) complexes induced by oxidative, osmotic, hypoxic, thermal, viral, and genotoxic stresses. Over the past decade, extensive research has identified key components of SGs, their molecular interactions, and impact on stress‐induced reprogramming of protein expression and cell survival. However, studies defining the signaling pathways that modulate SG assembly have only been launched recently. These studies reveal that posttranslational modifications of selected SG proteins play important roles in the regulation of SG assembly and function. Here we provide an overview of the signaling pathways and posttranslational protein modifications that regulate the assembly and function of SGs. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
Translation > Translation Regulation RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability
Collapse
Affiliation(s)
- Takbum Ohn
- National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology and Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, South Korea
| | | |
Collapse
|
36
|
TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res 2012; 1462:16-25. [PMID: 22405725 DOI: 10.1016/j.brainres.2012.02.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein TDP-43 is strongly linked to neurodegeneration. Not only are mutations in the gene encoding TDP-43 associated with ALS and FTLD, but this protein is also a major constituent of pathological intracellular inclusions in these diseases. Recent studies have significantly expanded our understanding of TDP-43 physiology. TDP-43 is now known to play important roles in neuronal RNA metabolism. It binds to and regulates the splicing and stability of numerous RNAs encoding proteins involved in neuronal development, synaptic function and neurodegeneration. Thus, a loss of these essential functions is an attractive hypothesis regarding the role of TDP-43 in neurodegeneration. Moreover, TDP-43 is an aggregation-prone protein and, given the role of toxic protein aggregates in neurodegeneration, a toxic gain-of-function mechanism is another rational hypothesis. Importantly, ALS related mutations modulate the propensity of TDP-43 to aggregate in cell culture. Several recent studies have documented that cytoplasmic TDP-43 aggregates co-localize with stress granule markers. Stress granules are cytoplasmic inclusions that repress translation of a subset of RNAs in times of cellular stress, and several proteins implicated in neurodegeneration (i.e. Ataxin-2 and SMN) interact with stress granules. Thus, understanding the interplay between TDP-43 aggregation, stress granules and the effect of ALS-associated TDP-43 mutations may be the key to understanding the role of TDP-43 in neurodegeneration. We propose two models of TDP-43 aggregate formation. The "independent model" stipulates that TDP-43 aggregation is independent of stress granule formation, in contrast to the "precursor model" which presents the idea that stress granule formation contributes to a TDP-43 aggregate "seed" and that chronic stress leads to concentration-dependent TDP-43 aggregation. This article is part of a Special Issue entitled: RNA-Binding Proteins.
Collapse
|
37
|
McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 2012; 8:e1002474. [PMID: 22346759 PMCID: PMC3276544 DOI: 10.1371/journal.pgen.1002474] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022] Open
Abstract
The epigenetic activity of transposable elements (TEs) can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs) in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs). Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA–binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21–22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3′ untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3′ untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs the lines between TE and gene-regulating small RNAs. The portion of the genome that does not encode for genes is often overlooked as a source of cellular regulatory information. Here, we demonstrate that regulatory information controlling expression and protein production from a gene called UBP1b is coming from a distant non-gene transposable element (TE). TEs are fragments of DNA that, unlike genes, are capable of duplicating themselves from one location in the genome to another, and occupy nearly half of the human genome. TEs are often referred to as “junk DNA,” as the study of cellular regulation and function is focused on genes. The regulation of TEs is distinct from genes, as a process termed epigenetic silencing heritably represses TE expression and activity. We have demonstrated that the epigenetic status (active versus silenced) of the Athila TE family regulates the UBP1b gene through the activity of a TE small RNA. The function of the UPB1b gene is to respond to and regulate cellular stress, and the epigenetic regulatory status of the Athila TE therefore modulates this stress response. This demonstrates that the epigenetic regulation of TEs can be a source of gene regulatory information, influencing a basic cellular function such as the stress response.
