1
|
Ramzan M, Mahmood S, Amjad A, Javed M, Zidan A, Bahadur A, Iqbal S, Saad M, Zaka N, Khurshid S, Awwad NS, Ibrahium HA, Akhter T. Finding potential inhibitors from phytochemicals against nucleoprotein of crimean congo fever virus using in silico approach. Sci Rep 2024; 14:31804. [PMID: 39738281 PMCID: PMC11685418 DOI: 10.1038/s41598-024-82312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization. Many outbreaks of CCHF have been reported over the years. Former studies on CCHF have reported that the nucleoprotein of CCHF, being a pivotal protein in the replication process of the virus, is a potential target for antiviral drugs. However, there is no specific drug that can be used to treat this fatal disease and laboratory testing is prohibited due to its pathogen level 4. This study aims to find a possible potential inhibitor of the nucleoprotein of CCHFV using modern techniques leading ultimately to the development of effective and natural drugs. In this study, a virtual screening procedure involving a docking process followed by the Molecular Dynamics method is used to find out the potential inhibitors of the nucleoprotein of CCHFV. Phytochemicals having pharmacological properties and approved by the Food and Drug Administration are docked over the nucleoprotein of CCHFV. The study signifies the use of Withanolide E as a drug for the treatment of CCHFV as the study depicts the potential of Withanolide E to inhibit the nucleoprotein of CCHFV using reliable and modern techniques.
Collapse
Affiliation(s)
- Muhammad Ramzan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, 32093, Kuwait
| | - Adnan Amjad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Saad
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice, 44-100, Poland.
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| | - Namrah Zaka
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shazia Khurshid
- Department of Chemistry, Government College University Lahore, Lahore, 54000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
2
|
Legarda EG, Elena SF, Mushegian AR. Emergence of two distinct spatial folds in a pair of plant virus proteins encoded by nested genes. J Biol Chem 2024; 300:107218. [PMID: 38522515 PMCID: PMC11044054 DOI: 10.1016/j.jbc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.
Collapse
Affiliation(s)
- Esmeralda G Legarda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, València, Spain; The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Arcady R Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Arlington, Virginia, USA.
| |
Collapse
|
3
|
Tamburrini KC, Pesce G, Nilsson J, Gondelaud F, Kajava AV, Berrin JG, Longhi S. Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods Mol Biol 2022; 2449:95-147. [PMID: 35507260 DOI: 10.1007/978-1-0716-2095-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last two decades it has become increasingly evident that a large number of proteins adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting protein disorder and identifying intrinsically disordered binding sites.
Collapse
Affiliation(s)
- Ketty C Tamburrini
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Giulia Pesce
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Juliet Nilsson
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Frank Gondelaud
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Sonia Longhi
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France.
| |
Collapse
|
4
|
Taylor MK, Williams EP, Wongsurawat T, Jenjaroenpun P, Nookaew I, Jonsson CB. Amplicon-Based, Next-Generation Sequencing Approaches to Characterize Single Nucleotide Polymorphisms of Orthohantavirus Species. Front Cell Infect Microbiol 2020; 10:565591. [PMID: 33163416 PMCID: PMC7591466 DOI: 10.3389/fcimb.2020.565591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Whole-genome sequencing (WGS) of viruses from patient or environmental samples can provide tremendous insight into the epidemiology, drug resistance or evolution of a virus. However, we face two common hurdles in obtaining robust sequence information; the low copy number of viral genomes in specimens and the error introduced by WGS techniques. To optimize detection and minimize error in WGS of hantaviruses, we tested four amplification approaches and different amplicon pooling methods for library preparation and examined these preparations using two sequencing platforms, Illumina MiSeq and Oxford Nanopore Technologies MinION. First, we tested and optimized primers used for whole segment PCR or one kilobase amplicon amplification for even coverage using RNA isolated from the supernatant of virus-infected cells. Once optimized we assessed two sources of total RNA, virus-infected cells and supernatant from the virus-infected cells, with four variations of primer pooling for amplicons, and six different amplification approaches. We show that 99-100% genome coverage was obtained using a one-step RT-PCR reaction with one forward and reverse primer. Using a two-step RT-PCR with three distinct tiling approaches for the three genomic segments (vRNAs), we optimized primer pooling approaches for PCR amplification to achieve a greater number of aligned reads, average depth of genome, and genome coverage. The single nucleotide polymorphisms identified from MiSeq and MinION sequencing suggested intrinsic mutation frequencies of ~10-5-10-7 per genome and 10-4-10-5 per genome, respectively. We noted no difference in the coverage or accuracy when comparing WGS results with amplicons amplified from RNA extracted from infected cells or supernatant of these infected cells. Our results show that high-throughput diagnostics requiring the identification of hantavirus species or strains can be performed using MiSeq or MinION using a one-step approach. However, the two-step MiSeq approach outperformed the MinION in coverage depth and accuracy, and hence would be superior for assessment of genomes for epidemiology or evolutionary questions using the methods developed herein.
