1
|
Belanger JM, Cirilo JA. Metastable Amorphous Dispersions of Hydrophobic Naphthalene Compounds Can Be Formed in Water without Stabilizing Agents via the "Ouzo Effect". J Phys Chem B 2023; 127:8032-8039. [PMID: 37699852 PMCID: PMC10518816 DOI: 10.1021/acs.jpcb.3c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Hydrophobic molecules dissolved in water-miscible organic solvents are used in vitro for biological membrane studies and for testing of potential pharmaceuticals in high-throughput screenings. When these solutions are introduced into an aqueous environment, it is possible that metastable "ouzo-like" dispersions form from liquid-liquid phase separation. It is therefore hypothesized that when solutions of naphthalene compounds in water-miscible solvents are added to water, metastable dispersions will form. Millimolar solutions of naphthalene, N-phenyl-1-naphthylamine (NPN), 1-aminonaphthalene, 1-iodonaphthalene (INAP), 1,4-dimethoxynaphthalene, and 1-naphthol were prepared in either dimethyl sulfoxide, ethanol, or acetone at concentrations similar to those used in biological membrane studies. Each solution was diluted 10-fold in water. Particle formation was characterized by qualitative observations, dynamic light-scattering, nephelometry, and optical microscopy. It was discovered that two of the compounds tested made metastable dispersions: INAP and NPN. The initial particle sizes were ∼400 nm (radius), with turbidity ranging from 1,000 to 20,000 NTU, depending on the initial concentrations used. Fluorescence microscopy imaging showed spherical particles that do not aggregate while under observation. Slow-nucleating crystallization occurs over days, presumably from a heterogeneous nucleation process. The formation of these dispersions has implications for in vitro delivery of hydrophobic molecules to biological membranes.
Collapse
Affiliation(s)
- Julie M. Belanger
- King’s College, Department of Chemistry and Physics, 133 N. River St., Wilkes-Barre, Pennsylvania 18711, United States
| | - Joseph A. Cirilo
- King’s College, Department of Chemistry and Physics, 133 N. River St., Wilkes-Barre, Pennsylvania 18711, United States
| |
Collapse
|
2
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
3
|
Barroso SPC, Vicente Dos Santos AC, Souza Dos Santos P, Dos Santos Silva Couceiro JN, Fernandes Ferreira D, Nico D, Morrot A, Lima Silva J, Cheble de Oliveira A. Inactivation of avian influenza viruses by hydrostatic pressure as a potential vaccine development approach. Access Microbiol 2021; 3:000220. [PMID: 34151171 PMCID: PMC8208760 DOI: 10.1099/acmi.0.000220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Vaccines are a recommended strategy for controlling influenza A infections in humans and animals. Here, we describe the effects of hydrostatic pressure on the structure, morphology and functional characteristics of avian influenza A H3N8 virus. The effect of hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change. We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, the neuraminidase activity was not affected at this approach suggesting the maintenance of neutralizing antibody epitopes in this key antigen. Our data bring important information for the area of structural virology of enveloped particles and support the idea of applying pressure-induced inactivation as a tool for vaccine production.
Collapse
Affiliation(s)
- Shana Priscila Coutinho Barroso
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Laboratório de Biologia Molecular, Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Ana Clara Vicente Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Centro Universitário IBMR, Rio de Janeiro, RJ, Brazil
| | | | - Davis Fernandes Ferreira
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dirlei Nico
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Faculdade de Medicina, Departamento de Clínica Médica, Centro de Pesquisa em Tuberculose,, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jerson Lima Silva
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andrea Cheble de Oliveira
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| |
Collapse
|
4
|
Austin AL, Galasso B, Nickens C, Knollmann-Ritschel B, Sharma A. Inactivation of Zika Virus by Photoactive Iodonaphthyl Azide Preserves Immunogenic Potential of the Virus. Pathogens 2019; 8:pathogens8040188. [PMID: 31614887 PMCID: PMC6963691 DOI: 10.3390/pathogens8040188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus's (ZIKV) emergence as a pathogen of significant public health importance has accelerated efforts to develop a ZIKV vaccine. To date, the need for an effective ZIKV vaccine is unmet. In this study, we report inactivation of ZIKV using a hydrophobic photoactive compound: 1, 5 iodonaphthyl azide (INA). 50 and 100 µM of INA completely inactivated ZIKV (INA-ZIKV). Western blot and ELISA analysis show some loss of the binding capacity of INA-iZIKV to anti-ZIKV monoclonal antibodies; however, immunization of mice with INA-iZIKV demonstrated seroconversion and ZIKV-neutralizing antibody response. RNA isolated from INA-iZIKV did not induce productive infection in Vero cells, suggesting inactivation of ZIKV RNA. These results suggest that in the absence of an approved ZIKV vaccine, INA-iZIKV can be pursued as a viable ZIKV vaccine candidate.
