1
|
Wang Y, Dong Y, Luan T, Chen Y, Lin L, Li S, Feng D, Wei J, Fei Y, Wang G, Pan J, Wang Y, Zhong Z, Zhao W. TRIM56 restricts Coxsackievirus B infection by mediating the ubiquitination of viral RNA-dependent RNA polymerase 3D. PLoS Pathog 2024; 20:e1012594. [PMID: 39348396 PMCID: PMC11476688 DOI: 10.1371/journal.ppat.1012594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Coxsackievirus B (CVB) is the major causative pathogen for severe diseases such as viral myocarditis, meningitis, and pancreatitis. There is no effective antiviral therapy currently available for CVB infection primarily due to that the pathogenesis of CVB has not been completely understood. Viruses are obligate intracellular pathogens which subvert cellular processes to ensure viral replication. Dysregulation of ubiquitination has been implicated in CVB infection. However, how ubiquitination is involved in CVB infection remains unclear. Here we found that the 3D protein of CVB3, the RNA-dependent RNA polymerase, was modified at K220 by K48-linked polyubiquitination which promoted its degradation through proteasome. Proteomic analysis showed that the E3 ligase TRIM56 was upregulated in CVB3-infected cells, while the majority of TRIMs remained unchanged. Pull-down and immunoprecipitation analyses showed that TRIM56 interacted with CVB3 3D. Immunofluorescence observation showed that viral 3D protein was colocalized with TRIM56. TRIM56 overexpression resulted in enhanced ubiquitination of CVB3 3D and decreased virus yield. Moreover, TRIM56 was cleaved by viral 3C protease in CVB3-infected cells. Taken together, this study demonstrated that TRIM56 mediates the ubiquitination and proteasomal degradation of the CVB3 3D protein. These findings demonstrate that TRIM56 is an intrinsic cellular restriction factor against CVB infection, and enhancing viral protein degradation could be a potential strategy to control CVB infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Teaching Center of Pathogenic Biology, Harbin Medical University, Harbin, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Danxiang Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jianwei Wei
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, Harbin Medical University, Harbin, China
| | - Jiahui Pan
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Zhao X, Hu Y, Zhao J, Liu Y, Ma X, Chen H, Xing Y. Role of protein Post-translational modifications in enterovirus infection. Front Microbiol 2024; 15:1341599. [PMID: 38596371 PMCID: PMC11002909 DOI: 10.3389/fmicb.2024.1341599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Jun Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yan Liu
- Department of Immunology, School of Medicine, Qinghai, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, School of Medicine, Qinghai University, Qinghai, China
| | - Hongru Chen
- Department of Public Health, School of Medicine, Qinghai University, Qinghai, China
| | - Yonghua Xing
- Department of Genetics, School of Medicine, Qinghai University, Qinghai, China
| |
Collapse
|
3
|
Tan C, Qin X, Tan Y, Dong X, Chen D, Liang L, Li J, Niu R, Cao K, He Z, Wei G, Huang M, Zhu X. SHFL inhibits enterovirus A71 infection by triggering degradation of viral 3D pol protein via the ubiquitin-proteasome pathway. J Med Virol 2023; 95:e29030. [PMID: 37565734 DOI: 10.1002/jmv.29030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Enterovirus A71 (EV-A71) is a highly contagious virus that poses a major threat to global health, representing the primary etiological agent for hand-foot and mouth disease (HFMD) and neurological complications. It has been established that interferon signaling is critical to establishing a robust antiviral state in host cells, mainly mediated through the antiviral effects of numerous interferon-stimulated genes (ISGs). The host restriction factor SHFL is a novel ISG with broad antiviral activity against various viruses through diverse underlying molecular mechanisms. Although SHFL is widely acknowledged for its broad-spectrum antiviral activity, it remains elusive whether SHFL inhibits EV-A71. In this work, we validated that EV-A71 triggers the upregulation of SHFL both in cell lines and in a mouse model. Knockdown and overexpression of SHFL in EVA71-infected cells suggested that this factor could markedly suppress EV-A71 replication. Our findings further revealed an intriguing mechanism of SHFL that it could interact with the nonstructural proteins 3Dpol of EV-A71 and promoted the degradation of 3Dpol through the ubiquitin-proteasome pathway. Furthermore, the zinc-finger domain and the 36 amino acids (164-199) of SHFL were crucial to the interaction between SHFL and EV-A71 3Dpol . Overall, these findings broadened our understanding of the pivotal roles of SHFL in the interaction between the host and EV-A71.
Collapse
Affiliation(s)
- Chahui Tan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
- Department of Laboratory Medicine, Changsha Medical University, Changsha, China
| | - Xingliang Qin
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Yongyao Tan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Xinhuai Dong
- Shunde Hospital, Medical Research Center, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Delin Chen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Linyue Liang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Jinling Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Ruoxi Niu
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiyuan Cao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guohong Wei
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingxing Huang
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| |
Collapse
|
4
|
Tian X, Dong H, Lai X, Ou G, Cao J, Shi J, Xiang C, Wang L, Zhang X, Zhang K, Song J, Deng J, Deng H, Lu S, Zhuang H, Li T, Xiang K. TRIM56 impairs HBV infection and replication by inhibiting HBV core promoter activity. Antiviral Res 2022; 207:105406. [PMID: 36084850 DOI: 10.1016/j.antiviral.2022.105406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Members of the tripartite motif (TRIM) protein family strongly induced by interferons (IFNs) are parts of the innate immune system with antiviral activity. However, it is still unclear which TRIMs could play important roles in hepatitis B virus (HBV) inhibition. Here, we identified that TRIM56 expression responded in IFN-treated HepG2-NTCP cells and HBV-infected liver tissues, which was a potent IFN-inducible inhibitor of HBV replication. Mechanistically, TRIM56 suppressed HBV replication via its Ring and C-terminal domain. C-terminal domain was essential for TRIM56 translocating from cytoplasm to nucleus during HBV infection. Further analysis revealed that TRIM56's Ring domain targeted IκBα for ubiquitination. This modification induced phosphorylation of p65, which subsequently inhibited HBV core promoter activity, resulting in the inhibition of HBV replication. The p65 was found to be necessary for NF-κB signal pathway to inhibit HBV replication. We verified our findings using HepG2-NTCP and primary human hepatocytes. Our findings reveal that TRIM56 is a critical antiviral immune effector and exerts an anti-HBV activity via NF-κB signal pathway, which is essential for inhibiting transcription of HBV covalently closed circular DNA.
Collapse
Affiliation(s)
- Xing Tian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huijun Dong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junning Cao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100089, China
| | - Jihang Shi
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100089, China
| | - Chengang Xiang
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic, Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua, Center for Life Sciences, Peking University, Beijing, 100191, China; Renal Division, Peking University First Hospital, Beijing, China
| | - Lei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuechao Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ji Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Deng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongkui Deng
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic, Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua, Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100089, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Kim SR, Song JH, Ahn JH, Jeong MS, Yang YM, Cho J, Jeong JH, Cha Y, Kim KN, Kim HP, Chang SY, Ko HJ. Obesity Exacerbates Coxsackievirus Infection via Lipid-Induced Mitochondrial Reactive Oxygen Species Generation. Immune Netw 2022; 22:e19. [PMID: 35573153 PMCID: PMC9066006 DOI: 10.4110/in.2022.22.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 12/03/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infection causes acute pancreatitis and myocarditis. However, its pathophysiological mechanism is unclear. Here, we investigated how lipid metabolism is associated with exacerbation of CVB3 pathology using high-fat diet (HFD)-induced obese mice. Mice were intraperitoneally inoculated with 1×106 pfu/mouse of CVB3 after being fed a control or HFD to induce obesity. Mice were treated with mitoquinone (MitoQ) to reduce the level of mitochondrial ROS (mtROS). In obese mice, lipotoxicity of white adipose tissue-induced inflammation caused increased replication of CVB3 and mortality. The coxsackievirus adenovirus receptor increased under obese conditions, facilitating CVB3 replication in vitro. However, lipid-treated cells with receptor-specific inhibitors did not reduce CVB3 replication. In addition, lipid treatment increased mitochondria-derived vesicle formation and the number of multivesicular bodies. Alternatively, we found that inhibition of lipid-induced mtROS decreased viral replication. Notably, HFD-fed mice were more susceptible to CVB3-induced mortality in association with increased levels of CVB3 replication in adipose tissue, which was ameliorated by administration of the mtROS inhibitor, MitoQ. These results suggest that mtROS inhibitors can be used as potential treatments for CVB3 infection.