Collapse
Affiliation(s)
- Andrea D. McCue
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Saivageethi Nuthikattu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah H. Reeder
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - R. Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Legros S, Boxus M, Gatot JS, Van Lint C, Kruys V, Kettmann R, Twizere JC, Dequiedt F. The HTLV-1 Tax protein inhibits formation of stress granules by interacting with histone deacetylase 6. Oncogene 2011; 30:4050-62. [PMID: 21532619 DOI: 10.1038/onc.2011.120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human T cell leukemia virus type-1 (HTLV-1) is the causative agent of a fatal adult T-cell leukemia. Through deregulation of multiple cellular signaling pathways the viral Tax protein has a pivotal role in T-cell transformation. In response to stressful stimuli, cells mount a cellular stress response to limit the damage that environmental forces inflict on DNA or proteins. During stress response, cells postpone the translation of most cellular mRNAs, which are gathered into cytoplasmic mRNA-silencing foci called stress granules (SGs) and allocate their available resources towards the production of dedicated stress-management proteins. Here we demonstrate that Tax controls the formation of SGs and interferes with the cellular stress response pathway. In agreement with previous reports, we observed that Tax relocates from the nucleus to the cytoplasm in response to environmental stress. We found that the presence of Tax in the cytoplasm of stressed cells prevents the formation of SGs and counteracts the shutoff of specific host proteins. Unexpectedly, nuclear localization of Tax promotes spontaneous aggregation of SGs, even in the absence of stress. Mutant analysis revealed that the SG inhibitory capacity of Tax is independent of its transcriptional abilities but relies on its interaction with histone deacetylase 6, a critical component of SGs. Importantly, the stress-protective effect of Tax was also observed in the context of HTLV-1 infected cells, which were shown to be less prone to form SGs and undergo apoptosis under arsenite exposure. These observations identify Tax as the first virally encoded inhibitory component of SGs and unravel a new strategy developed by HTLV-1 to deregulate normal cell processes. We postulate that inhibition of the stress response pathway by Tax would favor cell survival under stressful conditions and may have an important role in HTLV-1-induced cellular transformation.
Collapse
Affiliation(s)
- S Legros
- Center for Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), Gembloux, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
The herpes simplex virus 1 vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner. J Virol 2011; 85:5363-73. [PMID: 21430045 DOI: 10.1128/jvi.00115-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shutoff protein (vhs) degrades viral and cellular mRNAs. Here, we demonstrate for the first time that vhs also boosts translation of viral true late mRNAs in a cell type-dependent manner and that this effect determines the viral growth phenotype in the respective cell type. Our study was prompted by the detection of stress granules, indicators of stalled translation initiation, in cells infected with vhs mutants but not in wild-type-virus-infected cells. Accumulation of true late-gene products gC and US11 was strongly reduced in the absence of vhs in HeLa cells and several other restrictive cell lines but not in Vero and other permissive cells and was independent of phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Polysome analysis showed that gC and US11 transcripts were poorly translated in vhs-null-virus-infected HeLa cells, while translation of a cellular mRNA was not affected. Interestingly, hippuristanol, an eIF4A inhibitor, produced a similar phenotype in HeLa cells infected with wild-type HSV-1, while Vero cells were much more resistant to the inhibitor. These results suggest that translation of true late-gene transcripts is particularly sensitive to conditions of limited access to translation factors and that vhs is able either to prevent the limiting conditions or to facilitate translation initiation under these conditions. The varied permissivity of cell lines to vhs-null infection may stem from differences in the resilience of the translation machinery or the ability to control the accumulation of mRNAs.
Collapse
|
40
|
Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA, Anant S. RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One 2011; 6:e16958. [PMID: 21347286 PMCID: PMC3037932 DOI: 10.1371/journal.pone.0016958] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Curcumin inhibits the growth of pancreatic cancer tumor xenografts in nude mice; however, the mechanism of action is not well understood. It is becoming increasingly clear that RNA binding proteins regulate posttranscriptional gene expression and play a critical role in RNA stability and translation. Here, we have determined that curcumin modulates the expression of RNA binding protein CUGBP2 to inhibit pancreatic cancer growth. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that curcumin treated tumor xenografts have a significant reduction in tumor volume and angiogenesis. Curcumin inhibited the proliferation, while inducing G2-M arrest and apoptosis resulting in mitotic catastrophe of various pancreatic cancer cells. This was further confirmed by increased phosphorylation of checkpoint kinase 2 (Chk2) protein coupled with higher levels of nuclear cyclin B1 and Cdc-2. Curcumin increased the expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) mRNA, but protein levels were lower. Furthermore, curcumin increased the expression of RNA binding proteins CUGBP2/CELF2 and TIA-1. CUGBP2 binding to COX-2 and VEGF mRNA was also enhanced, thereby increasing mRNA stability, the half-life changing from 30 min to 8 h. On the other hand, silencer-mediated knockdown of CUGBP2 partially restored the expression of COX-2 and VEGF even with curcumin treatment. COX-2 and VEGF mRNA levels were reduced to control levels, while proteins levels were higher. CONCLUSION/SIGNIFICANCE Curcumin inhibits pancreatic tumor growth through mitotic catastrophe by increasing the expression of RNA binding protein CUGBP2, thereby inhibiting the translation of COX-2 and VEGF mRNA. These data suggest that translation inhibition is a novel mechanism of action for curcumin during the therapeutic intervention of pancreatic cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SA); (DS)
| | - Satish Ramalingam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - David C. Linehan
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brian K. Dieckgraefe
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Russell G. Postier
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Roy A. Jensen
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SA); (DS)
| |
Collapse
|
41
|
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal 2011; 23:324-34. [PMID: 20813183 PMCID: PMC3001194 DOI: 10.1016/j.cellsig.2010.08.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
Processing bodies (PBs) and Stress Granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbour transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor eIF2alpha, and tRNA cleavage among others. PBs and SGs with different compositions may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of Nuclear Stress Bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA -the UV granules and the Ire1 foci-, all of them induced by specific cell damage factors, contribute to cell survival.