Collapse
Affiliation(s)
- Amy L Austin
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| | - Bianca Galasso
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| | - Caitlin Nickens
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| | | | - Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20853, USA.
| |
Collapse
|
5
|
Madiyar FR, Haller SL, Farooq O, Rothenburg S, Culbertson C, Li J. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays. Electrophoresis 2017; 38:1515-1525. [DOI: 10.1002/elps.201600436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Foram Ranjeet Madiyar
- Department of Physical Sciences; Embry-Riddle Aeronautical University; Daytona Beach FL USA
- Department of Chemistry; Kansas State University; Manhattan KS USA
| | - Sherry L. Haller
- Department of Pathology; University of Texas Medical Branch; Galveston TX USA
| | - Omer Farooq
- Department of Physical Sciences; Embry-Riddle Aeronautical University; Daytona Beach FL USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine; the University of California at Davis; Davis CA USA
| | | | - Jun Li
- Department of Chemistry; Kansas State University; Manhattan KS USA
- College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi P. R. China
| |
Collapse
|
6
|
Gupta P, Sharma A, Spurgers KB, Bakken RR, Eccleston LT, Cohen JW, Honnold SP, Glass PJ, Maheshwari RK. 1,5-Iodonaphthyl azide-inactivated V3526 protects against aerosol challenge with virulent venezuelan equine encephalitis virus. Vaccine 2016; 34:2762-5. [PMID: 27129427 DOI: 10.1016/j.vaccine.2016.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus. VEEV is highly infectious in aerosolized form and has been identified as a bio-terrorism agent. There is no licensed vaccine for prophylaxis against VEEV. The current IND vaccine is poorly immunogenic and does not protect against an aerosol challenge with virulent VEEV. We have previously shown that VEEV inactivated by 1,5-iodonaphthyl azide (INA) protects against footpad challenge with virulent VEEV. In this study, we inactivated an attenuated strain of VEEV, V3526, with INA and evaluated its protective efficacy against aerosol challenge with wild type VEEV. We demonstrated that among three routes of immunization, intramuscular immunization with INA-inactivate V3526 (INA-iV3526) provided complete protection against aerosol challenge with virulent VEEV. Our data suggests that INA-iV3526 can be explored further for development as an effective vaccine candidate against aerosol challenge of virulent VEEV.
Collapse
Affiliation(s)
- Paridhi Gupta
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States.
| | - Kevin B Spurgers
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Russell R Bakken
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Lori T Eccleston
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Jeffrey W Cohen
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Shelley P Honnold
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Pamela J Glass
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Radha K Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| |
Collapse
|
7
|
Atalla H, Lysnyansky I, Raviv Y, Rottem S. Mycoplasma gallisepticum inactivated by targeting the hydrophobic domain of the membrane preserves surface lipoproteins and induces a strong immune response. PLoS One 2015; 10:e0120462. [PMID: 25781939 PMCID: PMC4363144 DOI: 10.1371/journal.pone.0120462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
An innovative approach for inactivation of Mycoplasma gallisepticum using the hydrophobic photoinduced alkylating probe 1, 5-iodonaphthylazide (INA) is described. Treatment of washed M. gallisepticum mid-exponential culture (0.2 mg cell protein /mL) with INA followed by irradiation with far-ultraviolet light (310–380 nm) completely abolished viability. Transmission electron microscopy showed that the majority of the inactivated M. gallisepticum were comparable in size to intact cells, but that part of the INA-treated M. gallisepticum preparation also contained low density cells and membrane vesicles. Confocal microscopy revealed that untreated M. gallisepticum cells were internalized by chicken red blood cells (c-RBCs), whereas the INA-inactivated cells remained attached to the outer surface of the c-RBCs. INA treatment of M. gallisepticum resulted in a complete inactivation of F0F1 –ATPase and of the L-arginine uptake system, but the cytoplasmatic soluble NADH2 dehydrogenase was only partially affected. Western blot analysis of the lipoprotein fraction showed that the INA-treated M. gallisepticum retained their lipoproteins. Following subcutaneous injection of M. gallisepticum INA-bacterin, 100% and 68.8% of chickens were positive by the rapid serum agglutination test and enzyme-linked immunosorbent assay respectively, 2 weeks post-injection. These data suggest that the photoinducible alkylating agent INA inactivates M. gallisepticum but preserves its surface lipoproteins and thus has the potential to be used as a general approach for the inactivation of mycoplasmas for vaccine development.