Collapse
Affiliation(s)
- Seong-Ryeol Kim
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jaewon Cho
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hyeon Jeong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Younggil Cha
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Hong Pyo Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea
| | | | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
6
|
Cereda G, Ciappolino V, Boscutti A, Cantù F, Enrico P, Oldani L, Delvecchio G, Brambilla P. Zinc as a Neuroprotective Nutrient for COVID-19-Related Neuropsychiatric Manifestations: A Literature Review. Adv Nutr 2021; 13:66-79. [PMID: 34634109 PMCID: PMC8524565 DOI: 10.1093/advances/nmab110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The outbreak of the pandemic associated with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) led researchers to find new potential treatments, including nonpharmacological molecules such as zinc (Zn2+). Specifically, the use of Zn2+ as a therapy for SARS-CoV-2 infection is based on several findings: 1) the possible role of the anti-inflammatory activity of Zn2+ on the aberrant inflammatory response triggered by COronaVIrus Disease 19 (COVID-19), 2) properties of Zn2+ in modulating the competitive balance between the host and the invading pathogens, and 3) the antiviral activity of Zn2+ on a number of pathogens, including coronaviruses. Furthermore, Zn2+ has been found to play a central role in regulating brain functioning and many disorders have been associated with Zn2+ deficiency, including neurodegenerative diseases, psychiatric disorders, and brain injuries. Within this context, we carried out a narrative review to provide an overview of the evidence relating to the effects of Zn2+ on the immune and nervous systems, and the therapeutic use of such micronutrients in both neurological and infective disorders, with the final goal of elucidating the possible use of Zn2+ as a preventive or therapeutic intervention in COVID-19. Overall, the results from the available evidence showed that, owing to its neuroprotective properties, Zn2+ supplementation could be effective not only on COVID-19-related symptoms but also on virus replication, as well as on COVID-19-related inflammation and neurological damage. However, further clinical trials evaluating the efficacy of Zn2+ as a nonpharmacological treatment of COVID-19 are required to achieve an overall improvement in outcome and prognosis.
Collapse
Affiliation(s)
- Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
7
|
Coxsackievirus B3 Exploits the Ubiquitin-Proteasome System to Facilitate Viral Replication. Viruses 2021; 13:v13071360. [PMID: 34372566 PMCID: PMC8310229 DOI: 10.3390/v13071360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/18/2023] Open
Abstract
Infection by RNA viruses causes extensive cellular reorganization, including hijacking of membranes to create membranous structures termed replication organelles, which support viral RNA synthesis and virion assembly. In this study, we show that infection with coxsackievirus B3 entails a profound impairment of the protein homeostasis at virus-utilized membranes, reflected by an accumulation of ubiquitinylated proteins, including K48-linked polyubiquitin conjugates, known to direct proteins to proteasomal degradation. The enrichment of membrane-bound ubiquitin conjugates is attributed to the presence of the non-structural viral proteins 2B and 3A, which are known to perturb membrane integrity and can cause an extensive rearrangement of cellular membranes. The locally increased abundance of ubiquitinylated proteins occurs without an increase of oxidatively damaged proteins. During the exponential phase of replication, the oxidative damage of membrane proteins is even diminished, an effect we attribute to the recruitment of glutathione, which is known to be required for the formation of infectious virus particles. Furthermore, we show that the proteasome contributes to the processing of viral precursor proteins. Taken together, we demonstrate how an infection with coxsackievirus B3 affects the cellular protein and redox homeostasis locally at the site of viral replication and virus assembly.
Collapse
|
8
|
Zoghi S, Khamirani HJ, Dastgheib SA, Dianatpour M, Ghaffarieh A. An analysis of inhibition of the severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase by zinc ion: an in silico approach. Future Virol 2021. [PMCID: PMC8074572 DOI: 10.2217/fvl-2020-0369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Coronavirus disease 2019 is caused by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was reported that Zn2+ is an inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV). We hypothesize that the same applies to the newly discovered SARS-CoV-2. Material & methods: We compared the structure of RNA-dependent RNA polymerase between SARS-CoV and SARS-CoV-2. The RdRp’s binding to Zn2+ was studied by metal ion-binding site prediction and docking server. Results: Several regions containing key residues were detected. The functional aspartic acid residues RdRp, 618D, 760D and 761D were among the predicted Zn2+-binding residues. Conclusion: The most probable mechanism of inhibition of RdRp by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism. The most probable mechanism of inhibition of RNA polymerase by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism. #Zinc #SARS_CoV_2 #COVID_19.
Collapse
Affiliation(s)
- Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ghaffarieh
- Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Guha S, Chakraborty A. Coronavirus management and control: Nutrition and alternative medicines. Nutr Health 2021; 28:635-645. [PMID: 33858237 DOI: 10.1177/02601060211009704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In late December 2019, the outbreak of COVID-19 caused by the coronavirus severe acute respiratory syndrome-CoV-2, originated in Wuhan Province, the People's Republic of China (PRC). The rapid and highly infectious virus quickly spread around the country and has become a global pandemic. Thousands of people have been infected, and have died. Scientists around the world are working on the vaccine; however, an effective cure is yet to be developed. AIMS Search to be made on some alternative antiviral components from the rich sources of traditional herbal medicine in India as well as in the PRC. Here we discuss them with references. METHODS The knowledge gained from the literature search of antiviral known herbal products or Ayurvedic medicines that used to be applied against any viral or bacterial infections in the past, may be considered for deployment against COVID-19, and may be rewarded. RESULTS Many medicinal compounds are extracted from plants and have led to drug discovery. Similarly, plant products and their analogues have been employed as an early line of defense against COVID-19. CONCLUSION Research into ethnobotany, phytochemistry, plant physiology and ecology may be important in protecting the global population from current and future pandemics.
Collapse
|
10
|
Chinni V, El-Khoury J, Perera M, Bellomo R, Jones D, Bolton D, Ischia J, Patel O. Zinc supplementation as an adjunct therapy for COVID-19: Challenges and opportunities. Br J Clin Pharmacol 2021; 87:3737-3746. [PMID: 33742473 PMCID: PMC8250380 DOI: 10.1111/bcp.14826] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 01/19/2023] Open
Abstract
An outbreak of a novel coronavirus (COVID‐19 or 2019‐CoV) infection has posed significant threats to international health and the economy. Patients with COVID‐19 are at risk of cytokine storm, acute respiratory distress syndrome (ARDS), reduced blood oxygenation, mechanical ventilation, and a high death rate. Although recent studies have shown remdesivir and dexamethasone as treatment options, there is an urgent need to find a treatment to inhibit virus replication and to control the progression of the disease. Essential biometal zinc has generated a lot of excitement as one of the promising candidates to reduce the severity of COVID‐19 infection. Several published observations outlined in the review are the reasons why there is a global enthusiasm that zinc therapy could be a possible therapeutic option. However, the biggest challenge in realising the therapeutic value of zinc is lack of optimal treatment modalities such as dose, duration of zinc supplementation and the mode of delivery. In this review, we discuss the regulatory mechanism that hinges upon the bioavailability of zinc. Finally, we propose that intravenous zinc could circumvent the confounding factors affecting the bioavailability of zinc and allow zinc to achieve its therapeutic potential. If successful, due to advantages such as lack of toxicity, low cost and ease of availability, intravenous zinc could be rapidly implemented clinically.
Collapse
Affiliation(s)
- Vidyasagar Chinni
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - John El-Khoury
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Marlon Perera
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, The University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Daryl Jones
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
11
|
Patel O, Chinni V, El-Khoury J, Perera M, Neto AS, McDonald C, See E, Jones D, Bolton D, Bellomo R, Trubiano J, Ischia J. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol 2021; 93:3261-3267. [PMID: 33629384 PMCID: PMC8014767 DOI: 10.1002/jmv.26895] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Zinc inhibits replication of the SARS-CoV virus. We aimed to evaluate the safety, feasibility, and biological effect of administering high-dose intravenous zinc (HDIVZn) to patients with COVID-19. We performed a Phase IIa double-blind, randomized controlled trial to compare HDIVZn to placebo in hospitalized patients with COVID-19. We administered trial treatment per day for a maximum of 7 days until either death or hospital discharge. We measured zinc concentration at baseline and during treatment and observed patients for any significant side effects. For eligible patients, we randomized and administered treatment to 33 adult participants to either HDIVZn (n = 15) or placebo (n = 18). We observed no serious adverse events throughout the study for a total of 94 HDIVZn administrations. However, three participants in the HDIVZn group reported infusion site irritation. Mean serum zinc on Day 1 in the placebo, and the HDIVZn group was 6.9 ± 1.1 and 7.7 ± 1.6 µmol/l, respectively, consistent with zinc deficiency. HDIVZn, but not placebo, increased serum zinc levels above the deficiency cutoff of 10.7 µmol/l (p < .001) on Day 6. Our study did not reach its target enrollment because stringent public health measures markedly reduced patient hospitalizations. Hospitalized COVID-19 patients demonstrated zinc deficiency. This can be corrected with HDIVZn. Such treatment appears safe, feasible, and only associated with minimal peripheral infusion site irritation. This pilot study justifies further investigation of this treatment in COVID-19 patients.