Collapse
Key Words
- atxn2, ataxin-2
- bicd, bicaudal d
- cbp, creb binding protein
- cpeb, cytoplasmic polyadenylation element binding protein
- dhc, dynein heavy chain
- dic, dynein intermediate chain
- fak, focal adhesion kinase
- fus/tls/hnrnp p2, fused in sarcoma
- g3bp, ras-gap sh3 domain binding protein
- gcn2, general control nonderepressible-2
- grb7, growth factor receptor-bound protein 7
- hap, hnrnp a1 interacting protein
- hdac6, histone deacetylase 6
- hri, heme-regulated inhibitor
- hsf, heat shock transcription factor
- khc, kinesin heavy chain
- klc, kinesin light chain
- mln51, metastatic lymph node 51
- nmd, nonsense mediated decay
- nsbs, nuclear stress bodies
- ogfod1, 2–14 oxoglutarate and fe(ii)-dependent oxygenase domain containing 1
- pb, processing body
- perk, pancreatic endoplasmic reticulum eif2alpha kinase
- pkr/eif2ak2, double stranded rna-dependent protein kinase
- pp1, protein phosphatase 1
- prp, prion protein
- rbp, rna binding protein
- rnp, ribonucleoparticle
- sam68, src associated in mitosis 68 kda
- member of star, signal transducer and activator of rna
- sca, spinocerebellar ataxia
- sg, stress granule
- sma, spinal muscular atrophy
- fmrp, fragile x mental retardation protein
- smn, survival of motor neuron
- tdp43, tar dna-binding protein 43
- traf2, tnf receptor associated factor 2
- uvgs, uv rna granules
- processing body
- stress granule
- kinesin
- dynein
- bicaudal d
- aggresome
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mariela Loschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Andrea Desbats
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- University of Buenos Aires
| |
Collapse
|
42
|
Abstract
The overwhelming majority of RNase activity is engaged in catabolic processes. Viruses have no metabolism of their own, but rely completely on host cellular energy and substrate provision to support the biochemical processes necessary for virus replication. It is therefore obvious that RNA hydrolysis does not represent an obligate step in the viral life cycle that would have to be governed by viral proteins. Accordingly, RNases are found only rarely in the viral proteomes and serve special functions. In this chapter, several virus-specific RNases will be described and their role in the viral life cycle discussed. The text will concentrate on RNases of members of the nidoviruses, herpesviruses, pestiviruses, and several viruses with segmented negative-strand RNA genome including influenza virus. These enzymes are involved in specific steps of viral gene expression, viral genome replication, shutoff of host cellular gene expression, and interference with the host’s immune response to virus infection.