Collapse
Affiliation(s)
- Hazem Atalla
- Department of Microbiology and Molecular Genetics, The Hebrew University—Hadassah Medical School, Jerusalem, Israel
| | - Inna Lysnyansky
- Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
- * E-mail:
| | - Yossef Raviv
- SAIC-Frederick Inc, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, The Hebrew University—Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
8
|
Gupta P, Sharma A, Mathias V, Raviv Y, Blumenthal R, Maheshwari RK. Inactivation of non-enveloped virus by 1,5 iodonaphthyl azide. BMC Res Notes 2015; 8:44. [PMID: 25879201 PMCID: PMC4339248 DOI: 10.1186/s13104-015-1006-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A photoactive hydrophobic agent 1,5-iodonaphthyl-azide (INA), has been previously shown to completely inactivate the enveloped viruses. INA sequesters into the lipid bilayer of the virus envelope and upon UV-irradiation bind to the hydrophobic domains of the envelope glycoproteins. In our earlier study, we have shown that the Venezuelan equine encephalitis virus (VEEV) genomic RNA was also inactivated during the inactivation of the virus with INA. FINDINGS In the present study, we evaluated if the RNA inactivation property of INA can be used to inactivate non-enveloped RNA viruses. Encephalomyocarditis virus (EMCV) was used as a model non-enveloped virus. Treatment with INA followed by UV-irradiation resulted in complete inactivation of EMCV. RNA isolated from INA-inactivated EMCV was non-infectious and INA was found to be associated with the viral RNA genome. INA-inactivated EMCV induced robust total antibody response. However binding capacity of INA-inactivated EMCV to neutralizing antibody was inhibited. CONCLUSION This is the first study to show that INA can completely inactivate non-enveloped virus. Our results suggest that the amino acid composition of the neutralizing epitope may interfere with the protective antibody response generated by the INA-inactivated non-enveloped virus.
Collapse
Affiliation(s)
- Paridhi Gupta
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Viard Mathias
- Basic Science Program, Leidos Biomedical Research, Inc., NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Yossef Raviv
- Basic Science Program, Leidos Biomedical Research, Inc., NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Robert Blumenthal
- Chemical Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Radha K Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
9
|
Second generation inactivated eastern equine encephalitis virus vaccine candidates protect mice against a lethal aerosol challenge. PLoS One 2014; 9:e104708. [PMID: 25116127 PMCID: PMC4130539 DOI: 10.1371/journal.pone.0104708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/16/2014] [Indexed: 11/23/2022] Open
Abstract
Currently, there are no FDA-licensed vaccines or therapeutics for eastern equine encephalitis virus (EEEV) for human use. We recently developed several methods to inactivate CVEV1219, a chimeric live-attenuated eastern equine encephalitis virus (EEEV). Dosage and schedule studies were conducted to evaluate the immunogenicity and protective efficacy of three potential second-generation inactivated EEEV (iEEEV) vaccine candidates in mice: formalin-inactivated CVEV1219 (fCVEV1219), INA-inactivated CVEV1219 (iCVEV1219) and gamma-irradiated CVEV1219 (gCVEV1219). Both fCVEV1219 and gCVEV1219 provided partial to complete protection against an aerosol challenge when administered by different routes and schedules at various doses, while iCVEV1219 was unable to provide substantial protection against an aerosol challenge by any route, dose, or schedule tested. When evaluating antibody responses, neutralizing antibody, not virus specific IgG or IgA, was the best correlate of protection. The results of these studies suggest that both fCVEV1219 and gCVEV1219 should be evaluated further and considered for advancement as potential second-generation inactivated vaccine candidates for EEEV.