Collapse
Affiliation(s)
- Mariah K. Taylor
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
Spatial and Temporal Evolutionary Patterns in Puumala Orthohantavirus (PUUV) S Segment. Pathogens 2020; 9:pathogens9070548. [PMID: 32650456 PMCID: PMC7400055 DOI: 10.3390/pathogens9070548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
The S segment of bank vole (Clethrionomys glareolus)-associated Puumala orthohantavirus (PUUV) contains two overlapping open reading frames coding for the nucleocapsid (N) and a non-structural (NSs) protein. To identify the influence of bank vole population dynamics on PUUV S segment sequence evolution and test for spillover infections in sympatric rodent species, during 2010–2014, 883 bank voles, 357 yellow-necked mice (Apodemus flavicollis), 62 wood mice (A. sylvaticus), 149 common voles (Microtus arvalis) and 8 field voles (M. agrestis) were collected in Baden-Wuerttemberg and North Rhine-Westphalia, Germany. In total, 27.9% and 22.3% of bank voles were positive for PUUV-reactive antibodies and PUUV-specific RNA, respectively. One of eight field voles was PUUV RNA-positive, indicating a spillover infection, but none of the other species showed evidence of PUUV infection. Phylogenetic and isolation-by-distance analyses demonstrated a spatial clustering of PUUV S segment sequences. In the hantavirus outbreak years 2010 and 2012, PUUV RNA prevalence was higher in our study regions compared to non-outbreak years 2011, 2013 and 2014. NSs amino acid and nucleotide sequence types showed temporal and/or local variation, whereas the N protein was highly conserved in the NSs overlapping region and, to a lower rate, in the N alone coding part.
Collapse
|
6
|
Reuter M, Krüger DH. The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein. Virus Genes 2017; 54:5-16. [PMID: 29159494 DOI: 10.1007/s11262-017-1522-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
The nucleocapsid (N) protein of hantaviruses represents an impressive example of a viral multifunctional protein. It encompasses properties as diverse as genome packaging, RNA chaperoning, intracellular protein transport, DNA degradation, intervention in host translation, and restricting host immune responses. These functions all rely on the capability of N to interact with RNA and other viral and cellular proteins. We have compiled data on the N protein of different hantavirus species together with information of the recently published three-dimensional structural data of the protein. The array of diverse functional activities accommodated in the hantaviral N protein goes far beyond to be a static structural protein and makes it an interesting target in the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Detlev H Krüger
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
7
|
Lieutaud P, Ferron F, Uversky AV, Kurgan L, Uversky VN, Longhi S. How disordered is my protein and what is its disorder for? A guide through the "dark side" of the protein universe. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1259708. [PMID: 28232901 DOI: 10.1080/21690707.2016.1259708] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
In the last 2 decades it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or regions to be recognized based on properties of these sequences. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to structural determination with X-ray crystallization. This article discusses a comprehensive selection of databases and methods currently employed to disseminate experimental and putative annotations of disorder, predict disorder and identify regions involved in induced folding. It also provides a set of detailed instructions that should be followed to perform computational analysis of disorder.
Collapse
Affiliation(s)
- Philippe Lieutaud
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University , Philadelphia, PA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University , Richmond, VA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sonia Longhi
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| |
Collapse
|
8
|
Abstract
Hantaviruses are emerging zoonotic pathogens that belong to the Bunyaviridae family. They have been classified as category A pathogens by CDC (centers for disease control and prevention). Hantaviruses pose a serious threat to human health because their infection causes two highly fatal diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). These pathogens are transmitted to humans through aerosolized excreta of their infected rodent hosts. Hantaviruses have a tripartite-segmented negative-sense RNA genome. The three genomic RNA segments, S, M, and L, encode a nucleocapsid protein (N), a precursor glycoprotein that is processed into two envelope glycoproteins (Gn and Gc) and the viral RNA-dependent RNA polymerase (RdRp), respectively. N protein is the major structural component of the virus, its main function is to protect and encapsidate the three genomic RNAs forming three viral ribonucleocapsids. Recent studies have proposed that N in conjunction with RdRp plays important roles in the transcription and replication of viral genome. In addition, N preferentially facilitates the translation of viral mRNA in cells. Glycoproteins, Gn and Gc, play major roles in viral attachment and entry to the host cells, virulence, and assembly and packaging of new virions in infected cells. RdRp functions as RNA replicase and transcriptase to replicate and transcribe the viral RNA and is also thought to have endonuclease activity. Currently, no antiviral therapy or vaccine is available for the treatment of hantavirus-associated diseases. Understanding the molecular details of hantavirus life cycle will help in the identification of targets for antiviral therapeutics and in the design of potential antiviral drug for the treatment of HFRS and HCPS. Due to the alarming fatality of hantavirus diseases, development of an effective vaccine against hantaviruses is a necessity.
Collapse
|
9
|
Dayer MR, Dayer MS, Rezatofighi SE. Mechanism of preferential packaging of negative sense genomic RNA by viral nucleoproteins in Crimean-Congo hemorrhagic Fever virus. Protein J 2016; 34:91-102. [PMID: 25632888 PMCID: PMC7087998 DOI: 10.1007/s10930-015-9601-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Crimean-Congo Hemorrhagic Fever (CCHF) is an infectious disease of high virulence and mortality caused by a negative sense RNA nairovirus. The genomic RNA of CCHFV is enwrapped by its nucleoprotein. Positively charged residues on CCHFV nucleoprotein provide multiple binding sites to facilitate genomic RNA encapsidation. In the present work, we investigated the mechanism underlying preferential packaging of the negative sense genomic RNA by CCHFV nucleoprotein in the presence of host cell RNAs during viral assembly. The work included genome sequence analyses for different families of negative and positive sense RNA viruses, using serial docking experiments and molecular dynamic simulations. Our results indicated that the main determinant parameter of the nucleoprotein binding affinity for negative sense RNA is the ratio of purine/pyrimidine in the RNA molecule. A negative sense RNA with a purine/pyrimidine ratio (>1) higher than that of a positive sense RNA (<1) exhibits higher affinity for the nucleoprotein. Our calculations revealed that a negative sense RNA expresses about 0.5 kJ/mol higher binding energy per nucleotide compared to a positive sense RNA. This energy difference produces a binding energy high enough to make the negative sense RNA, the preferred substrate for packaging by CCHFV nucleoprotein in the presence of cellular or complementary positive sense RNAs. The outcome of this study may contribute to ongoing researches on other viral diseases caused by negative sense RNA viruses such as Ebola virus which poses a security threat to all humanity.