Collapse
|
43
|
LaJevic MD, Koduvayur SP, Caffrey V, Cohen RL, Chambers DA. Thy-1 mRNA destabilization by norepinephrine a 3' UTR cAMP responsive decay element and involves RNA binding proteins. Brain Behav Immun 2010; 24:1078-88. [PMID: 20412850 PMCID: PMC2939224 DOI: 10.1016/j.bbi.2010.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/18/2010] [Accepted: 04/15/2010] [Indexed: 12/17/2022] Open
Abstract
Thy-1 is a cell surface protein important in immunologic and neurologic processes, including T cell activation and proliferation, and neuronal outgrowth. In murine thymocytes, Thy-1 is downregulated in response to norepinephrine (NE) through posttranscriptional destabilization of its mRNA mediated by βAR/AC/cAMP/PKA signaling. In this study we investigated factors involved in NE/cAMP-mediated Thy-1 mRNA destabilization in S49 thymoma cells, and identified a region containing two copies of the AUUUA regulatory element (ARE), a motif commonly associated with mRNA decay, in the Thy-1 mRNA 3' UTR. Insertion of the Thy-1 ARE region into a reporter gene, resulted in cAMP induced destabilization of the reporter gene mRNA. RNA-protein binding studies revealed multiple Thy-1 ARE binding proteins, including AUF1, HuR, and TIAR. RNA silencing of HuR enhanced cAMP-mediated downregulation of Thy-1 mRNA, in contrast, silencing AUF1 had no effect. Immunoblotting revealed multiple proteins phosphorylated by PKA as a result of NE or cAMP signaling. These results reveal that the machinery of NE/cAMP modulation of Thy-1 mRNA decay involves a cAMP responsive ARE in its 3' UTR and multiple site specific ARE binding proteins. These findings add to our knowledge of Thy-1 mRNA regulation and provide insight into the regulation of ARE containing mRNAs, which impacts stress-related immunosuppression.
Collapse
Affiliation(s)
- Melissa D. LaJevic
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Sujatha P. Koduvayur
- Department of Biophysics and Physiology, University of Illinois at Chicago, Chicago, IL 60612
| | - Veronique Caffrey
- Department of Biophysics and Physiology, University of Illinois at Chicago, Chicago, IL 60612
| | - Rhonna L. Cohen
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612
| | - Donald A. Chambers
- Department of Biophysics and Physiology, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
44
|
Role of herpes simplex virus ICP27 in the degradation of mRNA by virion host shutoff RNase. J Virol 2010; 84:10182-90. [PMID: 20631134 DOI: 10.1128/jvi.00975-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virion host shutoff (VHS) RNase tegument protein released into cells by infecting virus has two effects. Preexisting stable mRNAs (e.g., GAPDH [glyceraldehyde-3-phosphate dehydrogenase]) are rapidly degraded. Stress response RNAs containing AU-rich elements (AREs) in the 3' untranslated region (3'UTR) are deadenylated and cleaved, but the cleavage products persist for hours, in contrast to the short half-lives of ARE-containing mRNAs in uninfected cells. At late times, the VHS RNase is neutralized by the viral structural proteins VP16 and VP22. A recent study (J. A. Corcoran, W. L. Hsu, and J. R. Smiley, J. Virol. 80:9720-9729, 2006) reported that, at relatively late times after infection, ARE RNAs are rapidly degraded in cells infected with DeltaICP27 mutant virus and concluded that ICP27 "stabilizes" ARE mRNAs. We report the following. (i) The rates of degradation of ARE mRNA at early times (3 h) after infection with the wild type or the DeltaICP27 mutant virus are virtually identical, and hence ICP27 plays no role in this process. (ii) In noncomplementing cells, VHS RNase or VP22 is not synthesized. Therefore, the only VHS that is active is brought into cells by the DeltaICP27 mutant. (ii) The VHS RNase brought into the cells by the DeltaICP27 virus is reduced in potency relative to that of wild-type virus. Hence the rapid degradation of ARE mRNAs noted in DeltaICP27 mutant-infected cells at late times is similar to that taking place in mock-infected or in DeltaVHS RNase mutant-virus-infected cells and does not by itself support the hypothesis that ICP27 stabilizes ARE mRNAs. (iii) Concurrently, we present the first evidence that VHS RNase interacts with ICP27 most likely when bound to cap- and poly(A)-binding proteins, respectively.