Collapse
Affiliation(s)
- Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Vidyasagar Chinni
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - John El-Khoury
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Marlon Perera
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Ary S Neto
- Australian and New Zealand Intensive Care-Research Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Integrated Critical Care, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine McDonald
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Emily See
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Daryl Jones
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, The University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Jason Trubiano
- Department of Infectious Disease, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
12
|
Kaul L, Süss R, Zannettino A, Richter K. The revival of dithiocarbamates: from pesticides to innovative medical treatments. iScience 2021; 24:102092. [PMID: 33598645 PMCID: PMC7868997 DOI: 10.1016/j.isci.2021.102092] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dithiocarbamates (DTCs) have been used for various applications, including as hardening agents in rubber manufacturing, as fungicide in agriculture, and as medications to treat alcohol misuse disorder. The multi-faceted effects of DTCs rely mainly on metal binding abilities and a high reactivity with thiol groups. Therefore, the list of potential applications is still increasing, exemplified by the US Food and Drug Administration approval of disulfiram (Antabuse) and its metabolite diethyldithiocarbamate in clinical trials against cancer, human immunodeficiency virus, and Lyme disease, as well as new DTC-related compounds that have been synthesized to target diseases with unmet therapeutic needs. In this review, we will discuss the latest progress of DTCs as anti-cancer agents and provide a summary of the mechanisms of action. We will explain the expansion of DTCs' activity in the fields of microbiology, neurology, cardiology, and ophthalmology, thereby providing evidence for the important role and therapeutic potential of DTCs as innovative medical treatments.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5011, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Celik C, Gencay A, Ocsoy I. Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochim Biophys Acta Gen Subj 2021; 1865:129801. [PMID: 33238195 PMCID: PMC7680693 DOI: 10.1016/j.bbagen.2020.129801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to lack of approved drugs and vaccines, the medical world has resorted to older drugs, produced for viral infections and other diseases, as a remedy to combat COVID-19. The accumulating evidence from in vitro and in vivo studies for SARS-CoV and MERS-CoV have demonstrated that several polyphenols found in plants and zinc- polyphenol clusters have been in use as herbal medicines have antiviral activities against viruses with various mechanisms. SCOPE OF REVIEW Curcumin, zinc and zinc-ionophores have been considered as nutraceuticals and nutrients showing great antiviral activities with their medicinal like activities. MAJOR CONCLUSIONS In this work, we discussed the potential prophylactic and/or therapeutic effects of curcumin, zinc and zinc-ionophores in treatment of viral infections including COVID-19. GENERAL SIGNIFICANCE Curcuminoids and Zinc classified as nutraceuticals under GRAS (Generally Recognized As Safe) by FDA can provide complementary treatment for COVID 19 patients with their immunity-boosting and antiviral properties.
Collapse
Affiliation(s)
- Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ayse Gencay
- Department of Virology, Faculty of Veterinary, Erciyes University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
14
|
Hecel A, Ostrowska M, Stokowa-Sołtys K, Wątły J, Dudek D, Miller A, Potocki S, Matera-Witkiewicz A, Dominguez-Martin A, Kozłowski H, Rowińska-Żyrek M. Zinc(II)-The Overlooked Éminence Grise of Chloroquine's Fight against COVID-19? Pharmaceuticals (Basel) 2020; 13:E228. [PMID: 32882888 PMCID: PMC7558363 DOI: 10.3390/ph13090228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
Zn(II) is an inhibitor of SARS-CoV-2's RNA-dependent RNA polymerase, and chloroquine and hydroxychloroquine are Zn(II) ionophores-this statement gives a curious mind a lot to think about. We show results of the first clinical trials on chloroquine (CQ) and hydroxychloroquine (HCQ) in the treatment of COVID-19, as well as earlier reports on the anticoronaviral properties of these two compounds and of Zn(II) itself. Other FDA-approved Zn(II) ionophores are given a decent amount of attention and are thought of as possible COVID-19 therapeutics.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Małgorzata Ostrowska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Dorota Dudek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Sławomir Potocki
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Alicia Dominguez-Martin
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain;
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
- Department of Physiotherapy, Opole Medical School, Katowicka 68, 40-060 Opole, Poland
| | - Magdalena Rowińska-Żyrek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| |
Collapse
|
15
|
Wang Y, Zhao S, Chen Y, Wang Y, Wang T, Wo X, Dong Y, Zhang J, Xu W, Qu C, Feng X, Wu X, Wang Y, Zhong Z, Zhao W. N-Acetyl cysteine effectively alleviates Coxsackievirus B-Induced myocarditis through suppressing viral replication and inflammatory response. Antiviral Res 2020; 179:104699. [DOI: 10.1016/j.antiviral.2019.104699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
|
16
|
Di Florio DN, Sin J, Coronado MJ, Atwal PS, Fairweather D. Sex differences in inflammation, redox biology, mitochondria and autoimmunity. Redox Biol 2020; 31:101482. [PMID: 32197947 PMCID: PMC7212489 DOI: 10.1016/j.redox.2020.101482] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are characterized by circulating antibodies and immune complexes directed against self-tissues that result in both systemic and organ-specific inflammation and pathology. Most autoimmune diseases occur more often in women than men. One exception is myocarditis, which is an inflammation of the myocardium that is typically caused by viral infections. Sex differences in the immune response and the role of the sex hormones estrogen and testosterone are well established based on animal models of autoimmune viral myocarditis as well as in mitochondrial function leading to reactive oxygen species production. RNA viruses like coxsackievirus B3, the primary cause of myocarditis in the US, activate the inflammasome through mitochondrial antiviral signaling protein located on the mitochondrial outer membrane. Toll-like receptor 4 and the inflammasome are the primary signaling pathways that increase inflammation during myocarditis, which is increased by testosterone. This review describes what is known about sex differences in inflammation, redox biology and mitochondrial function in the male-dominant autoimmune disease myocarditis and highlights gaps in the literature and future directions.
Collapse
Affiliation(s)
- Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA.
| | - Jon Sin
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, CA, USA.
| | | | | | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA; Department of Immunology, Mayo Clinic, Jacksonville, FL, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
Adokoh CK. Therapeutic potential of dithiocarbamate supported gold compounds. RSC Adv 2020; 10:2975-2988. [PMID: 35496096 PMCID: PMC9048446 DOI: 10.1039/c9ra09682e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chrysotherapy or aurotherapy, the use of gold as medicine, is two thousand years old. Hitherto, numerous diverse gold stabilizing ligands for instance vitamins, pyridine, phosphines, naphthylamine and xanthanes have been developed and their 'chelating effect' in addition to their anti-proliferative properties have been extensively studied. Recent advances in the field of bioinorganic chemistry have led to the design of biologically relevant metal complexes with appropriate fine-tuned ligands such as metallic conjugates of dithiocarbamates (DTCs). DTC compounds have been recognised to possess diverse applications and have demonstrated interesting biological properties. For instance, the chemoprotective and antitumour properties of gold metal ions and DTC compounds respectively, presents an innovative and effective approach to cancer management. This review presents therefore the therapeutic potential of DTC ligand systems as a support for gold compounds. The importance of dithiocarbamate supported gold compounds as potential therapeutic agents is highlighted with emphasis on the therapeutic potential of gold(iii) and gold(i) dithiocarbamate derivatives.