Collapse
Affiliation(s)
- Mohammad Reza Dayer
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,
| | | | | |
Collapse
|
10
|
Abstract
In the last two decades, it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded at the amino acid sequence level, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting disorder and identifying regions involved in induced folding.
Collapse
Affiliation(s)
- Philippe Lieutaud
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Sonia Longhi
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
| |
Collapse
|
11
|
The RNA-binding properties and domain of Rice stripe virus nucleocapsid protein. Virus Genes 2015; 51:276-82. [DOI: 10.1007/s11262-015-1235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/31/2015] [Indexed: 11/27/2022]
|
12
|
Ribosomal protein S19-binding domain provides insights into hantavirus nucleocapsid protein-mediated translation initiation mechanism. Biochem J 2015; 464:109-21. [PMID: 25062117 DOI: 10.1042/bj20140449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hantaviral zoonotic diseases pose a significant threat to human health due to the lack of potential antiviral therapeutics or a vaccine against hantaviruses. N (Sin Nombre hantavirus nucleocapsid protein) augments mRNA translation. N binds to both the mRNA 5' cap and 40S ribosomal subunit via RPS19 (ribosomal protein S19). N with the assistance of the viral mRNA 5'-UTR preferentially favours the translation of a downstream ORF. We identified and characterized the RPS19-binding domain at the N-terminus of N. Its deletion did not influence the secondary structure, but affected the conformation of trimeric N molecules. The N variant lacking the RPS19-binding region was able to bind both the mRNA 5' cap and panhandle-like structure, formed by the termini of viral genomic RNA. In addition, the N variant formed stable trimers similar to wild-type N. Use of this variant in multiple experiments provided insights into the mechanism of ribosome loading during N-mediated translation strategy. The present study suggests that N molecules individually associated with the mRNA 5' cap and RPS19 of the 40S ribosomal subunit undergo N-N interaction to facilitate the engagement of N-associated ribosomes at the mRNA 5' cap. This has revealed new targets for therapeutic intervention of hantavirus infection.
Collapse
|
13
|
Antigenic properties of N protein of hantavirus. Viruses 2014; 6:3097-109. [PMID: 25123683 PMCID: PMC4147688 DOI: 10.3390/v6083097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
Abstract
Hantavirus causes two important rodent-borne viral zoonoses, hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in North and South America. Twenty-four species that represent sero- and genotypes have been registered within the genus Hantavirus by the International Committee on Taxonomy of Viruses (ICTV). Among the viral proteins, nucleocapsid (N) protein possesses an immunodominant antigen. The antigenicitiy of N protein is conserved compared with that of envelope glycoproteins. Therefore, N protein has been used for serological diagnoses and seroepidemiological studies. An understanding of the antigenic properties of N protein is important for the interpretation of results from serological tests using N antigen. N protein consists of about 430 amino acids and possesses various epitopes. The N-terminal quarter of N protein bears linear and immunodominant epitopes. However, a serotype-specific and multimerization-dependent antigenic site was found in the C-terminal half of N protein. In this paper, the structure, function, and antigenicity of N protein are reviewed.
Collapse
|
14
|
Lasecka L, Baron MD. The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses. Arch Virol 2014; 159:1249-65. [PMID: 24327094 PMCID: PMC7087186 DOI: 10.1007/s00705-013-1940-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/24/2022]
Abstract
The nairoviruses are a rapidly emerging group of tick-borne bunyaviruses that includes pathogens of humans (Crimean-Congo hemorrhagic fever virus [CCHFV]) and livestock (Nairobi sheep disease virus [NSDV], also known as Ganjam virus), as well as a large number of viruses for which the normal vertebrate host has not been established. Studies on this group of viruses have been fairly limited, not least because CCHFV is a BSL4 human pathogen, restricting the number of labs able to study the live virus, while NSDV, although highly pathogenic in naive animals, is not seen as a threat in developed countries, making it a low priority. Nevertheless, recent years have seen significant progress in our understanding of the biology of these viruses, particularly that of CCHFV, and this article seeks to draw together our existing knowledge to generate an overall picture of their molecular biology, underlining areas of particular ignorance for future studies.
