1
|
Two-Color CRISPR Imaging Reveals Dynamics of Herpes Simplex Virus 1 Replication Compartments and Virus-Host Interactions. J Virol 2022; 96:e0092022. [PMID: 36453882 PMCID: PMC9769385 DOI: 10.1128/jvi.00920-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Real-time imaging tools for single-virus tracking provide spatially resolved, quantitative measurements of viral replication and virus-host interactions. However, efficiently labeling both parental and progeny viruses in living host cells remains challenging. Here, we developed a novel strategy using the CRISPR-Tag system to detect herpes simplex virus 1 (HSV-1) DNA in host cells. We created recombinant HSV-1 harboring an ~600-bp CRISPR-Tag sequence which can be sufficiently recognized by dCas9-fluorescent protein (FP) fusion proteins. CRISPR-assisted single viral genome tracking (CASVIT) allows us to assess the temporal and spatial information of viral replication at the single-cell level. Combining the advantages of SunTag and tandem split green fluorescent protein (GFP) in amplifying fluorescent signals, dSaCas9-tdTomato10x and dSpCas9-GFP14x were constructed to enable efficient two-color CASVIT detection. Real-time two-color imaging indicates that replication compartments (RCs) frequently come into contact with each other but do not mix, suggesting that RC territory is highly stable. Last, two-color CASVIT enables simultaneous tracking of viral DNA and host chromatin, which reveals that a dramatic loss of telomeric and centromeric DNA occurs in host cells at the early stage of viral replication. Overall, our work has established a framework for developing CRISPR-Cas9-based imaging tools to study DNA viruses in living cells. IMPORTANCE Herpes simplex virus 1 (HSV-1), a representative of the family Herpesviridae, is a ubiquitous pathogen that can establish lifelong infections and widely affects human health. Viral infection is a dynamic process that involves many steps and interactions with various cellular structures, including host chromatin. A common viral replication strategy is to form RCs that concentrate factors required for viral replication. Efficient strategies for imaging the dynamics of viral genomes, RC formation, and the interaction between the virus and host offer the opportunity to dissect the steps of the infection process and determine the mechanism underlying each step. We have developed an efficient two-color imaging system based on CRISPR-Cas9 technology to detect HSV-1 genomes quantitatively in living cells. Our results shed light on novel aspects of RC dynamics and virus-host interactions.
Collapse
|
2
|
Su Hui Teo C, Serwa RA, O’Hare P. Spatial and Temporal Resolution of Global Protein Synthesis during HSV Infection Using Bioorthogonal Precursors and Click Chemistry. PLoS Pathog 2016; 12:e1005927. [PMID: 27706239 PMCID: PMC5051704 DOI: 10.1371/journal.ppat.1005927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/12/2016] [Indexed: 12/04/2022] Open
Abstract
We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no effect on cell viability, on accumulation of test early or late viral proteins, or on overall virus yields. HPG pulse-labeling followed by SDS-PAGE analysis confirmed incorporation into newly synthesised proteins, while parallel processing by in situ cycloaddition revealed new insight into spatiotemporal aspects of protein localisation during infection. A striking feature was the rapid accumulation of newly synthesised proteins not only in a general nuclear pattern but additionally in newly forming sub-compartments represented by small discrete foci. These newly synthesised protein domains (NPDs) were similar in size and morphology to PML domains but were more numerous, and whereas PML domains were progressively disrupted, NPDs were progressively induced and persisted. Immediate-early proteins ICP4 and ICP0 were excluded from NPDs, but using an ICP0 mutant defective in PML disruption, we show a clear spatial relationship between NPDs and PML domains with NPDs frequently forming immediately adjacent and co-joining persisting PML domains. Further analysis of location of the chaperone Hsc70 demonstrated that while NPDs formed early in infection without overt Hsc70 recruitment, later in infection Hsc70 showed pronounced recruitment frequently in a coat-like fashion around NPDs. Moreover, while ICP4 and ICP0 were excluded from NPDs, ICP22 showed selective recruitment. Our data indicate that NPDs represent early recruitment of host and viral de novo translated protein to distinct structural entities which are precursors to the previously described VICE domains involved in protein quality control in the nucleus, and reveal new features from which we propose spatially linked platforms of newly synthesised protein processing after nuclear import.