Collapse
Affiliation(s)
- Christian K Adokoh
- Department of Forensic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast Cape Coast Ghana
| |
Collapse
|
18
|
Kar M, Khan NA, Panwar A, Bais SS, Basak S, Goel R, Sopory S, Medigeshi GR. Zinc Chelation Specifically Inhibits Early Stages of Dengue Virus Replication by Activation of NF-κB and Induction of Antiviral Response in Epithelial Cells. Front Immunol 2019; 10:2347. [PMID: 31632411 PMCID: PMC6779808 DOI: 10.3389/fimmu.2019.02347] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient which regulates diverse physiological functions and has been shown to play a crucial role in viral infections. Zinc has a necessary role in the replication of many viruses, however, antiviral action of zinc has also been demonstrated in in vitro infection models most likely through induction of host antiviral responses. Therefore, depending on the host machinery that the virus employs at different stages of infection, zinc may either facilitate, or inhibit virus infection. In this study, we show that zinc plays divergent roles in rotavirus and dengue virus infections in epithelial cells. Dengue virus infection did not perturb the epithelial barrier functions despite the release of virus from the basolateral surface whereas rotavirus infection led to disruption of epithelial junctions. In rotavirus infection, zinc supplementation post-infection did not block barrier disruption suggesting that zinc does not affect rotavirus life-cycle or protects epithelial barriers post-infection suggesting the involvement of cellular pathways in the beneficial effect of zinc supplementation in enteric infections. Zinc depletion by N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibited dengue virus and Japanese encephalitis virus (JEV) infection but had no effect on rotavirus. Time-of-addition experiments suggested that zinc chelation affected both early and late stages of dengue virus infectious cycle and zinc chelation abrogated dengue virus RNA replication. We show that transient zinc chelation induces ER stress and antiviral response by activating NF-kappaB leading to induction of interferon signaling. These results suggest that modulation of zinc homeostasis during virus infection could be a component of host antiviral response and altering zinc homeostasis may act as a potent antiviral strategy against flaviviruses.
Collapse
Affiliation(s)
- Meenakshi Kar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Naseem Ahmed Khan
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Aleksha Panwar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Renu Goel
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailaja Sopory
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
19
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
20
|
Abstract
This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM. Cytopathic effects (CPEs) are a hallmark of infections. CPEs are difficult to observe due to phototoxicity from classical light microscopy. We report distinct patterns of virus infections in live cells using digital holo-tomographic microscopy (DHTM). DHTM is label-free and records the phase shift of low-energy light passing through the specimen on a transparent surface with minimal perturbation. DHTM measures the refractive index (RI) and computes the refractive index gradient (RIG), unveiling optical heterogeneity in cells. We find that vaccinia virus (VACV), herpes simplex virus (HSV), and rhinovirus (RV) infections progressively and distinctly increased RIG. VACV infection, but not HSV and RV infections, induced oscillations of cell volume, while all three viruses altered cytoplasmic membrane dynamics and induced apoptotic features akin to those caused by the chemical compound staurosporine. In sum, we introduce DHTM for quantitative label-free microscopy in infection research and uncover virus type-specific changes and CPE in living cells with minimal interference. IMPORTANCE This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM.
Collapse
|
21
|
Meng X, Yu X, Liu C, Wang Y, Song F, Huan C, Huo W, Zhang S, Li Z, Zhang J, Zhang W, Yu J. Effect of ingredients from Chinese herbs on enterovirus D68 production. Phytother Res 2018; 33:174-186. [PMID: 30346067 DOI: 10.1002/ptr.6214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Xiangling Meng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Chunyu Liu
- Acupuncture Department The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Ying Wang
- Department of Gastroenterology, The First Hospital of Jilin University Jilin University Changchun China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| |
Collapse
|
22
|
Bowman‒Birk Inhibitor Suppresses Herpes Simplex Virus Type 2 Infection of Human Cervical Epithelial Cells. Viruses 2018; 10:v10100557. [PMID: 30322047 PMCID: PMC6213026 DOI: 10.3390/v10100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The Bowman‒Birk inhibitor (BBI), a protease inhibitor derived from soybeans, has been extensively studied in anti-tumor and anti-inflammation research. We recently reported that BBI has an anti-HIV-1 property in primary human macrophages. Because HSV-2 infection plays a role in facilitating HIV-1 sexual transmission, we thus examined whether BBI has the ability to inhibit HSV-2 infection. We demonstrated that BBI could potently inhibit HSV-2 replication in human cervical epithelial cells (End1/E6E7). This BBI-mediated HSV-2 inhibition was partially through blocking HSV-2-mediated activation of NF-κB and p38 MAPK pathways. In addition, BBI could activate the JAK/STAT pathway and enhance the expression of several antiviral interferon-stimulated genes (ISGs). Furthermore, BBI treatment of End1/E6E7 cells upregulated the expression of tight junction proteins and reduced HSV-2-mediated cellular ubiquitinated proteins’ degradation through suppressing the ubiquitin‒proteasome system. These observations indicate that BBI may have therapeutic potential for the prevention and treatment of HSV-2 infections.
Collapse
|
23
|
Miteva K, Pappritz K, Sosnowski M, El-Shafeey M, Müller I, Dong F, Savvatis K, Ringe J, Tschöpe C, Van Linthout S. Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy. Sci Rep 2018; 8:2820. [PMID: 29434214 PMCID: PMC5809634 DOI: 10.1038/s41598-018-20686-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammation in myocarditis induces cardiac injury and triggers disease progression to heart failure. NLRP3 inflammasome activation is a newly identified amplifying step in the pathogenesis of myocarditis. We previously have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1β, and IL-18 mRNA expression in CVB3-infected mice. ASC protein expression, essential for NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2 expression, NLRP3 inflammasome activation and IL-1β secretion in HL-1 cells, which was abolished after MSC supplementation. The inhibitory effect of MSC on NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1β-positive splenic macrophages, natural killer cells, and dendritic cells. The suppressive effect of MSC on inflammasome activation was associated with normalized expression of prominent regulators of myocardial contractility and fibrosis to levels comparable to control mice. In conclusion, MSC treatment in myocarditis could be a promising strategy limiting the adverse consequences of cardiac and systemic NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Marzena Sosnowski
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Muhammad El-Shafeey
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Konstantinos Savvatis
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Charité-University-Medicine Berlin, Campus Rudolf Virchow, Department of Cardiology, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Charité-University-Medicine Berlin, Campus Rudolf Virchow, Department of Cardiology, Berlin, Germany.
| |
Collapse
|
24
|
PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection. PLoS One 2017; 12:e0173259. [PMID: 28278207 PMCID: PMC5344377 DOI: 10.1371/journal.pone.0173259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.
Collapse
|
25
|
Zhong T, Zhang LY, Wang ZY, Wang Y, Song FM, Zhang YH, Yu JH. Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment. Acta Pharmacol Sin 2017; 38:392-401. [PMID: 27840410 PMCID: PMC5342659 DOI: 10.1038/aps.2016.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Human enterovirus 71 (EV71) is the primary causative agent of recent large-scale outbreaks of hand, foot, and mouth disease (HFMD) in Asia. Currently, there are no drugs available for the prevention and treatment of HFMD. In this study, we compared the anti-EV71 activities of three natural compounds, rheum emodin, artemisinin and astragaloside extracted from Chinese herbs Chinese rhubarb, Artemisia carvifolia and Astragalus, respectively, which have been traditionally used for the treatment and prevention of epidemic diseases. Human lung fibroblast cell line MRC5 was mock-infected or infected with EV71, and treated with drugs. The cytotoxicity of the drugs was detected with MTT assay. The cytopathic effects such as cell death and condensed nuclei were morphologically observed. The VP1-coding sequence required for EV71 genome replication was assayed with qRT-PCR. Viral protein expression was analyzed with Western blotting. Viral TCID50 was determined to evaluate EV71 virulence. Flow cytometry analysis of propidium iodide staining was performed to analyze the cell cycle distribution of MRC5 cells. Rheum emodin (29.6 μmol/L) effectively protected MRC5 cells from EV71-induced cytopathic effects, which resulted from the inhibiting viral replication: rheum emodin treatment decreased viral genomic levels by 5.34-fold, viral protein expression by less than 30-fold and EV71 virulence by 0.33107-fold. The fact that inhibition of rheum emodin on viral virulence was much stronger than its effects on genomic levels and viral protein expression suggested that rheum emodin inhibited viral maturation. Furthermore, rheum emodin treatment markedly diminished cell cycle arrest at S phase in MRC5 cells, which was induced by EV71 infection and favored the viral replication. In contrast, neither astragaloside (50 μmol/L) nor artemisinin (50 μmol/L) showed similar anti-EV71 activities. Among the three natural compounds tested, rheum emodin effectively suppressed EV71 viral replication, thus is a candidate anti-HFMD drug.