Collapse
|
10
|
Proof-of-concept for a virus-induced obesity vaccine; vaccination against the obesity agent adenovirus 36. Int J Obes (Lond) 2014; 38:1470-4. [PMID: 24614097 DOI: 10.1038/ijo.2014.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 02/23/2014] [Accepted: 03/04/2014] [Indexed: 01/21/2023]
Abstract
Human adenovirus 36 (Ad36) is positively associated with obesity in humans and animals. Ad36 infection is characterized by increased adiposity and inflammation. To investigate the possibility that a prophylactic vaccine candidate might protect against Ad36-induced obesity and inflammation, we purified Ad36 and ultraviolet-irradiated virus to obtain a vaccine candidate. After immunizing the mice with the vaccine candidate (vaccinated group), live Ad36 was injected into mice as a challenge test. Unvaccinated mice (control group) were immunized with phosphate-buffered saline and then challenged with live Ad36. Fourteen weeks after challenge, we compared adiposity and inflammation in vaccinated and control mice. The control group showed 17% greater body weight and 20% more epididymal fats compared with the vaccinated group. In addition, the vaccinated group had decreased serum levels of pro-inflammatory cytokines, and infiltrated immune cells, especially M1 macrophages, in fat tissue. Therefore, the vaccine candidate for Ad36 was able to protect against Ad36-increased body weight and fat as well as inflammatory states after challenge. These results provide proof-of-concept for prophylactic vaccination against virus-induced adiposity.
Collapse
|
11
|
Raviprakash K, Sun P, Raviv Y, Luke T, Martin N, Kochel T. Dengue virus photo-inactivated in presence of 1,5-iodonaphthylazide (INA) or AMT, a psoralen compound (4'-aminomethyl-trioxsalen) is highly immunogenic in mice. Hum Vaccin Immunother 2013; 9:2336-41. [PMID: 23835446 DOI: 10.4161/hv.25602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two novel methods of dengue virus inactivation using iodonaphthyl azide (INA) and aminomethyl trioxsalen (AMT) were compared with traditional virus inactivation by formaldehyde. The AMT inactivated dengue-2 virus retained its binding to a panel of 5 monoclonal antibodies specific for dengue-2 envelope protein, whereas inactivation by formaldehyde and INA led to 30-50% decrease in binding. All three inactivated viruses elicited high level virus neutralizing antibodies in vaccinated mice. However, only mice vaccinated with AMT inactivated virus mounted T cell responses similar to live, uninactivated virus.
Collapse
Affiliation(s)
- Kanakatte Raviprakash
- Viral & Rickettsial Diseases Department; Naval Medical Research Center; Silver Spring, MD USA
| | | | | | | | | | | |
Collapse
|
12
|
Sharma A, Gupta P, Maheshwari RK. Inactivation of Chikungunya virus by 1,5 iodonapthyl azide. Virol J 2012; 9:301. [PMID: 23210745 PMCID: PMC3545887 DOI: 10.1186/1743-422x-9-301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is an arthropod borne alphavirus of the family Togaviridae. CHIKV is a reemerging virus for which there is no safe prophylactic vaccine. A live attenuated strain of CHIKV, CHIK181/25, was previously demonstrated to be highly immunogenic in humans, however, it showed residual virulence causing transient arthralgia. Findings In this study, we demonstrate the complete inactivation of CHIKV181/25 by 1,5 iodonapthyl azide (INA). No cytopathic effect and virus replication was observed in cells infected with the INA-inactivated CHIKV. However, a reduction in the INA-inactivated CHIK virus-antibody binding capacity was observed by western blot analysis. Conclusion INA completely inactivated CHIKV and can further be explored for developing an inactivated-CHIKV vaccine.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
13
|
Belanger JM, Raviv Y, Viard M, Baxa U, Blumenthal R. Orthogonal inactivation of influenza and the creation of detergent resistant viral aggregates: towards a novel vaccine strategy. Virol J 2012; 9:72. [PMID: 22449007 PMCID: PMC3353219 DOI: 10.1186/1743-422x-9-72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been previously shown that enveloped viruses can be inactivated using aryl azides, such as 1-iodo-5-azidonaphthalene (INA), plus UVA irradiation with preservation of surface epitopes in the inactivated virus preparations. Prolonged UVA irradiation in the presence of INA results in ROS-species formation, which in turn results in detergent resistant viral protein fractions. RESULTS Herein, we characterize the applicability of this technique to inactivate influenza. It is shown that influenza virus + INA (100 micromolar) + UVA irradiation for 30 minutes results in a significant (p < 0.05) increase in pelletablehemagglutinin after Triton X-100 treatment followed by ultracentrifugation. Additionally, characterization of the virus suspension by immunogold labeling in cryo-EM, and viral pellet characterization via immunoprecipitation with a neutralizing antibody, shows preservation of neutralization epitopes after this treatment. CONCLUSION These orthogonally inactivated viral preparations with detergent resistant fractions are being explored as a novel route for safe, effective inactivated vaccines generated from a variety of enveloped viruses.