Collapse
Affiliation(s)
- Lidia Lasecka
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Michael D. Baron
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| |
Collapse
|
15
|
The murine model for Hantaan virus-induced lethal disease shows two distinct paths in viral evolutionary trajectory with and without ribavirin treatment. J Virol 2013; 87:10997-1007. [PMID: 23903835 DOI: 10.1128/jvi.01394-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice. In untreated, HTNV-infected mice, the vRNA copy number increased for 10 days postinfection (dpi) and thereafter remained constant through 26 dpi. Surprisingly, in ribavirin-treated, HTNV-infected mice, vRNA levels were similar to those in untreated mice between 10 and 26 dpi. Infectious virus levels, however, were different: in ribavirin-treated mice, the amount of infectious HTNV was significantly decreased relative to that in untreated mice, suggesting that ribavirin reduced the specific infectivity of the virus (amount of infectious virus produced per vRNA copy). Mutational analysis revealed a ribavirin-associated elevation in mutation frequency in HTNV vRNA similar to that previously reported in vitro. Codon-based analyses of rates of nonsynonymous (dN) and synonymous (dS) substitutions in the S segment revealed a positive selection for codons within the HTNV N protein gene in the ribavirin-treated vRNA population. In contrast, the vRNA population in untreated, HTNV-infected mice showed a lower level of diversity, reflecting purifying selection for the wild-type genome. In summary, these experiments show two different evolutionary paths that Hantavirus may take during infection in a lethal murine model of disease, as well as the importance of the in vivo host environment in the evolution of the virus, which was not apparent in our prior in vitro model system.
Collapse
|
16
|
Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage. J Virol 2012; 86:12294-303. [PMID: 22951837 DOI: 10.1128/jvi.01627-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever, a severe hemorrhagic disease found throughout Africa, Europe, and Asia, is caused by the tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Nairovirus genus of the Bunyaviridae family. Its genome of three single-stranded RNA segments is encapsidated by the nucleocapsid protein (CCHFV N) to form the ribonucleoprotein complex. This ribonucleoprotein complex is required during replication and transcription of the viral genomic RNA. Here, we present the crystal structures of the CCHFV N in two distinct forms, an oligomeric form comprised of double antiparallel superhelices and a monomeric form. The head-to-tail interaction of the stalk region of one CCHFV N subunit with the base of the globular body of the adjacent subunit stabilizes the helical organization of the oligomeric form of CCHFV N. It also masks the conserved caspase-3 cleavage site present at the tip of the stalk region from host cell caspase-3 interaction and cleavage. By incubation with primer-length ssRNAs, we also obtained the crystal structure of CCHFV N in its monomeric form, which is similar to a recently published structure. The conformational change of CCHFV N upon deoligomerization results in the exposure of the caspase-3 cleavage site and subjects CCHFV N to caspase-3 cleavage. Mutations of this cleavage site inhibit cleavage by caspase-3 and result in enhanced viral polymerase activity. Thus, cleavage of CCHFV N by host cell caspase-3 appears to be crucial for controlling viral RNA synthesis and represents an important host defense mechanism against CCHFV infection.
Collapse
|
17
|
Saasa N, Yoshida H, Shimizu K, Sánchez-Hernández C, Romero-Almaraz MDL, Koma T, Sanada T, Seto T, Yoshii K, Ramos C, Yoshimatsu K, Arikawa J, Takashima I, Kariwa H. The N-terminus of the Montano virus nucleocapsid protein possesses broadly cross-reactive conformation-dependent epitopes conserved in rodent-borne hantaviruses. Virology 2012; 428:48-57. [DOI: 10.1016/j.virol.2012.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/19/2012] [Accepted: 03/13/2012] [Indexed: 12/01/2022]
|
18
|
Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol 2012; 93:1631-1644. [PMID: 22622328 DOI: 10.1099/vir.0.042218-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses of the genus Hantavirus, carried and transmitted by rodents and insectivores, are the exception in the vector-borne virus family Bunyaviridae, since viruses of the other genera are transmitted via arthropods. The single-stranded, negative-sense, RNA genome of hantaviruses is trisegmented into small, medium and large (S, M and L) segments. The segments, respectively, encode three structural proteins: nucleocapsid (N) protein, two glycoproteins Gn and Gc and an RNA-dependent RNA-polymerase. The genome segments, encapsidated by the N protein to form ribonucleoproteins, are enclosed inside a lipid envelope that is decorated by spikes composed of Gn and Gc. The virion displays round or pleomorphic morphology with a diameter of roughly 120-160 nm depending on the detection method. This review focuses on the structural components of hantaviruses, their interactions, the mechanisms behind virion assembly and the interactions that maintain virion integrity. We attempt to summarize recent results on the virion structure and to suggest mechanisms on how the assembly is driven. We also compare hantaviruses to other bunyaviruses with known structure.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Hilkka Lankinen
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
19
|
dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35. Antiviral Res 2012; 93:354-63. [PMID: 22289166 PMCID: PMC7114247 DOI: 10.1016/j.antiviral.2012.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/16/2011] [Accepted: 01/15/2012] [Indexed: 12/13/2022]
Abstract
The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)–dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8 bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC50 value of 50 μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased Kd values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35–dsRNA binding functions.