Collapse
|
26
|
Buskiewicz IA, Montgomery T, Yasewicz EC, Huber SA, Murphy MP, Hartley RC, Kelly R, Crow MK, Perl A, Budd RC, Koenig A. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci Signal 2016; 9:ra115. [PMID: 27899525 PMCID: PMC5321043 DOI: 10.1126/scisignal.aaf1933] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The increased expression of genes induced by type I interferon (IFN) is characteristic of viral infections and systemic lupus erythematosus (SLE). We showed that mitochondrial antiviral signaling (MAVS) protein, which normally forms a complex with retinoic acid gene I (RIG-I)-like helicases during viral infection, was activated by oxidative stress independently of RIG-I helicases. We found that chemically generated oxidative stress stimulated the formation of MAVS oligomers, which led to mitochondrial hyperpolarization and decreased adenosine triphosphate production and spare respiratory capacity, responses that were not observed in similarly treated cells lacking MAVS. Peripheral blood lymphocytes of SLE patients also showed spontaneous MAVS oligomerization that correlated with the increased secretion of type I IFN and mitochondrial oxidative stress. Furthermore, inhibition of mitochondrial reactive oxygen species (ROS) by the mitochondria-targeted antioxidant MitoQ prevented MAVS oligomerization and type I IFN production. ROS-dependent MAVS oligomerization and type I IFN production were reduced in cells expressing the MAVS-C79F variant, which occurs in 30% of sub-Saharan Africans and is linked with reduced type I IFN secretion and milder disease in SLE patients. Patients expressing the MAVS-C79F variant also had reduced amounts of oligomerized MAVS in their plasma compared to healthy controls. Together, our findings suggest that oxidative stress-induced MAVS oligomerization in SLE patients may contribute to the type I IFN signature that is characteristic of this syndrome.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA.
| | - Theresa Montgomery
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | - Elizabeth C Yasewicz
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | - Sally A Huber
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ryan Kelly
- Upstate University Hospital, State University of New York, Rheumatology Clinic, Syracuse, NY 13202, USA
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Andras Perl
- Upstate University Hospital, State University of New York, Rheumatology Clinic, Syracuse, NY 13202, USA
| | - Ralph C Budd
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | - Andreas Koenig
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA.
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
27
|
Zhai X, Bai B, Yu B, Wang T, Wang H, Wang Y, Li H, Tong L, Wang Y, Zhang F, Zhao W, Zhong Z. Coxsackievirus B3 Induces Autophagic Response in Cardiac Myocytes in vivo. BIOCHEMISTRY (MOSCOW) 2016; 80:1001-9. [PMID: 26547068 DOI: 10.1134/s0006297915080052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral myocarditis is a common disease that contributes to dilated cardiomyopathy or heart failure. Coxsackievirus B (CVB) is one of the major causative pathogens of viral myocarditis. Previous studies have shown that autophagy is exploited to promote CVB replication in cell lines. To study whether cardiac myocytes respond to CVB infection in a similar way, viral myocarditis was established by the inoculation of 3-week-old BALB/c mice with CVB3. Electron microscopic observation showed that autophagosome-like vesicles were induced in the cardiac myocytes of mice infected by CVB3 at 3, 5, and 7 days after viral infection. The lipidated microtubule-associated protein 1 light chain 3 (LC3), LC3-II, was also significantly increased in both myocardium and the cardiac myocytes extracted from the ventricles of mice infected with CVB3. The increased LC3-II coincided with high level of viral RNA and proteins in both myocardium and isolated cardiac myocytes. Moreover, viral protein synthesis was significantly decreased in primary cardiac myocytes by the treatment with 3-methyladenine, an inhibitor of autophagy. The expression and the phosphorylation of extracellular signal regulated kinase (ERK) were also increased in both myocardium and in the isolated cardiac myocytes of the virus-infected mice, while the interplay of ERK with autophagic response remains to be studied. This study demonstrated that cardiac myocytes respond to CVB3 infection by increased formation of autophagosomes in vivo, which might be exploited for viral replication.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin, 150086, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang T, Fu Y, Huang T, Liu Y, Wu M, Yuan Y, Li S, Li C. Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity. Molecules 2016; 21:molecules21081088. [PMID: 27556432 PMCID: PMC6273760 DOI: 10.3390/molecules21081088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA) and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402). However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20–30 fold) owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS) generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA–Cu) was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA–Cu lacked this effect, which explained the difference in their antiproliferative activity.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, Henan, China.
- Henan Collaborative Innovation Center of Molecular Diagnostics and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Yun Fu
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Tengfei Huang
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Youxun Liu
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Meihao Wu
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Yanbin Yuan
- Department of Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Shaoshan Li
- Department of Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Changzheng Li
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, Henan, China.
- Henan Collaborative Innovation Center of Molecular Diagnostics and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
29
|
Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch Virol 2016; 161:929-38. [PMID: 26780775 DOI: 10.1007/s00705-016-2749-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
Abstract
Members of the family Picornaviridae, in particular, enteroviruses, represent a serious threat to human health. They are responsible for numerous pathologies ranging from mild disease to fatal outcome. Due to the limited number of safe and effective antivirals against enteroviruses, there is a need for search and development of novel drugs with various mechanisms of activity against enteroviruses-induced pathologies. We studied the effect of dihydroquercetin (DHQ), a flavonoid from larch wood, on the course of pancreatitis of white mice caused by coxsackievirus B4 (CVB4). DHQ was applied intraperitoneally at doses of 75 or 150 mg/kg/day once a day for 5 days postinfection (p.i.) starting on day 1 p.i., and its effect was compared to that of the reference compound ribavirin. The application of DHQ resulted in a dose-dependent decrease in the virus titer in pancreatic tissue, reaching, at the highest dose, 2.4 logs on day 5 p.i. Also, the application of DHQ led to restoration of antioxidant activity of pancreatic tissue that was impaired in the course of pancreatitis. Morphologically, pancreatic tissue of DHQ-treated animals demonstrated less infiltration with inflammatory cells and no signs of tissue destruction compared to placebo-treated mice. Both ribavirin- and DHQ-treated animals developed fewer foci of pancreatic inflammation per mouse, and these foci contained fewer infiltrating cells than those in placebo-treated mice. The effect of DHQ was comparable to or exceeded that of ribavirin. Taken together, our results suggest high antiviral activity of DHQ and its promising potential in complex treatment of viral pancreatitis.
Collapse
|
30
|
Marton J, Albert D, Wiltshire SA, Park R, Bergen A, Qureshi S, Malo D, Burelle Y, Vidal SM. Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS One 2015; 10:e0138222. [PMID: 26375467 PMCID: PMC4574283 DOI: 10.1371/journal.pone.0138222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus type B3 (CVB3) is a cardiotropic enterovirus. Infection causes cardiomyocyte necrosis and myocardial inflammation. The damaged tissue that results is replaced with fibrotic or calcified tissue, which can lead to permanently altered cardiac function. The extent of pathogenesis among individuals exposed to CVB3 is dictated by a combination of host genetics, viral virulence, and the environment. Here, we aimed to identify genes that modulate cardiopathology following CVB3 infection. 129S1 mice infected with CVB3 developed increased cardiac pathology compared to 129X1 substrain mice despite no difference in viral burden. Linkage analysis identified a major locus on chromosome 7 (LOD: 8.307, P<0.0001) that controlled the severity of cardiac calcification and necrosis following infection. Sub-phenotyping and genetic complementation assays identified Abcc6 as the underlying gene. Microarray expression profiling identified genotype-dependent regulation of genes associated with mitochondria. Electron microscopy examination showed elevated deposition of hydroxyapatite-like material in the mitochondrial matrices of infected Abcc6 knockout (Abcc6-/-) mice but not in wildtype littermates. Cyclosporine A (CsA) inhibits mitochondrial permeability transition pore opening by inhibiting cyclophilin D (CypD). Treatment of Abcc6 -/- mice with CsA reduced cardiac necrosis and calcification by more than half. Furthermore, CsA had no effect on the CVB3-induced phenotype of doubly deficient CypD-/-Abcc6-/- mice. Altogether, our work demonstrates that mutations in Abcc6 render mice more susceptible to cardiac calcification following CVB3 infection. Moreover, we implicate CypD in the control of cardiac necrosis and calcification in Abcc6-deficient mice, whereby CypD inhibition is required for cardioprotection.