Collapse
Affiliation(s)
- Catherine Su Hui Teo
- Section of Virology, Faculty of Medicine, Imperial College London, St Mary’s Medical School, Norfolk Place, London, United Kingdom
| | - Remigiusz A. Serwa
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Peter O’Hare
- Section of Virology, Faculty of Medicine, Imperial College London, St Mary’s Medical School, Norfolk Place, London, United Kingdom
| |
Collapse
|
3
|
Kobiler O, Brodersen P, Taylor MP, Ludmir EB, Enquist LW. Herpesvirus replication compartments originate with single incoming viral genomes. mBio 2011; 2:e00278-11. [PMID: 22186611 PMCID: PMC3269065 DOI: 10.1128/mbio.00278-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Previously we described a method to estimate the average number of virus genomes expressed in an infected cell. By analyzing the color spectrum of cells infected with a mixture of isogenic pseudorabies virus (PRV) recombinants expressing three fluorophores, we estimated that fewer than seven incoming genomes are expressed, replicated, and packaged into progeny per cell. In this report, we expand this work and describe experiments demonstrating the generality of the method, as well as providing more insight into herpesvirus replication. We used three isogenic PRV recombinants, each expressing a fluorescently tagged VP26 fusion protein (VP26 is a capsid protein) under the viral VP26 late promoter. We calculated a similar finite limit on the number of expressed viral genomes, indicating that this method is independent of the promoter used to transcribe the fluorophore genes, the time of expression of the fluorophore (early versus late), and the insertion site of the fluorophore gene in the PRV genome (UL versus US). Importantly, these VP26 fusion proteins are distributed equally in punctate virion assembly structures in each nucleus, which improves the signal-to-noise ratio when determining the color spectrum of each cell. To understand how the small number of genomes are distributed among the replication compartments, we used a two-color fluorescent in situ hybridization assay. Most viral replication compartments in the nucleus occupy unique nuclear territories, implying that they arose from single genomes. Our experiments suggest a correlation between the small number of expressed viral genomes and the limited number of replication compartments.
Collapse
Affiliation(s)
- O Kobiler
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | |
Collapse
|
4
|
Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1. J Virol 2011; 86:492-503. [PMID: 22013039 DOI: 10.1128/jvi.05897-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) which localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Poly(ADP-ribosyl)ation of the nuclear mitotic apparatus (NuMA) protein by tankyrase 1 during mitosis is essential for sister telomere resolution and mitotic spindle pole formation. In interphase cells, tankyrase 1 resides in the cytoplasm, and its role therein is not well understood. In this study, we found that herpes simplex virus (HSV) infection induced extensive modification of tankyrase 1 but not tankyrase 2. This modification was dependent on extracellular signal-regulated kinase (ERK) activity triggered by HSV infection. Following HSV-1 infection, tankyrase 1 was recruited to the nucleus. In the early phase of infection, tankyrase 1 colocalized with ICP0 and thereafter localized within the HSV replication compartment, which was blocked in cells infected with the HSV-1 ICP0-null mutant R7910. In the absence of infection, ICP0 interacted with tankyrase 1 and efficiently promoted its nuclear localization. HSV did not replicate efficiently in cells depleted of both tankyrases 1 and 2. Moreover, XAV939, an inhibitor of tankyrase PARP activity, decreased viral titers to 2 to 5% of control values. We concluded that HSV targets tankyrase 1 in an ICP0- and ERK-dependent manner to facilitate its replication.
Collapse
|
5
|
Fukuyo Y, Horikoshi N, Ishov AM, Silverstein SJ, Nakajima T. The herpes simplex virus immediate-early ubiquitin ligase ICP0 induces degradation of the ICP0 repressor protein E2FBP1. J Virol 2011; 85:3356-66. [PMID: 21248039 PMCID: PMC3067832 DOI: 10.1128/jvi.02105-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/07/2011] [Indexed: 01/14/2023] Open
Abstract
E2FBP1/hDRIL1, a DNA-binding A/T-rich interaction domain (ARID) family transcription factor, is expressed ubiquitously in human tissues and plays an essential role in maintaining the proliferation potential of passage-limited human fibroblasts by dissociating promyelocytic leukemia nuclear bodies (PML-NBs). This effect on PML-NBs is similar to that of viral immediate-early gene products, such as infected cellular protein 0 (ICP0) from human herpes simplex virus 1 (HSV-1), which also disrupts PML-NBs to override the intrinsic cellular defense. Here we report that E2FBP1 inhibits accumulation of ICP0 RNA and, at the same time, is degraded via ICP0's herpes ubiquitin ligase 2 (HUL-2) activity upon HSV-1 infection. These reciprocal regulatory roles of ICP0 and E2FBP1 are linked in an ARID-dependent fashion. Our results suggest that E2FBP1 functions as an intrinsic cellular defense factor in spite of its PML-NB dissociation function.