Collapse
Affiliation(s)
- Julie M Belanger
- Center for Cancer Research Nanobiology Program, National Cancer Institute Frederick, Frederick, USA
| | | | | | | | | |
Collapse
|
14
|
Van Regenmortel MHV. Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 2012; 24:741-53. [PMID: 21812050 DOI: 10.1002/jmr.1116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In spite of 25 years of intensive research, no effective human immunodeficiency virus type 1 (HIV-1) vaccine has yet been developed. One reason for this is that investigators have concentrated mainly on the structural analysis of HIV-1 antigens because they assumed that it should be possible to deduce vaccine-relevant immunogens from the structure of viral antigens bound to neutralizing monoclonal antibodies. This unwarranted assumption arises from misconceptions regarding the nature of protein epitopes and from the belief that it is justified to extrapolate from the antigenicity to the immunogenicity of proteins. Although the structure of the major HIV-1 antigenic sites has been elucidated, this knowledge has been of little use for designing an HIV-1 vaccine. Little attention has been given to the fact that protective immune responses tend to be polyclonal and involve antibodies directed to several different epitopes. It is concluded that only trial and error, empirical investigations using numerous immunization protocols may eventually allow us to identify which mixtures of immunogens are likely to be the best candidates for an HIV-1 vaccine.
Collapse
|
15
|
Sagripanti JL, Grote G, Niederwöhrmeier B, Hülseweh B, Marschall HJ. Photochemical inactivation of Pseudomonas aeruginosa. Photochem Photobiol 2011; 88:201-6. [PMID: 22053910 DOI: 10.1111/j.1751-1097.2011.01029.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adaptability to a broad range of environments together with relatively high resistance to antibiotics and to disinfectants makes Pseudomonas aeruginosa a concern in hospitals and in public health. We investigated whether UVA-mediated photochemical inactivation of P. aeruginosa could be accomplished with high efficiency while at the same time preserving the sensitivity of subsequent diagnostic tests. We characterized dose responses and bactericidal kinetic rates of 5-iodonaphthyl 1-azide (INA) and of amotosalen (AMO) as these substances exposed to UVA are known to inactivate germs with minimal impact to blood products or to viral antigens. Neither UVA without photochemicals nor INA or AMO in the dark inactivated bacteria. We found that AMO was ca 1000-fold more effective in inactivating P. aeruginosa cells than INA under similar conditions. Photoinactivation with either INA or AMO at conditions that abolished bacterial infectivity did not impair polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) testing. For comparison, similar titers of Bacillus atrophaeus spores (a surrogate for B. anthracis) remained unaffected at conditions that reduced the survival of P. aeruginosa below detection levels. The results presented in this study should assist in improved methods to inactivate P. aeruginosa in environmental, clinical and forensic samples without impairing subsequent nucleic acid- or immune-based analysis.