Collapse
|
20
|
Abstract
The Bunyaviridae family is comprised of a large number of negative-sense, single-stranded RNA viruses that infect animals, insects, and plants. The tripartite genome of bunyaviruses, encapsidated in the form of individual ribonucleoprotein complexes, encodes four structural proteins, the glycoproteins Gc and Gn, the nucleoprotein N, and the viral polymerase L. Some bunyaviruses also use an ambi-sense strategy to encode the nonstructural proteins NSs and NSm. While some bunyaviruses have a T = 12 icosahedral symmetry, others only have locally ordered capsids, or capsids with no detectable symmetry. Bunyaviruses enter cells through clathrin-mediated endocytosis or phagocytosis. In endosome, viral glycoproteins facilitate membrane fusion at acidic pH, thus allowing bunyaviruses to uncoat and deliver their genomic RNA into host cytoplasm. Bunyaviruses replicate in cytoplasm where the viral polymerase L catalyzes both transcription and replication of the viral genome. While transcription requires a cap primer for initiation and ends at specific termination signals before the 3' end of the template is reached, replication copies the entire template and does not depend on any primer for initiation. This review will discuss some of the most interesting aspects of bunyavirus replication, including L protein/N protein-mediated cap snatching, prime-and-realign for transcription and replication initiation, translation-coupled transcription, sequence/secondary structure-dependent transcription termination, ribonucleoprotein encapsidation, and N protein-mediated initiation of viral protein translation. Recent developments on the structure and functional characterization of the bunyavirus capsid and the RNA synthesis machineries (including both protein L and N) will also be discussed.
Collapse
|
21
|
Cheng E, Haque A, Rimmer MA, Hussein ITM, Sheema S, Little A, Mir MA. Characterization of the Interaction between hantavirus nucleocapsid protein (N) and ribosomal protein S19 (RPS19). J Biol Chem 2011; 286:11814-24. [PMID: 21296889 DOI: 10.1074/jbc.m110.210179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hantaviruses, members of the Bunyaviridae family, are negative-stranded emerging RNA viruses and category A pathogens that cause serious illness when transmitted to humans through aerosolized excreta of infected rodent hosts. Hantaviruses have evolved a novel translation initiation mechanism, operated by nucleocapsid protein (N), which preferentially facilitates the translation of viral mRNAs. N binds to the ribosomal protein S19 (RPS19), a structural component of the 40 S ribosomal subunit. In addition, N also binds to both the viral mRNA 5' cap and a highly conserved triplet repeat sequence of the viral mRNA 5' UTR. The simultaneous binding of N at both the terminal cap and the 5' UTR favors ribosome loading on viral transcripts during translation initiation. We characterized the binding between N and RPS19 and demonstrate the role of the N-RPS19 interaction in N-mediated translation initiation mechanism. We show that N specifically binds to RPS19 with high affinity and a binding stoichiometry of 1:1. The N-RPS19 interaction is an enthalpy-driven process. RPS19 undergoes a conformational change after binding to N. Using T7 RNA polymerase, we synthesized the hantavirus S segment mRNA, which matches the transcript generated by the viral RNA-dependent RNA polymerase in cells. We show that the N-RPS19 interaction plays a critical role in the translation of this mRNA both in cells and rabbit reticulocyte lysates. Our results demonstrate that the N-mediated translation initiation mechanism, which lures the host translation machinery for the preferential translation of viral transcripts, primarily depends on the N-RPS19 interaction. We suggest that the N-RPS19 interaction is a novel target to shut down the N-mediated translation strategy and hence virus replication in cells.
Collapse
Affiliation(s)
- Erdong Cheng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hantaviruses, members of the Bunyaviridae family, are emerging category A pathogens that initiate the translation of their capped mRNAs by a novel mechanism mediated by viral nucleocapsid protein (N). N specifically binds to the mRNA 5' m7G cap and 40S ribosomal subunit, a complex of 18S rRNA and multiple ribosomal proteins. Here, we show that N specifically interacts with the ribosomal protein S19 (RPS19), located at the head region of the 40S subunit. We suggest that this N-RPS19 interaction facilitates ribosome loading on capped mRNAs during N-mediated translation initiation.
Collapse
|
23
|
Wang H, Alminaite A, Vaheri A, Plyusnin A. Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. Virus Res 2010; 151:205-12. [PMID: 20566401 DOI: 10.1016/j.virusres.2010.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/07/2023]
Abstract
Hantaviral N and Gn proteins were shown to interact, thus providing the long-awaited evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Using pull-down assay and point mutagenesis it was demonstrated that intact, properly folded zinc fingers in the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80-248) are essential for the interaction.
Collapse
Affiliation(s)
- Hao Wang
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
24
|
Mir MA, Sheema S, Haseeb A, Haque A. Hantavirus nucleocapsid protein has distinct m7G cap- and RNA-binding sites. J Biol Chem 2010; 285:11357-68. [PMID: 20164193 DOI: 10.1074/jbc.m110.102459] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hantaviruses, members of the Bunyaviridae family, are emerging category A pathogens that carry three negative stranded RNA molecules as their genome. Hantavirus nucleocapsid protein (N) is encoded by the smallest S segment genomic RNA (viral RNA). N specifically binds mRNA caps and requires four nucleotides adjacent to the cap for high affinity binding. We show that the N peptide has distinct cap- and RNA-binding sites that independently interact with mRNA cap and viral genomic RNA, respectively. In addition, N can simultaneously bind with both mRNA cap and vRNA. N undergoes distinct conformational changes after binding with either mRNA cap or vRNA or both mRNA cap and vRNA simultaneously. Hantavirus RNA-dependent RNA polymerase (RdRp) uses a capped RNA primer for transcription initiation. The capped RNA primer is generated from host cell mRNA by the cap-snatching mechanism and is supposed to anneal with the 3' terminus of vRNA template during transcription initiation by single G-C base pairing. We show that the capped RNA primer binds at the cap-binding site and induces a conformational change in N. The conformationally altered N with a capped primer loaded at the cap-binding site specifically binds the conserved 3' nine nucleotides of vRNA and assists the bound primer to anneal at the 3' terminus. We suggest that the cap-binding site of N, in conjunction with RdRp, plays a key role during the transcription and replication initiation of vRNA genome.