Collapse
Affiliation(s)
- Jennifer Marton
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Danica Albert
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Sean A. Wiltshire
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Robin Park
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Arthur Bergen
- Department of Ophthalmogenetics, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Salman Qureshi
- The Center for Host Resistance and the Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Danielle Malo
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Yan Burelle
- Faculty of Pharmacy, University of Montreal, Montreal, Canada
| | - Silvia M. Vidal
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| |
Collapse
|
31
|
The ubiquitin proteasome system plays a role in venezuelan equine encephalitis virus infection. PLoS One 2015; 10:e0124792. [PMID: 25927990 PMCID: PMC4415917 DOI: 10.1371/journal.pone.0124792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023] Open
Abstract
Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.
Collapse
|
32
|
XU XIAOPING, LIU DONGJUAN, JI NING, LI TAIWEN, LI LONGJIANG, JIANG LU, LI JING, ZHANG PING, ZENG XIN, CHEN QIANMING. A novel transcript variant of proteasome activator 28γ: Identification and function in oral cancer cells. Int J Oncol 2015; 47:188-94. [DOI: 10.3892/ijo.2015.2980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
|
33
|
Leong SY, Ong BKT, Chu JJH. The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 2015; 11:e1004686. [PMID: 25747578 PMCID: PMC4352056 DOI: 10.1371/journal.ppat.1004686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young children, and occasional occurrences of neurological complications can be fatal. In this study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library was performed to identify potential antiviral agents against EV71 replication. Among the hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its strong inhibitory profile and novelty. In the investigation of the stage at which MINK is involved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to cause virus inhibition despite bypassing the normal entry pathway, suggesting its involvement at the post-entry stage. We have also shown that viral RNA and protein expression level was significantly reduced upon MINK silencing, suggesting its involvement in viral protein synthesis which feeds into viral RNA replication process. Through proteomic analysis and infection inhibition assay, we found that the activation of MINK was triggered by early replication events, instead of the binding and entry of the virus. Proteomic analysis on the activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phosphorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Luciferase reporter assay further revealed that the translation efficiency of the EV71 internal ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Further investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1 upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then positively regulates the translation of viral RNA transcripts. These novel findings hence suggest that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and may provide a potential target for the development of specific antiviral strategies against EV71 infection.
Collapse
Affiliation(s)
- Shi Yun Leong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Kit Teck Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
34
|
Lin L, Qin Y, Wu H, Chen Y, Wu S, Si X, Wang H, Wang T, Zhong X, Zhai X, Tong L, Pan B, Zhang F, Zhong Z, Wang Y, Zhao W. Pyrrolidine dithiocarbamate inhibits enterovirus 71 replication by down-regulating ubiquitin-proteasome system. Virus Res 2014; 195:207-16. [PMID: 25456405 DOI: 10.1016/j.virusres.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD). The severe neurological complications caused by EV71 infection and the lack of effective therapeutic medicine underline the importance of searching for antiviral substances. Pyrrolidine dithiocarbamate (PDTC), an antioxidant, has been reported to inhibit the replication of coxsackievirus B (CVB) through dysregulating ubiquitin-proteasome system (UPS). In this study, we demonstrated that PDTC exerted potent antiviral effect on EV71. Viral RNA synthesis, viral protein expression, and the production of viral progeny were significantly reduced by the treatment of PDTC in Vero cells infected with EV71. Similar to the previous report about the inhibitory effect of PDTC on UPS, we found that PDTC treatment led to decreased levels of polyubiquitinated proteins in EV71-infected cells. The inhibitory effect of PDTC on UPS was further confirmed by the increased accumulation of cell cycle regulatory proteins p21 and p53, which are normally degraded through UPS, while the expression levels of both proteins remained unchanged. We also showed that PDTC had no impact on the activity of proteasome. Thus, we demonstrated that the down-regulation of PDTC on UPS was the result of its inhibition on ubiquitination. More importantly, this study provides evidence that the inhibition on UPS was required for the antiviral activity of PDTC, since MG132, a potent proteasome inhibitor, significantly inhibited the cytopathic effect and viral protein synthesis in EV71-infected cells. We also found that the antioxidant property of PDTC did not contribute to its antiviral effect, since N-acetyl-l-cysteine, a potent antioxidant, could not inhibit viral replication. In addition, CPE and viral protein synthesis were not inhibited in the cells pretreated with PDTC 2h before viral infection and then cultured in the media with no PDTC supplement, while the antioxidant effect of PDTC was retained. PDTC also showed significant inhibition on apoptosis induced by EV71 infection when it was applied at the early stage of viral infection. Our results collectively suggest that PDTC could be a potential anti-EV71 compound which possesses both antiviral and anti-apoptotic capacity.
Collapse
Affiliation(s)
- Lexun Lin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Hui Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Bo Pan
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| |
Collapse
|
35
|
Wang Y, Gao B, Xiong S. Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis. Am J Physiol Heart Circ Physiol 2014; 307:H1438-47. [PMID: 25260607 DOI: 10.1152/ajpheart.00441.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Viral myocarditis, which is most prevalently caused by coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. Inflammasome plays an essential role in the regulation of diverse inflammatory responses by serving as a platform for caspase-1 activation and caspase-1-dependent proteolytic maturation and secretion of IL-1β. Although inflammasome has been reported to be crucial for the development of many inflammatory diseases, its role in the pathogenesis of viral myocarditis is still elusive. The present study aims to investigate whether CVB3 infection activates inflammasome and whether the activation of inflammasome contributes to CVB3-induced myocarditis. Our results showed that CVB3 infection induced inflammasome activation both in vitro and in vivo. With the inhibition of inflammasome activation, the severity of CVB3-induced myocarditis was significantly alleviated as evidenced by less weight loss, decreased serological indexes of creatine kinase and creatinekinase-MB activities, as well as less severe myocardial injury. Of importance, echocardiography results showed that inhibition of inflammasome activation also efficiently improved cardiac function as revealed by enhanced left ventricular ejection fraction and left ventricular fractional shortening. Despite that CVB3 infection significantly increased the expression of both retinoic acid-inducible gene 1 and NOD-like receptor family, pyrin domain containing 3 (NLRP3) in cardiac myocytes, CVB3-induced inflammasome activation was NLRP3-, but not retinoic acid-inducible gene 1, dependent. Further study showed that reactive oxygen species production and K(+) efflux were critical for the activation of NLRP3 inflammasome upon CVB3 infection. Collectively, our study demonstrated a crucial role of the NLRP3 inflammasome in the pathogenesis of CVB3-induced myocarditis, and modulation of inflammasome activation might represent a promising therapeutic strategy for viral myocarditis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China; and
| | - Bo Gao
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China; and
| | - Sidong Xiong
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China; and Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
36
|
Kabay S, Ozden H, Guven G, Burukoglu D, Ustuner MC, Topal F, Gunes HV, Ustuner D, Ozbayer C. Protective effects of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate on experimental testicular torsion and detorsion injury. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:321-6. [PMID: 25177164 PMCID: PMC4146634 DOI: 10.4196/kjpp.2014.18.4.321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/28/2022]
Abstract
Testicular torsion results with the damage of the testis and it is a surgical emergency. Pyrrolidine dithiocarbamate (PDTC) is a low-molecular-weight antioxidant and potent inhibitor of nuclear factor kappa B (NF-κB) activation. In this study, we aimed to investigate the effects of PDTC to testicular torsion-detorsion (T/D) injury. Forty adult male Sprague-Dawley rats were separated into four groups. A sham operation was performed in group I. In group II, torsion is performed 2 hours by 720 degree extravaginally testis. In group III, 4 h reperfusion of the testis was performed after 2 h of testicular torsion. In group IV, after performing the same surgical procedures as in group III, PDTC (100 mg/kg, intravenous's) was administered before 30 min of detorsion. The testes tissue malondialdehyde (MDA), superoxide dismutase (SOD) catalase (CAT) level was evaluated. Histological evaluations were performed after hematoxylin and eosin staining. Testicular tissue MDA levels were the highest in the T/D groups compared with treatment group. Administration of PDTC prevented a further increase in MDA levels. Significant decrease occurred in CAT and SOD levels in treatment group compared with the control group. The rats in the treatment group had normal testicular architecture. The results suggest that PDTC can be a potential protective agent for preventing the biochemical and histological changes related to oxidative stress in testicular injury caused by testis torsion.