Collapse
Affiliation(s)
- Yayoi Fukuyo
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Nobuo Horikoshi
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Alexander M. Ishov
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Saul J. Silverstein
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Takuma Nakajima
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| |
Collapse
|
6
|
Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2011; 124:280-91. [PMID: 21172801 PMCID: PMC3010193 DOI: 10.1242/jcs.075390] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2010] [Indexed: 12/18/2022] Open
Abstract
Intrinsic antiviral resistance mediated by constitutively expressed cellular proteins is one arm of defence against virus infection. Promyelocytic leukaemia nuclear bodies (PML-NBs, also known as ND10) contribute to host restriction of herpes simplex virus type 1 (HSV-1) replication via mechanisms that are counteracted by viral regulatory protein ICP0. ND10 assembly is dependent on PML, which comprises several different isoforms, and depletion of all PML isoforms decreases cellular resistance to ICP0-null mutant HSV-1. We report that individual expression of PML isoforms I and II partially reverses the increase in ICP0-null mutant HSV-1 plaque formation that occurs in PML-depleted cells. This activity of PML isoform I is dependent on SUMO modification, its SUMO interaction motif (SIM), and each element of its TRIM domain. Detailed analysis revealed that the punctate foci formed by individual PML isoforms differ subtly from normal ND10 in terms of composition and/or Sp100 modification. Surprisingly, deletion of the SIM motif from PML isoform I resulted in increased colocalisation with other major ND10 components in cells lacking endogenous PML. Our observations suggest that complete functionality of PML is dependent on isoform-specific C-terminal sequences acting in concert.
Collapse
Affiliation(s)
- Delphine Cuchet
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | - Amanda Sykes
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | - Armel Nicolas
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | - Jill Murray
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | - Hüseyin Sirma
- Heinrich-Pette-Institute and and Institute of Pathology University Hospital UKE, Martinistrasse 52, 20251 Hamburg, Germany
| | - Joerg Heeren
- IBMII: Molecular Cell Biology, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alexander Bartelt
- IBMII: Molecular Cell Biology, Martinistrasse 52, 20246 Hamburg, Germany
| | - Roger D. Everett
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| |
Collapse
|
7
|
Lukashchuk V, Everett RD. Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 2010; 84:4026-40. [PMID: 20147399 PMCID: PMC2849514 DOI: 10.1128/jvi.02597-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/31/2010] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early gene product ICP0 activates lytic infection and relieves cell-mediated repression of viral gene expression. This repression is conferred by preexisting cellular proteins and is commonly referred to as intrinsic antiviral resistance or intrinsic defense. PML and Sp100, two core components of nuclear substructures known as ND10 or PML nuclear bodies, contribute to intrinsic resistance, but it is clear that other proteins must also be involved. We have tested the hypothesis that additional ND10 factors, particularly those that are involved in chromatin remodeling, may have roles in intrinsic resistance against HSV-1 infection. The two ND10 component proteins investigated in this report are ATRX and hDaxx, which are known to interact with each other and comprise components of a repressive chromatin-remodeling complex. We generated stable cell lines in which endogenous ATRX or hDaxx expression is severely suppressed by RNA interference. We found increases in both gene expression and plaque formation induced by ICP0-null mutant HSV-1 in both ATRX- and hDaxx-depleted cells. Reconstitution of wild-type hDaxx expression reversed the effects of hDaxx depletion, but reconstitution with a mutant form of hDaxx unable to interact with ATRX did not. Our results suggest that ATRX and hDaxx act as a complex that contributes to intrinsic antiviral resistance to HSV-1 infection, which is counteracted by ICP0.