Collapse
Affiliation(s)
- Mohammad A Mir
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
In recent years it was shown that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins are ubiquitary proteins that fulfill essential biological functions while lacking a stable 3D structure. Despite the large abundance of disorder, disordered regions are still poorly detected. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental in delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting disorder and identifying regions involved in induced folding.
Collapse
Affiliation(s)
- Sonia Longhi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Marseille, France
| | | | | |
Collapse
|
26
|
Kang HJ, Bennett SN, Sumibcay L, Arai S, Hope AG, Mocz G, Song JW, Cook JA, Yanagihara R. Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One 2009; 4:e6149. [PMID: 19582155 PMCID: PMC2702001 DOI: 10.1371/journal.pone.0006149] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/04/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. METHODOLOGY/PRINCIPAL FINDINGS Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. CONCLUSIONS Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.
Collapse
Affiliation(s)
- Hae Ji Kang
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Microbiology, College of Medicine, Institute for Viral Diseases and Bank for Pathogenic Viruses, Korea University, Seoul, Korea
| | - Shannon N. Bennett
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Laarni Sumibcay
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Andrew G. Hope
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gabor Mocz
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Institute for Viral Diseases and Bank for Pathogenic Viruses, Korea University, Seoul, Korea
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
27
|
Abstract
The emerging viral diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are a cause of global concern as they are increasingly reported from newer regions of the world. The hantavirus species causing HFRS include Hantaan virus,Seoul virus, Puumala virus, and Dobrava-Belgrade virus while Sin Nombre virus was responsible for the 1993 outbreak of HCPS in the Four Corners Region of the US. Humans are accidental hosts and get infected by aerosols generated from contaminated urine,feces and saliva of infected rodents. Rodents are the natural hosts of these viruses and develop persistent infection. Human to human infections are rare and the evolution of the virus depends largely on that of the rodent host. The first hantavirus isolate to be cultured, Thottapalayam virus,is the only indigenous isolate from India,isolated from an insectivore in 1964 in Vellore, South India. Research on hantaviruses in India has been slow but steady since 2005. Serological investigation of patients with pyrexic illness revealed presence of anti-hantavirus IgM antibodies in 14.7% of them. The seropositivity of hantavirus infections in the general population is about 4% and people who live and work in close proximity with rodents have a greater risk of acquiring hantavirus infections. Molecular and serological evidence of hantavirus infections in rodents and man has also been documented in this country. The present review on hantaviruses is to increase awareness of these emerging pathogens and the threats they pose to the public health system.
Collapse
|
28
|
Acute febrile illness caused by hantavirus: serological and molecular evidence from India. Trans R Soc Trop Med Hyg 2009; 103:407-12. [DOI: 10.1016/j.trstmh.2009.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022] Open
|
29
|
Melo-Silva CR, Maranhão AQ, Nagasse-Sugahara TK, Bisordi I, Suzuki A, Brigido MM. Characterization of hantaviruses circulating in Central Brazil. INFECTION GENETICS AND EVOLUTION 2009; 9:241-7. [DOI: 10.1016/j.meegid.2008.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 12/16/2022]
|
30
|
Alminaite A, Backström V, Vaheri A, Plyusnin A. Oligomerization of hantaviral nucleocapsid protein: charged residues in the N-terminal coiled-coil domain contribute to intermolecular interactions. J Gen Virol 2008; 89:2167-2174. [PMID: 18753226 DOI: 10.1099/vir.0.2008/004044-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocapsid (N) protein of hantaviruses (family Bunyaviridae) is the most abundant component of the virion; it encapsidates genomic RNA segments and participates in viral genome transcription and replication, as well as in virus assembly. During RNA encapsidation, the N protein forms intermediate trimers and then oligomers via 'head-to-head, tail-to-tail' interactions. In previous work, using Tula hantavirus (TULV) N protein as a model, it was demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein and that the hydrophobic 'a' residues from the second alpha-helix are especially important. Here, the importance of charged amino acid residues located within the coiled-coil for trimer formation and oligomerization was analysed. To predict the interacting surfaces of the monomers, the previous in silico model of TULV coiled-coils was first upgraded, taking advantage of the recently published crystal structure of the N-terminal coiled-coil of the Sin Nombre virus N protein. The results obtained using a mammalian two-hybrid assay suggested that conserved, charged amino acid residues within the coiled-coil make a substantial contribution to N protein oligomerization. This contribution probably involves (i) the formation of interacting surfaces of the N monomers (residues D35 and D38, located at the tip of the coiled-coil loop, and R63 appear particularly important) and (ii) stabilization of the coiled-coil via intramolecular ionic bridging (with E55 as a key player). It is hypothesized that the tips of the coiled-coils are the first to come into direct contact and thus to initiate tight packing of the three structures.