Collapse
|
45
|
Lin HW, Hsu WL, Chang YY, Jan MS, Wong ML, Chang TJ. Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-α expression. J Vet Med Sci 2010; 72:1179-87. [PMID: 20448414 DOI: 10.1292/jvms.10-0059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vhs (virion host shutoff) is highly conserved in alphaherpesvirus, including pseudorabies virus (PRV). In an attempt to explore the function of vhs of PRV, we constructed and characterized a mutant virus (Δ41). In the absence of vhs activity, Δ41 mutant is highly attenuated in mice model and the lethality is correlated with the virus dissemination in neural tissues. As with herpes simplex virus type 1 (HSV-1), the prototype virus of alphaherpesvirus, the pronounced decrease in cellular protein synthesis triggered by wild type PRV was largely restored in cells infected with Δ41 virus. Furthermore, tumor necrosis factor-α (TNF-α) protein expression was elevated significantly in spleen of mice infected with vhs mutant virus. Since TNF-α has been indicated to be an important cytokine in the innate immune response against various infections, our results implicate vhs may contribute to the protection against PRV lethality via the action of TNF-α. Overall, we confirm the shutoff function of vhs protein in PRV, and demonstrate the role that vhs protein plays in virulence, and regulation of cytokine production.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Evidence for translational regulation by the herpes simplex virus virion host shutoff protein. J Virol 2010; 84:6041-9. [PMID: 20357089 DOI: 10.1128/jvi.01819-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The herpes simplex virus (HSV) virion host shutoff protein (vhs) encoded by gene UL41 is an mRNA-specific RNase that triggers accelerated degradation of host and viral mRNAs in infected cells. We report here that vhs is also able to modulate reporter gene expression without greatly altering the levels of the target mRNA in transient-transfection assays conducted in HeLa cells. We monitored the effects of vhs on a panel of bicistronic reporter constructs bearing a variety of internal ribosome entry sites (IRESs) located between two test cistrons. As expected, vhs inhibited the expression of the 5' cistrons of all of these constructs; however, the response of the 3' cistron varied with the IRES: expression driven from the wild-type EMCV IRES was strongly suppressed, while expression controlled by a mutant EMCV IRES and the cellular ApaF1, BiP, and DAP5 IRES elements was strongly activated. In addition, several HSV type 1 (HSV-1) 5' untranslated region (5' UTR) sequences also served as positive vhs response elements in this assay. IRES activation was also observed in 293 and HepG2 cells, but no such response was observed in Vero cells. Mutational analysis has yet to uncouple the ability of vhs to activate 3' cistron expression from its shutoff activity. Remarkably, repression of 5' cistron expression could be observed under conditions where the levels of the reporter RNA were not correspondingly reduced. These data provide strong evidence that vhs can modulate gene expression at the level of translation and that it is able to activate cap-independent translation through specific cis-acting elements.
Collapse
|
47
|
Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection. J Virol 2009; 83:11090-101. [PMID: 19710141 DOI: 10.1128/jvi.01239-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with many mammalian orthoreovirus (MRV) strains results in shutoff of host, but not viral, protein synthesis via protein kinase R (PKR) activation and phosphorylation of translation initiation factor eIF2alpha. Following inhibition of protein synthesis, cellular mRNAs localize to discrete structures in the cytoplasm called stress granules (SGs), where they are held in a translationally inactive state. We examined MRV-infected cells to characterize SG formation in response to MRV infection. We found that SGs formed at early times following infection (2 to 6 h postinfection) in a manner dependent on phosphorylation of eIF2alpha. MRV induced SG formation in all four eIF2alpha kinase knockout cell lines, suggesting that at least two kinases are involved in induction of SGs. Inhibitors of MRV disassembly prevented MRV-induced SG formation, indicating that viral uncoating is a required step for SG formation. Neither inactivation of MRV virions by UV light nor treatment of MRV-infected cells with the translational inhibitor puromycin prevented SG formation, suggesting that viral transcription and translation are not required for SG formation. Viral cores were found to colocalize with SGs; however, cores from UV-inactivated virions did not associate with SGs, suggesting that viral core particles are recruited into SGs in a process that requires the synthesis of viral mRNA. These results demonstrate that MRV particles induce SGs in a step following viral disassembly but preceding viral mRNA transcription and that core particles are themselves recruited to SGs, suggesting that the cellular stress response may play a role in the MRV replication cycle.
Collapse
|
48
|
Increased eIF2alpha phosphorylation attenuates replication of herpes simplex virus 2 vhs mutants in mouse embryonic fibroblasts and correlates with reduced accumulation of the PKR antagonist ICP34.5. J Virol 2009; 83:9151-62. [PMID: 19587046 DOI: 10.1128/jvi.00886-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) strains containing mutations in the virion host shutoff (vhs) protein are attenuated for replication compared with wild-type virus in mouse embryonic fibroblasts (MEFs). However, HSV-2 vhs mutants replicate to near wild-type levels in the absence of the RNA-activated protein kinase (PKR). PKR is one of several kinases that phosphorylates the eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation, and we previously found that more of the phosphorylated form of eIF2alpha accumulates in MEFs infected with HSV-2 vhs mutants than with wild-type virus. Here, we show that this increase in phosphorylated eIF2alpha is primarily PKR dependent. Using MEFs expressing nonphosphorylatable eIF2alpha, we demonstrate that phosphorylated eIF2alpha is the primary cause of attenuated replication of HSV-2 vhs mutants and that attenuation correlates with decreased accumulation of viral proteins. Normally, HSV antagonizes eIF2alpha phosphorylation through the action of ICP34.5, which redirects protein phosphatase 1alpha (PP1alpha) to dephosphorylate eIF2alpha during infection. We show that ICP34.5 does not accumulate efficiently in MEFs infected with HSV-2 vhs mutant viruses, suggesting that the accumulation of phosphorylated eIF2alpha and the attenuated phenotype of HSV-2 vhs mutants in MEFs result from a deficiency in ICP34.5.