Collapse
Affiliation(s)
- Vera Lukashchuk
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | - Roger D. Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| |
Collapse
|
8
|
Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun 2010; 1:146. [PMID: 21266996 PMCID: PMC3079281 DOI: 10.1038/ncomms1145] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/24/2010] [Indexed: 01/12/2023] Open
Abstract
Whether all the infectious herpesvirus particles entering a cell are able to replicate and/or express their genomes is not known. Here, we developed a general method to determine the number of viral genomes expressed in an infected cell. We constructed and analysed fluorophore expression from a recombinant pseudorabies virus (PRV263) carrying a Brainbow cassette (Cre-conditional expression of different fluorophores). Using three isogenic strains derived from PRV263, each expressing a single fluorophore, we analysed the colour composition of cells infected with these three viruses at different multiplicities. We estimate that fewer than seven incoming genomes are expressed per cell. In addition, those templates that are expressed are the genomes selected for replication and packaging into virions. This finite limit on the number of viral genomes that can be expressed is an intrinsic property of the infected cell and may be influenced by viral and cellular factors.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Yaron Lipman
- The Program in Applied and Computational Mathematics, Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kate Therkelsen
- The Program in Applied and Computational Mathematics, Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ingrid Daubechies
- The Program in Applied and Computational Mathematics, Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Lynn W. Enquist
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
9
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
10
|
Li W, Wang G, Zhang H, Zhang D, Zeng J, Chen X, Xu Y, Li K. Differential suppressive effect of promyelocytic leukemia protein on the replication of different subtypes/strains of influenza A virus. Biochem Biophys Res Commun 2009; 389:84-9. [DOI: 10.1016/j.bbrc.2009.08.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/18/2009] [Indexed: 11/17/2022]
|
11
|
Conrady CD, Drevets DA, Carr DJJ. Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 2009; 220:1-9. [PMID: 19819030 DOI: 10.1016/j.jneuroim.2009.09.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) can induce a robust immune response initially thru the activation of pattern recognition receptors and subsequent type I interferon production that then shapes, along with other innate immune components, the adaptive immune response to the insult. While this response is necessary to quell virus replication, drive the pathogen into a "latent" state, and likely hinder viral reactivation, collateral damage can ensue with demonstrable cell death and foci of tissue pathology in the central nervous system (CNS) as a result of the release of inflammatory mediators including reactive oxygen species. Although rare, HSV-1 is the leading cause of frank sporadic encephalitis that, if left untreated, can result in death. A greater understanding of the contribution of resident glial cells and infiltrating leukocytes within the CNS in response to HSV-1 invasion is necessary to identify candidate molecules as targets for therapeutic intervention to reduce unwarranted inflammation coinciding with the maintenance of the anti-viral state.
Collapse
Affiliation(s)
- Christopher D Conrady
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | | | | |
Collapse
|
12
|
Hilliard JG, Cooper AL, Slusser JG, Davido DJ. A flow cytometric assay for the study of E3 ubiquitin ligase activity. Cytometry A 2009; 75:634-41. [PMID: 19504579 PMCID: PMC2750075 DOI: 10.1002/cyto.a.20738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current methods for monitoring E3 ubiquitin ligase activity in cell culture or in vivo are limited. As a result, the degradation of cellular targets by many E3 ubiquitin ligases in live cells has not yet been examined. For this study, a target of an E3 ubiquitin ligase was expressed as a fluorescently labeled protein in cell culture. If the E3 ubiquitin ligase mediates the degradation of a target protein in cell culture, it is expected that the target will show a reduced fluorescence signal by FCM analysis. We initially used the E3 ubiquitin ligase, herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0) and one of its targets, promyelocytic leukemia (PML) protein, to determine the feasibility of our approach. Cells expressing a PML-GFP fusion protein were selected by cell sorting and infected with an adenoviral vector expressing ICP0. In contrast to mock-infected cells, only PML-GFP-expressing cells infected with the ICP0 adenoviral vector led to a significant decrease in the fluorescence signal of PML-GFP when examined by fluorescence microscopy and FCM analysis. Our results suggest that it is possible to examine the live activity of an E3 ubiquitin ligase (via one of its targets) in cell culture by FCM analysis.