Collapse
Affiliation(s)
- Agne Alminaite
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland
| | - Vera Backström
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Turku, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland
| | - Alexander Plyusnin
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
31
|
Abstract
Background We have previously shown that using multiple prediction methods improves the accuracy of disorder predictions. It is, however, a time-consuming procedure, since individual outputs of multiple predictions have to be retrieved, compared to each other and a comprehensive view of the results can only be obtained through a manual, fastidious, non-automated procedure. We herein describe a new web metaserver, MeDor, which allows fast, simultaneous analysis of a query sequence by multiple predictors and provides a graphical interface with a unified view of the outputs. Results MeDor was developed in Java and is freely available and downloadable at: . Presently, MeDor provides a HCA plot and runs a secondary structure prediction, a prediction of signal peptides and transmembrane regions and a set of disorder predictions. MeDor also enables the user to customize the output and to retrieve the sequence of specific regions of interest. Conclusion As MeDor outputs can be printed, saved, commented and modified further on, this offers a dynamic support for the analysis of protein sequences that is instrumental for delineating domains amenable to structural and functional studies.
Collapse
Affiliation(s)
- Philippe Lieutaud
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, 163 Avenue de Luminy, Case 932, 13288 Marseille Cedex 09, France.
| | | | | |
Collapse
|
32
|
Yadav PD, Vincent MJ, Nichol ST. Thottapalayam virus is genetically distant to the rodent-borne hantaviruses, consistent with its isolation from the Asian house shrew (Suncus murinus). Virol J 2007; 4:80. [PMID: 17711577 PMCID: PMC1997112 DOI: 10.1186/1743-422x-4-80] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/21/2007] [Indexed: 01/08/2023] Open
Abstract
Thottapalayam (TPM) virus belongs to the genus Hantavirus, family Bunyaviridae. The genomes of hantaviruses consist of three negative-stranded RNA segments (S, M and L) encoding the virus nucleocapsid (N), glycoprotein (Gn, Gc), and polymerase (L) proteins, respectively. The genus Hantavirus contains predominantly rodent-borne viruses, with the prominent exception of TPM virus which was isolated in India in 1964 from an insectivore, Suncus murinus, commonly referred to as the Asian house shrew or brown musk shrew. Analysis of the available TPM virus S (1530 nt) RNA genome segment sequence and the newly derived M (3621 nt) and L (6581 nt) segment sequences demonstrate that the entire TPM virus genome is very unique. Remarkably high sequence differences are seen at the nucleotide (up to S – 47%, M – 49%, L – 38%) and protein (up to N – 54%, Gn/Gc – 57% and L – 39%) levels relative to the rodent-borne hantaviruses, consistent with TPM virus having a unique host association.
Collapse
Affiliation(s)
- Pragya D Yadav
- Special Pathogen Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Microbial Containment Complex, National Institute of Virology, 130/1 Sus Road, Pashan, Pune 21, Maharashtra 411021, India
| | - Martin J Vincent
- Special Pathogen Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Stuart T Nichol
- Special Pathogen Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
33
|
John SP, Wang T, Steffen S, Longhi S, Schmaljohn CS, Jonsson CB. Ebola virus VP30 is an RNA binding protein. J Virol 2007; 81:8967-76. [PMID: 17567691 PMCID: PMC1951390 DOI: 10.1128/jvi.02523-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Ebola virus (EBOV) genome encodes for several proteins that are necessary and sufficient for replication and transcription of the viral RNAs in vitro; NP, VP30, VP35, and L. VP30 acts in trans with an RNA secondary structure upstream of the first transcriptional start site to modulate transcription. Using a bioinformatics approach, we identified a region within the N terminus of VP30 with sequence features that typify intrinsically disordered regions and a putative RNA binding site. To experimentally assess the ability of VP30 to directly interact with the viral RNA, we purified recombinant EBOV VP30 to >90% homogeneity and assessed RNA binding by UV cross-linking and filter-binding assays. VP30 is a strongly acidophilic protein; RNA binding became stronger as pH was decreased. Zn(2+), but not Mg(2+), enhanced activity. Enhancement of transcription by VP30 requires a RNA stem-loop located within nucleotides 54 to 80 of the leader region. VP30 showed low binding affinity to the predicted stem-loop alone or to double-stranded RNA but showed a good binding affinity for the stem-loop when placed in the context of upstream and downstream sequences. To map the region responsible for interacting with RNA, we constructed, purified, and assayed a series of N-terminal deletion mutations of VP30 for RNA binding. The key amino acids supporting RNA binding activity map to residues 26 to 40, a region rich in arginine. Thus, we show for the first time the direct interaction of EBOV VP30 with RNA and the importance of the N-terminal region for binding RNA.
Collapse
Affiliation(s)
- Sinu P John
- Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ramanathan HN, Chung DH, Plane SJ, Sztul E, Chu YK, Guttieri MC, McDowell M, Ali G, Jonsson CB. Dynein-dependent transport of the hantaan virus nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J Virol 2007; 81:8634-47. [PMID: 17537852 PMCID: PMC1951367 DOI: 10.1128/jvi.00418-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boudko SP, Kuhn RJ, Rossmann MG. The coiled-coil domain structure of the Sin Nombre virus nucleocapsid protein. J Mol Biol 2006; 366:1538-44. [PMID: 17222867 PMCID: PMC1820746 DOI: 10.1016/j.jmb.2006.12.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 10/09/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022]
Abstract
Hantaviruses can cause hemorrhagic fever with a renal syndrome and hantavirus pulmonary syndrome when transmitted to humans. The nucleocapsid protein of hantaviruses encapsidates viral genomic RNA and associates with transcription and replication complexes. Both the amino and carboxy termini of the nucleocapsid protein had been predicted to form trimers prior to the formation of the ribonucleoprotein. Crystal structures of amino-terminal fragments of the nucleocapsid protein showed the formation of intramolecular antiparallel coiled coils, but not intermolecular trimers. Thus, the amino-terminal part of the nucleocapsid protein is probably insufficient to initiate the trimerization of the full-length molecule.