Collapse
|
49
|
The virion-packaged endoribonuclease of herpes simplex virus 1 cleaves mRNA in polyribosomes. Proc Natl Acad Sci U S A 2009; 106:12139-44. [PMID: 19584246 DOI: 10.1073/pnas.0905828106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The virion host shutoff protein product of the U(L)41 gene of herpes simplex virus 1 is an endoribonuclease that selectively degrades mRNAs during the first hours after infection. Specifically, in contrast to the events in uninfected cells or cells infected with a mutant lacking the RNase, in wild-type virus-infected cells mRNA of housekeeping genes exemplified by GAPDH is degraded rapidly, whereas mRNAs containing AU elements are cleaved and the 5' cleavage product of these RNAs persists for many hours. We report that in wild-type virus-infected cells there was a rapid increase in the number and size of processing bodies (P-bodies). These P-bodies were also preset in cycloheximide (CHX)-treated cells but not in either treated or untreated uninfected cells or cells infected with the RNase minus mutant. Additional studies revealed that polyribosomes extracted from cytoplasm of wild-type virus-infected cells treated with CHX and displayed in sucrose gradients contained ribosome-loaded, truncated AU-rich mRNAs lacking the 3' UTR and poly(A) tails. The results suggest that the virion RNase is bound to polyribosomes by virtue of the reported association with translation machinery and cleaves the RNAs 5' to the AU elements. In contrast to the slow degradation of the of the residual 5' domain, the 3' UTR of the AU-rich mRNA and the GAPDH mRNA are rapidly degraded in wild-type virus-infected cells.
Collapse
|
50
|
Mahller YY, Sakthivel B, Baird WH, Aronow BJ, Hsu YH, Cripe TP, Mehrian-Shai R. Molecular analysis of human cancer cells infected by an oncolytic HSV-1 reveals multiple upregulated cellular genes and a role for SOCS1 in virus replication. Cancer Gene Ther 2008; 15:733-41. [PMID: 18551144 PMCID: PMC2852536 DOI: 10.1038/cgt.2008.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/23/2008] [Accepted: 04/29/2008] [Indexed: 12/16/2022]
Abstract
Oncolytic herpes simplex viruses (oHSVs) are promising anticancer therapeutics. We sought to characterize the functional genomic response of human cancer cells to oHSV infection using G207, an oHSV previously evaluated in a phase I trial. Five human malignant peripheral nerve sheath tumor cell lines, with differing sensitivity to oHSV, were infected with G207 for 6 h. Functional genomic analysis of virus-infected cells demonstrated large clusters of downregulated cellular mRNAs and smaller clusters of those upregulated, including 21 genes commonly upregulated in all five lines. Of these, 7 are known to be HSV-1 induced and 14 represent novel virus-regulated genes. Gene ontology analysis revealed that a majority of G207-upregulated genes are involved in Janus kinase/signal transducer and activator of transcription signaling, transcriptional regulation, nucleic acid metabolism, protein synthesis and apoptosis. Ingenuity networks highlighted nodes for AP-1 subunits and interferon signaling via STAT1, suppressor of cytokine signaling-1 (SOCS1), SOCS3 and RANTES. As biological confirmation, we found that virus-mediated upregulation of SOCS1 correlated with sensitivity to G207 and that depletion of SOCS1 impaired virus replication by >10-fold. Further characterization of roles provided by oHSV-induced cellular genes during virus replication may be utilized to predict oncolytic efficacy and to provide rational strategies for designing next-generation oncolytic viruses.
Collapse
Affiliation(s)
- YY Mahller
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Graduate Program of Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - B Sakthivel
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - WH Baird
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Graduate Program of Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - BJ Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Y-H Hsu
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, University of Southern California, Los Angeles, CA, USA
| | - TP Cripe
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - R Mehrian-Shai
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|