Collapse
Affiliation(s)
| | - Anne L. Cooper
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Joyce G. Slusser
- Flow Cytometry Core Laboratory, University of Kansas Medical Center, Kansas City, KS
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| |
Collapse
|
13
|
Cell fusion-induced activation of interferon-stimulated genes is not required for restriction of a herpes simplex virus VP16/ICP0 mutant in heterokarya formed between permissive and restrictive cells. J Virol 2009; 83:8976-9. [PMID: 19535444 DOI: 10.1128/jvi.00142-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus VP16 and ICP0 mutants replicate efficiently in U2OS osteosarcoma cells but are restricted in other cell types. We previously showed that the restrictive phenotype is dominant in a transient cell fusion assay, suggesting that U2OS cells lack an antiviral mechanism present in other cells. Recent data indicate that unscheduled membrane fusion events can activate the expression of interferon-stimulated genes (ISGs) in fibroblasts, raising the possibility that our earlier results were due to a fusion-induced antiviral state. However, we show here that the permissive phenotype is also extinguished following fusion with Vero cells in the absence of ISG induction.
Collapse
|
14
|
Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes. J Virol 2009; 83:8514-24. [PMID: 19535445 DOI: 10.1128/jvi.00785-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability of herpes simplex virus to persist in cells depends on the extent of viral-gene expression, which may be controlled by epigenetic mechanisms. We used quiescent infection with the viral mutants d109 and d106 to explore the effects of cell type and the presence of the viral protein ICP0 on the expression and chromatin structure of the human cytomegalovirus (HCMV) tk and gC promoters on the viral genome. Expression from the HCMV promoter on the d109 genome decreased with time and was considerably less in HEL cells than in Vero cells. Expression from the HCMV promoter in d106 was considerably more abundant than in d109, and this increased with time in both cell types. The same pattern of expression was seen on the tk and gC genes on the viral genomes, although the levels of tk and gC RNA were approximately 10(2)- and 10(5)-fold lower than those of wild-type virus in d106 and d109, respectively. In micrococcal-nuclease digestion experiments, nucleosomes were evident on the d109 genome, and the amount of total H3 as determined by chromatin immunoprecipitation was considerably greater on d109 than d106 genomes. The acetylation of histone H3 on the d106 genomes was evident at early and late times postinfection in Vero cells, but only at late times in HEL cells. The same pattern was observed for H3 acetylated on lysine 9. Trimethylation of H3K9 on d109 genomes was evident only at late times postinfection in Vero cells, while it was observed both early and late in HEL cells. Heterochromatin protein 1gamma (HP1gamma) was generally present only on d109 genomes at late times postinfection of HEL cells. The observations of chromatin structure correlate with the expression patterns of the three analyzed genes on the quiescent genomes. Therefore, several mechanisms generally affect the expression and contribute to the silencing of persisting genomes. These are the abundance of nucleosomes, the acetylation state of the histones, and heterochromatin. The extents to which these different mechanisms contribute to repression vary in different cell types and are counteracted by the presence of ICP0.
Collapse
|
15
|
Shibata T, Tanaka T, Shimizu K, Hayakawa S, Kuroda K. Immunofluorescence imaging of the influenza virus M1 protein is dependent on the fixation method. J Virol Methods 2008; 156:162-5. [PMID: 19027795 DOI: 10.1016/j.jviromet.2008.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022]
Abstract
The distribution of the matrix (M1) protein of influenza virus in infected cells was examined using immunostaining. The fixation method influenced strongly the immunofluorescence pattern of the M1 protein. The M1 protein was distributed uniformly in both the cytoplasm and in nuclei when cells that had been infected with virus were fixed with paraformaldehyde. In cells that had been fixed with methanol, however, nuclear dots of the M1 protein were clearly visible. The dots were evident at 8h post-inoculation. Up to 6h post-inoculation, only a diffuse distribution of the M1 protein was observed. The dots were co-localized with promyelocytic leukemia (PML) protein, a major component of nuclear domain 10 (ND10), also called PML oncogenic domains (PODs) or PML-nuclear bodies (NBs). These results indicate that the nuclear dots of the M1 protein in cells that had been fixed with methanol are not artifacts of the fixation method. Furthermore, methanol fixation is preferred for localization of the influenza M1 protein in nuclei using immunostaining.
Collapse
Affiliation(s)
- Toshikatsu Shibata
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | | | | | | | | |
Collapse
|
16
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
17
|
McNally BA, Trgovcich J, Maul GG, Liu Y, Zheng P. A role for cytoplasmic PML in cellular resistance to viral infection. PLoS One 2008; 3:e2277. [PMID: 18509536 PMCID: PMC2386554 DOI: 10.1371/journal.pone.0002277] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/05/2008] [Indexed: 11/23/2022] Open
Abstract
PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells.