Collapse
Affiliation(s)
| | | | - Michael G. Rossmann
- *Corresponding author: Telephone, 765-494-4911; fax, 765-496-1189; e-mail address,
| |
Collapse
|
36
|
Alminaite A, Halttunen V, Kumar V, Vaheri A, Holm L, Plyusnin A. Oligomerization of hantavirus nucleocapsid protein: analysis of the N-terminal coiled-coil domain. J Virol 2006; 80:9073-81. [PMID: 16940519 PMCID: PMC1563903 DOI: 10.1128/jvi.00515-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses constitute a genus in the family Bunyaviridae. They are enveloped negative-strand RNA viruses with a tripartite genome encoding the nucleocapsid (N) protein, the two surface glycoproteins Gn and Gc, and an RNA-dependent RNA polymerase. The N protein is the most abundant component of the virion; it encapsidates genomic RNA segments forming ribonucleoproteins and participates in genome transcription and replication as well as virus assembly. In the course of RNA encapsidation, N protein forms intermediate trimers via head-to-head and tail-to-tail interactions. We analyzed the amino-terminal trimerization domain (amino acid residues 1 to 77) of Tula hantavirus using computer modeling, mammalian two-hybrid assay, and immunofluorescence assay. The results obtained were consistent with the existence of an antiparallel coiled-coil stabilized by interactions between hydrophobic residues. Residues L44, V51, and L58 were important for the N-N interaction; other residues, e.g., L25 and V32, also made a contribution, albeit a modest one. Our alignments of the N-terminal domain of the hantaviral N proteins suggest the coiled-coil structure, and hence the mode of N-protein oligomerization, is conserved among hantaviruses.
Collapse
Affiliation(s)
- Agne Alminaite
- Department of Virology, Haartman Institute, P.O. Box 21, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Ferron F, Longhi S, Canard B, Karlin D. A practical overview of protein disorder prediction methods. Proteins 2006; 65:1-14. [PMID: 16856179 DOI: 10.1002/prot.21075] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the past few years there has been a growing awareness that a large number of proteins contain long disordered (unstructured) regions that often play a functional role. However, these disordered regions are still poorly detected. Recognition of disordered regions in a protein is important for two main reasons: reducing bias in sequence similarity analysis by avoiding alignment of disordered regions against ordered ones, and helping to delineate boundaries of protein domains to guide structural and functional studies. As none of the available method for disorder prediction can be taken as fully reliable on its own, we present an overview of the methods currently employed highlighting their advantages and drawbacks. We show a few practical examples of how they can be combined to avoid pitfalls and to achieve more reliable predictions.
Collapse
Affiliation(s)
- François Ferron
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Marseille, France
| | | | | | | |
Collapse
|
38
|
Mir MA, Brown B, Hjelle B, Duran WA, Panganiban AT. Hantavirus N protein exhibits genus-specific recognition of the viral RNA panhandle. J Virol 2006; 80:11283-92. [PMID: 16971445 PMCID: PMC1642145 DOI: 10.1128/jvi.00820-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into "panhandle" hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5' and 3' ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.
Collapse
Affiliation(s)
- M A Mir
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
39
|
Mir MA, Panganiban AT. The bunyavirus nucleocapsid protein is an RNA chaperone: possible roles in viral RNA panhandle formation and genome replication. RNA (NEW YORK, N.Y.) 2006; 12:272-82. [PMID: 16428606 PMCID: PMC1370907 DOI: 10.1261/rna.2101906] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cellular RNA chaperones are crucial for the genesis of correctly folded functional RNAs. Using several complementary in vitro assays we find that the bunyavirus nucleocapsid protein (N) is an RNA chaperone. In the Bunyaviridae genomic RNA is in stable "panhandle" formation that arises through the hydrogen bonding of the terminal nucleotides of the RNA. The RNA chaperone function of N facilitates panhandle formation even though the termini are separated by >2 kb. RNA panhandle formation is likely driven by the exceptionally high base-pairing specificity of the terminal nucleotides as evidenced by P-num analysis. N protein can nonspecifically dissociate RNA duplexes. In addition, following panhandle formation, the RNA chaperone activity of N also appears to be involved in dissociation of the RNA panhandle and remains in association with the 5' terminus of the viral RNA following dissociation. Thus, N likely functions in the initiation of genome replication to allow efficient initiation of RNA synthesis by the viral polymerase. The RNA chaperone activity of N may be facilitated by an intrinsically disordered domain that catalyzes RNA unfolding driven by reciprocal entropy transfer. These observations highlight the essential features that are probably common to all RNA chaperones in which the role of the chaperone is to nonspecifically dissociate higher order structure and formation of functional higher order structure may often be predicted by RNA P-num value. The data also highlight features of N that are probably specifically important during replication of bunyavirus RNA.
Collapse
Affiliation(s)
- M Ayoub Mir
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | |
Collapse
|