Collapse
Affiliation(s)
- Sahin Kabay
- Department of Urology, Faculty of Medicine, Dumlupınar University, Kütahya 43100, Turkey
| | - Hilmi Ozden
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26100, Turkey
| | - Gul Guven
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26100, Turkey
| | - Dilek Burukoglu
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26100, Turkey
| | - Mehmet Cengiz Ustuner
- Department of Medical Biology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26100, Turkey
| | - Fatma Topal
- Bilecik Seyh Edebali University, Vocational School Health Services, Bilecik 11100, Turkey
| | - Hasan Veysi Gunes
- Department of Medical Biology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26100, Turkey
| | - Derya Ustuner
- Eskisehir Osmangazi University, Vocational School Health Services, Eskisehir 26100, Turkey
| | - Cansu Ozbayer
- Department of Medical Biology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26100, Turkey
| |
Collapse
|
37
|
Sharma A, Marceau C, Hamaguchi R, Burridge PW, Rajarajan K, Churko JM, Wu H, Sallam KI, Matsa E, Sturzu AC, Che Y, Ebert A, Diecke S, Liang P, Red-Horse K, Carette JE, Wu SM, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ Res 2014; 115:556-66. [PMID: 25015077 DOI: 10.1161/circresaha.115.303810] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. OBJECTIVE This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. METHODS AND RESULTS hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonβ1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonβ1 treatment. CONCLUSIONS This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.
Collapse
Affiliation(s)
- Arun Sharma
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Caleb Marceau
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Ryoko Hamaguchi
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Paul W Burridge
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Kuppusamy Rajarajan
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Jared M Churko
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Haodi Wu
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Karim I Sallam
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Elena Matsa
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Anthony C Sturzu
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Yonglu Che
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Antje Ebert
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Sebastian Diecke
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Ping Liang
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Kristy Red-Horse
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Jan E Carette
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA
| | - Sean M Wu
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA.
| | - Joseph C Wu
- From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H., K.R.-H.), Department of Microbiology and Immunology (C.M., J.E.C.), and Department of Radiology, Molecular Imaging Program (J.C.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
38
|
El-Nassan HB. Synthesis and antitumor activity of tetrahydrocarbazole hybridized with dithioate derivatives. J Enzyme Inhib Med Chem 2014; 30:308-15. [PMID: 24899376 DOI: 10.3109/14756366.2014.922554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hala Bakr El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
39
|
Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:186864. [PMID: 24877064 PMCID: PMC4022204 DOI: 10.1155/2014/186864] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hassan Tajik
- Department of Chemistry, Faculty of Sciences, Guilan University, Rasht, Iran
| | - Sazaly Abubakar
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr 3631, Iran
| |
Collapse
|
40
|
Zhang J, Jiang W, Zuo Z. Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor κB. Neuroscience 2013; 261:1-10. [PMID: 24365462 DOI: 10.1016/j.neuroscience.2013.12.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 01/14/2023]
Abstract
Surgery induces learning and memory impairment. Neuroinflammation may contribute to this impairment. Nuclear factor κB (NF-κB) is an important transcription factor to regulate the expression of inflammatory cytokines. We hypothesize that inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) reduces neuroinflammation and the impairment of learning and memory. To test this hypothesis, four-month-old male Fischer 344 rats were subjected to right carotid exploration under propofol and buprenorphine anesthesia. Some rats received two doses of 50mg/kg PDTC given intraperitoneally 30min before and 6h after the surgery. Rats were tested in the Barnes maze and fear conditioning paradigm begun 6days after the surgery. Expression of various proteins related to inflammation was examined in the hippocampus at 24h or 21days after the surgery. Here, surgery, but not anesthesia alone, had a significant effect on prolonging the time needed to identify the target hole during the training sessions of the Barnes maze. Surgery also increased the time for identifying the target hole in the long-term memory test and decreased context-related learning and memory in fear conditioning test. Also, surgery increased nuclear expression of p65, a NF-κB component, decreased cytoplasmic amount of inhibitor of NF-κB, and increased the expression of interleukin-1β, interleukin-6, ionized calcium binding adaptor molecule 1 and active matrix metalloproteinase 9 (MMP-9). Finally, surgery enhanced IgG extravasation in the hippocampus. These surgical effects were attenuated by PDTC. These results suggest that surgery, but not propofol-based anesthesia, induces neuroinflammation and impairment of learning and memory. PDTC attenuates these effects possibly by inhibiting NF-κB activation and the downstream MMP-9 activity.
Collapse
Affiliation(s)
- J Zhang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA; Department of Anesthesiology, Shanghai 6th People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - W Jiang
- Department of Anesthesiology, Shanghai 6th People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Z Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
41
|
Wang Z, Zhao H, Peng S, Zuo Z. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats. Exp Neurol 2013; 249:74-82. [PMID: 23994718 DOI: 10.1016/j.expneurol.2013.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/26/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Abstract
Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated with intranasal PDTC. Neurological outcomes were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain HI for biochemical analysis. Here, PDTC dose-dependently reduced brain HI-induced brain tissue loss with an effective dose (ED)50 at 27 mg/kg. PDTC needed to be applied within 45 min after the brain HI for this neuroprotection. This treatment reduced brain tissue loss and improved neurological and cognitive functions assessed 30 days after the HI. PDTC attenuated brain HI-induced lipid oxidative stress, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells, and various inflammatory mediators in the brain tissues. Inhibition of inducible nitric oxide synthase after brain HI reduced brain tissue loss. Our results suggest that intranasal PDTC provides neuroprotection possibly via reducing inflammation and oxidative stress. Intranasal PDTC may have a potential to provide neuroprotection to human neonates after birth asphyxia.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
42
|
Qiu M, Chen Y, Chu Y, Song S, Yang N, Gao J, Wu Z. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation. Antiviral Res 2013; 100:44-53. [PMID: 23867132 DOI: 10.1016/j.antiviral.2013.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer.
Collapse
Affiliation(s)
- Min Qiu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Pyrrolidine dithiocarbamate inhibits herpes simplex virus 1 and 2 replication, and its activity may be mediated through dysregulation of the ubiquitin-proteasome system. J Virol 2013; 87:8675-86. [PMID: 23740985 DOI: 10.1128/jvi.00869-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is widely used as an antioxidant or an NF-κB inhibitor. It has been reported to inhibit the replication of human rhinoviruses, poliovirus, coxsackievirus, and influenza virus. In this paper, we report that PDTC could inhibit the replication of herpes simplex virus 1 and 2 (HSV-1 and HSV-2). PDTC suppressed the expression of HSV-1 and HSV-2 viral immediate early (IE) and late (membrane protein gD) genes and the production of viral progeny. This antiviral property was mediated by the dithiocarbamate moiety of PDTC and required the presence of Zn(2+). Although PDTC could potently block reactive oxygen species (ROS) generation, it was found that this property did not contribute to its anti-HSV activity. PDTC showed no activity in disrupting the mitogen-activated protein kinase (MAPK) pathway activation induced by viral infection that was vital for the virus's propagation. We found that PDTC modulated cellular ubiquitination and, furthermore, influenced HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced PML stability in the nucleus, resulting in the inhibition of viral gene expression. These results suggested that the antiviral activity of PDTC might be mediated by its dysregulation of the cellular ubiquitin-proteasome system (UPS).
Collapse
|
44
|
Buac D, Schmitt S, Ventro G, Kona FR, Dou QP. Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells. Mini Rev Med Chem 2013; 12:1193-201. [PMID: 22931591 DOI: 10.2174/138955712802762040] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
Dithiocarbamates are a class of metal-chelating compounds with various applications in medicine. They have been used for the treatment of bacterial and fungal infections, possible treatment of AIDS, and most recently cancer. Their anti-tumor effects can in part be attributed to their ability to complex tumor cellular copper, leading to binding to and inhibition of the proteasome and in turn initiating tumor cell-specific apoptosis. Current chemotherapeutic agents are highly toxic and therefore their efficacy in the eradication of tumors is greatly limited. As a result many scientists have joined the quest for novel targeted therapies in hopes of reducing toxicity while maximizing potency and proteasome inhibition has become an attractive therapy in this regard. Here we discuss the origins, mechanism, and evolution of dithiocarbamates as potent proteasome inhibitors and therefore anti-cancer agents.