Collapse
Affiliation(s)
- Beth A. McNally
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joanne Trgovcich
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Gerd G. Maul
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yang Liu
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pan Zheng
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yamauchi Y, Kiriyama K, Kimura H, Nishiyama Y. Herpes simplex virus induces extensive modification and dynamic relocalisation of the nuclear mitotic apparatus (NuMA) protein in interphase cells. J Cell Sci 2008; 121:2087-96. [PMID: 18505791 DOI: 10.1242/jcs.031450] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is a component of the nuclear matrix in interphase cells and an essential protein for the formation of mitotic spindle poles. We used herpes simplex virus (HSV), an enveloped DNA virus that replicates in the nucleus, to study the intra-nuclear dynamics of NuMA in infected cells. This study shows that NuMA is extensively modified following HSV infection, including phosphorylation of an unidentified site(s), and that it depends to an extent on viral DNA synthesis. Although NuMA is insoluble in uninfected interphase cells, HSV infection induced solubilisation and dynamic relocalisation of NuMA, whereupon the protein became excluded from viral replication compartments -- sites of virus transcription and replication. Live cell, confocal imaging showed that NuMA localisation dramatically changed from the early stages (diffusely nuclear, excluding nucleoli) to late stages of infection (central diminuition, but remaining near the inner nuclear peripheries). In addition, NuMA knockdown using siRNA suggested that NuMA is important for efficient viral growth. In summary, we suggest that NuMA is required for efficient HSV infection, and identify further areas of research that address how the virus challenges host cell barriers.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Department of Virology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
19
|
Everett RD, Parada C, Gripon P, Sirma H, Orr A. Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 2008; 82:2661-72. [PMID: 18160441 PMCID: PMC2258993 DOI: 10.1128/jvi.02308-07] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/17/2007] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants that fail to express the viral immediate-early protein ICP0 have a pronounced defect in viral gene expression and plaque formation in limited-passage human fibroblasts. ICP0 is a RING finger E3 ubiquitin ligase that induces the degradation of several cellular proteins. PML, the organizer of cellular nuclear substructures known as PML nuclear bodies or ND10, is one of the most notable proteins that is targeted by ICP0. Depletion of PML from human fibroblasts increases ICP0-null mutant HSV-1 gene expression, but not to wild-type levels. In this study, we report that depletion of Sp100, another major ND10 protein, results in a similar increase in ICP0-null mutant gene expression and that simultaneous depletion of both proteins complements the mutant virus to a greater degree. Although chromatin assembly and modification undoubtedly play major roles in the regulation of HSV-1 infection, we found that inhibition of histone deacetylase activity with trichostatin A was unable to complement the defect of ICP0-null mutant HSV-1 in either normal or PML-depleted human fibroblasts. These data lend further weight to the hypothesis that ND10 play an important role in the regulation of HSV-1 gene expression.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
20
|
Everett RD, Murray J, Orr A, Preston CM. Herpes simplex virus type 1 genomes are associated with ND10 nuclear substructures in quiescently infected human fibroblasts. J Virol 2007; 81:10991-1004. [PMID: 17670833 PMCID: PMC2045565 DOI: 10.1128/jvi.00705-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/20/2007] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) genomes become associated with structures related to cellular nuclear substructures known as ND10 or promyelocytic leukemia nuclear bodies during the early stages of lytic infection. This paper describes the relationship between HSV-1 genomes and ND10 in human fibroblasts that maintain the viral genomes in a quiescent state. We report that quiescent HSV-1 genomes detected by fluorescence in situ hybridization (FISH) are associated with enlarged ND10-like structures, frequently such that the FISH-defined viral foci are apparently enveloped within a sphere of PML and other ND10 proteins. The number of FISH viral foci in each quiescently infected cell is concordant with the input multiplicity of infection, with each structure containing no more than a small number of viral genomes. A proportion of the enlarged ND10-like foci in quiescently infected cells contain accumulations of the heterochromatin protein HP1 but not other common markers of heterochromatin such as histone H3 di- or trimethylated on lysine residue 9. Many of the virally induced enlarged ND10-like structures also contain concentrations of conjugated ubiquitin. Quiescent infections can be established in cells that are highly depleted for PML. However, during the initial stages of establishment of a quiescent infection in such cells, other ND10 proteins (Sp100, hDaxx, and ATRX) are recruited into virally induced foci that are likely to be associated with HSV-1 genomes. These observations illustrate that the intimate connections between HSV-1 genomes and ND10 that occur during lytic infection also extend to quiescent infections.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 2006; 80:7995-8005. [PMID: 16873256 PMCID: PMC1563828 DOI: 10.1128/jvi.00734-06] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/30/2006] [Indexed: 12/19/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (also known as ND10) are nuclear substructures that contain several proteins, including PML itself, Sp100, and hDaxx. PML has been implicated in many cellular processes, and ND10 are frequently associated with the replicating genomes of DNA viruses. During herpes simplex virus type 1 (HSV-1) infection, the viral regulatory protein ICP0 localizes to ND10 and induces the degradation of PML, thereby disrupting ND10 and dispersing their constituent proteins. ICP0-null mutant viruses are defective in PML degradation and ND10 disruption, and concomitantly they initiate productive infection very inefficiently. Although these data are consistent with a repressive role for PML and/or ND10 during HSV-1 infection, evidence in support of this hypothesis has been inconclusive. By use of short interfering RNA technology, we demonstrate that depletion of PML increases both gene expression and plaque formation by an ICP0-negative HSV-1 mutant, while having no effect on wild-type HSV-1. We conclude that PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virol J 2005; 2:59. [PMID: 16076403 PMCID: PMC1215526 DOI: 10.1186/1743-422x-2-59] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 08/03/2005] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN) and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL)-12 together with the above and other cytokines induce production of IFN-gamma in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites. So, no hero does it alone. Rather, an alliance of cytokines, macrophages and other cells seems to play a central role. Implications of this for future treatment modalities are shortly considered.
Collapse
Affiliation(s)
- Svend Ellermann-Eriksen
- Department of Clinical Microbiology, Aarhus University Hospital, Skejby Sygehus, Brendstrupgaardsvej 100, DK-8200 Aarhus N., Denmark.
| |
Collapse
|
23
|
Ching RW, Dellaire G, Eskiw CH, Bazett-Jones DP. PML bodies: a meeting place for genomic loci? J Cell Sci 2005; 118:847-54. [PMID: 15731002 DOI: 10.1242/jcs.01700] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies have been implicated in a variety of cellular processes, such as cell-cycle regulation, apoptosis, proteolysis, tumor suppression, DNA repair and transcription. Despite this, the function of PML bodies is still unknown. Direct and indirect evidence supports the hypothesis that PML bodies interact with specific genes or genomic loci. This includes the finding that the stability of PML bodies is affected by cell stress and changes in chromatin structure. PML bodies also facilitate the transcription and replication of double-stranded DNA viral genomes. Moreover, PML bodies associate with specific regions of high transcriptional activity in the cellular genome. We propose that PML bodies functionally interact with chromatin and are important for the regulation of gene expression.
Collapse
Affiliation(s)
- Reagan W Ching
- Programme in Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | | | | | | |
Collapse
|
24
|
Everett RD, Murray J. ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 2005; 79:5078-89. [PMID: 15795293 PMCID: PMC1069553 DOI: 10.1128/jvi.79.8.5078-5089.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 12/01/2004] [Indexed: 01/05/2023] Open
Abstract
Infections with DNA viruses commonly result in the association of viral genomes and replication compartments with cellular nuclear substructures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. While there is evidence that viral genomes can associate with preexisting ND10, we demonstrate in this study by live-cell microscopy that structures resembling ND10 form de novo and in association with viral genome complexes during the initial stages of herpes simplex virus type 1 (HSV-1) infection. Consistent with previous studies, we found that the major ND10 proteins PML, Sp100, and hDaxx are exchanged very rapidly between ND10 foci and the surrounding nucleoplasm in live cells. The dynamic nature of the individual protein molecule components of ND10 provides a mechanism by which ND10 proteins can be recruited to novel sites during virus infection. These observations explain why the genomes and replication compartments of DNA viruses that replicate in the cell nucleus are so commonly found in association with ND10. These findings are discussed with reference to the nature, location, and potential number of HSV-1 prereplication compartments and to the dynamic aspects of HSV-1 genomes and viral products during the early stages of lytic infection.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church St., Glasgow G11 5JR, Scotland, United Kingdom.
| | | |
Collapse
|