Collapse
Affiliation(s)
- Daniela Buac
- Departments of Oncology, Pharmacology and Pathology, and Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R Street Hudson Webber Cancer Research Center Room 516, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
45
|
Wang B, Xi X, Lei X, Zhang X, Cui S, Wang J, Jin Q, Zhao Z. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9:e1003231. [PMID: 23555247 PMCID: PMC3605153 DOI: 10.1371/journal.ppat.1003231] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 01/23/2013] [Indexed: 01/26/2023] Open
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein--a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling--upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2A(pro)), but not the mutant 2A(pro) (2A(pro)-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2A(pro) could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.
Collapse
Affiliation(s)
- Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xueyan Xi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoyan Zhang
- Department of Medical Laboratory Science, Fenyang College Shanxi Medical University, Fenyang, Shanxi, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
46
|
Tanenhaus AK, Zhang J, Yin JCP. In vivo circadian oscillation of dCREB2 and NF-κB activity in the Drosophila nervous system. PLoS One 2012; 7:e45130. [PMID: 23077489 PMCID: PMC3471920 DOI: 10.1371/journal.pone.0045130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/14/2012] [Indexed: 12/15/2022] Open
Abstract
cAMP response element-binding protein (CREB) and nuclear factor kappa-B (NF-κB) are two ubiquitous transcription factors involved in a wide number of cellular processes, including the circadian system. Many previous studies on these factors use cellular assays that provide limited information on circadian activity or anatomical specificity. The ability to study transcription factors in defined tissue within intact animals will help to bridge the gap between cellular and in vivo data. We have used the GAL4-UAS and FLP-FRT systems to gain spatial control over reporter gene expression. Using a luciferase-based reporter, we show in vivo that Drosophila dCREB2- and NF-κB-mediated transcription oscillates in neuronal cells, glia, and in the mushroom body, a higher-order brain center in flies. This oscillation is under circadian control, cycling with a 24-hour rhythm, under both light-dark and dark-dark conditions. In light-light conditions, dCREB2 and NF-κB reporter flies exhibit a suppression of rhythmic activity. Furthermore, neuronal cycling of dCREB2 and NF-κB activity are modulated in period mutant flies, indicating these oscillations are controlled through the central clock. This study shows for the first time region-specific circadian oscillation of dCREB2/NF-κB activity in the Drosophila nervous system.
Collapse
Affiliation(s)
- Anne K. Tanenhaus
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jiabin Zhang
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jerry C. P. Yin
- Departments of Genetics and Neurology, University of Wisconsin-Madison, Madison, WI 53706
- * E-mail:
| |
Collapse
|
47
|
Liu T, Liu D, Liu J, Song JT, Gao SL, Li H, Hu LH, Liu BR. Effect of NF-κB inhibitors on the chemotherapy-induced apoptosis of the colon cancer cell line HT-29. Exp Ther Med 2012; 4:716-722. [PMID: 23170132 PMCID: PMC3501445 DOI: 10.3892/etm.2012.647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/06/2012] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the impact of the combined use of the nuclear factor-κB (NF-κB) inhibitors pyrrolidine dithiocarbamate (PDTC), bortezomib or SN50, and the chemotherapy agents arsenic acid (As2O3), fluorouracil (5FU), oxaliplatin or paclitaxel on the growth and apoptosis of HT-29 cells. Cell morphology was observed using inverted microscopy, and cell viability and apoptosis were assessed using the MTT assay and flow cytometry, respectively. The activities of NF-κB were analyzed by western blotting and electrophoretic mobility shift assay (EMSA). Cell growth was significantly inhibited by As2O3, oxaliplatin and paclitaxel in a time- and concentration-dependent manner (P<0.05), while 5FU inhibited cell growth in a time-dependent manner only (P<0.05). The growth inhibition rate and apoptosis induction ratio were increased following the combined treatment of the chemotherapy agent and NF-κB inhibitor. The expression of NF-κB p65 was upregulated when cells were treated with a chemotherapy drug, however it was downregulated following combined treatment or treatment with an NF-κB inhibitor alone. In conclusion, an NF-κB inhibitor combined with a chemotherapy drug effectively inhibited cell proliferation, induced cell apoptosis and inhibited NF-κB activity to enhance the chemotherapeutic sensitivity of HT-29 cells.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J Virol 2012; 86:10112-22. [PMID: 22787216 DOI: 10.1128/jvi.01001-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in the replication of a broad range of viruses. Since replication of the murine hepatitis virus (MHV) is impaired upon proteasomal inhibition, the relevance of the UPS for the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) was investigated in this study. We demonstrate that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle. Surprisingly, other proteasomal inhibitors (e.g., lactacystin and bortezomib) only marginally affected viral replication, indicating that the effect of MG132 is independent of proteasomal impairment. Induction of autophagy by MG132 treatment was excluded from playing a role, and no changes in SARS-CoV titers were observed during infection of wild-type or autophagy-deficient ATG5(-/-) mouse embryonic fibroblasts overexpressing the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2). Since MG132 also inhibits the cysteine protease m-calpain, we addressed the role of calpains in the early SARS-CoV life cycle using calpain inhibitors III (MDL28170) and VI (SJA6017). In fact, m-calpain inhibition with MDL28170 resulted in an even more pronounced inhibition of SARS-CoV replication (>7 orders of magnitude) than did MG132. Additional m-calpain knockdown experiments confirmed the dependence of SARS-CoV replication on the activity of the cysteine protease m-calpain. Taken together, we provide strong experimental evidence that SARS-CoV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses. Additionally, this work highlights an important role for m-calpain during early steps of the SARS-CoV life cycle.
Collapse
|
49
|
Synthesis, biological evaluation, and molecular docking studies of benzyl, alkyl and glycosyl [2-(arylamino)-4,4-dimethyl-6-oxo-cyclohex-1-ene]carbodithioates, as potential immunomodulatory and immunosuppressive agents. Bioorg Med Chem 2012; 20:3000-8. [DOI: 10.1016/j.bmc.2012.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/06/2023]
|
50
|
Petri M, Ufer K, Toma I, Becher C, Liodakis E, Brand S, Haas P, Liu C, Richter B, Haasper C, von Lewinski G, Jagodzinski M. Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc 2012; 20:223-31. [PMID: 21750950 DOI: 10.1007/s00167-011-1600-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the influence of continuous perfusion and mechanical stimulation on bone marrow stromal cells seeded on a collagen meniscus implant. METHODS Bone marrow aspirates from 6 donors were amplified in vitro. 10(6) human BMSC were distributed on a collagen meniscus implant. Scaffolds were cultured under static conditions (control) or placed into a bioreactor system where continuous perfusion (10 ml/min) or perfusion and mechanical stimulation (8 h of 10% cyclic compression at 0.5 Hz) were administered daily. After 24 h, 7 and 14 days, cell proliferation, synthesis of procollagen I and III peptide (PIP, PIIIP), histology, and the equilibrium modulus of the constructs were analyzed. RESULTS Proliferation demonstrated a significant increase over time in all groups (p < 0.001). PIP synthesis was found to increase from 0.1 ± 0.0 U/ml/g protein after 24 h to 2.0 ± 0.5 (perfusion), 3.8 ± 0.3 (mechanical stimulation), and 1.8 ± 0.2 U/ml/g protein (static control, lower than perfusion and mechanical stimulation, p < 0.05). These differences were also evident after 2 weeks (2.7 ± 0.3, 4.0 ± 0.6, and 1.8 ± 0.2 U/ml/g protein, p < 0.01); PIIIP synthesis was found to increase from 0.1 ± 0.0 U/ml/g protein after 24 h to 2.9 ± 0.7 (perfusion), 3.1 ± 0.9 (mechanical stimulation), and 1.6 ± 0.3 U/ml/g protein (controls) after 1 week and remained significantly elevated under the influence of perfusion and mechanical stimulation (p < 0.01) after 2 weeks. Mechanical stimulation increased the equilibrium modulus more than static culture and perfusion after 2 weeks (24.7 ± 7.6; 12.3 ± 3.7; 15.4 ± 2.6 kPa; p < 0.02). CONCLUSION Biomechanical stimulation and perfusion have impact on collagen scaffolds seeded with BMSCs. Cell proliferation can be enhanced using continuous perfusion and differentiation is fostered by mechanical stimulation.
Collapse
Affiliation(s)
- M Petri
- Trauma Department, Hanover Medical School (MHH), OE 6230, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|