Collapse
|
16
|
Sagripanti JL, Marschall HJ, Voss L, Hülseweh B. Photochemical Inactivation of Alpha- and Poxviruses. Photochem Photobiol 2011; 87:1369-78. [DOI: 10.1111/j.1751-1097.2011.00998.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Belanger JM, Raviv Y, Viard M, de la Cruz MJ, Nagashima K, Blumenthal R. Effects of UVA irradiation, aryl azides, and reactive oxygen species on the orthogonal inactivation of the human immunodeficiency virus (HIV-1). Virology 2011; 417:221-8. [PMID: 21726886 PMCID: PMC3152596 DOI: 10.1016/j.virol.2011.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/20/2011] [Accepted: 06/10/2011] [Indexed: 11/15/2022]
Abstract
Previously we reported that hydrophobic aryl azides partition into hydrophobic regions of the viral membrane of enveloped viruses and inactivate the virus upon UVA irradiation for 2 min. Prolonged irradiation (15 min) resulted in viral protein aggregation as visualized via Western blot analysis, due to reactive oxygen species (ROS) formation, with preservation of the surface antigenic epitopes. Herein, we demonstrate that these aggregates show detergent resistance and that this property may be useful towards the creation of a novel orthogonal virus inactivation strategy for use in preparing experimental vaccines. When ROS-modified HIV virus preparations were treated with 1% Triton X-100, there was an increase in the percent of viral proteins (gp41, p24) in the viral pellet after ultracentrifugation through sucrose. Transmission electron microscopy (TEM) of these detergent-resistant pellets shows some recognizable virus fragments, and immunoprecipitation studies of the gp41 aggregates suggest the aggregation is covalent in nature, involving short-range interactions.
Collapse
Affiliation(s)
- Julie M. Belanger
- Center for Cancer Research Nanobiology Program, National Cancer Institute Frederick
| | - Yossef Raviv
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Mathias Viard
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - M. Jason de la Cruz
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Kunio Nagashima
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, National Cancer Institute Frederick
| |
Collapse
|
18
|
Belanger JM, Raviv Y, Viard M, Jason de la Cruz M, Nagashima K, Blumenthal R. Characterization of the effects of aryl-azido compounds and UVA irradiation on the viral proteins and infectivity of human immunodeficiency virus type 1. Photochem Photobiol 2011; 86:1099-108. [PMID: 20630026 DOI: 10.1111/j.1751-1097.2010.00780.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrophobic UV-activatable compounds have been shown to partition into the hydrophobic region of biological membranes to selectively label transmembrane proteins, and to inactivate enveloped viruses. Here, we analyze various UV-activatable azido- and iodo-based hydrophobic compounds for their ability to inactivate a model-enveloped virus, human immunodeficiency virus (HIV-1 MN). Treatment of HIV-1 with 1,5-diazidonapthalene (DAN), 1-iodo, 5-azidonaphthalene (INA), 1-azidonaphthalene (AzNAP) or 4,4'-diazidobiphenyl (DABIPH) followed by UVA irradiation for 2 min resulted in complete viral inactivation, whereas treatment using analogous non-azido-containing controls had no effect. Incorporation of an azido moiety within these hydrophobic compounds to promote photoinduced covalent reactions with proteins was found to be the primary mechanism of viral inactivation for this class of compounds. Prolonged UVA irradiation of the virus in the presence of these azido compounds resulted in further modifications of viral proteins, due to the generation of reactive oxygen species, leading to aggregation as visualized via Western blot analysis, providing additional viral modifications that may inhibit viral infectivity. Furthermore, inactivation using these compounds resulted in the preservation of surface antigenic structures (recognized by neutralizing antibodies b12, 2g12 and 4e10), which is favorable for the creation of vaccines from these inactivated virus preparations.
Collapse
Affiliation(s)
- Julie M Belanger
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sharma A, Gupta P, Glass PJ, Parker MD, Maheshwari RK. Safety and protective efficacy of INA-inactivated Venezuelan equine encephalitis virus: implication in vaccine development. Vaccine 2010; 29:953-9. [PMID: 21115048 DOI: 10.1016/j.vaccine.2010.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 10/18/2010] [Accepted: 11/14/2010] [Indexed: 11/27/2022]
Abstract
We have previously shown that a hydrophobic alkylating compound, 1,5-iodonaphthyl-azide (INA) can efficiently inactivate the virulent strain of Venezuelan equine encephalitis virus (VEEV), V3000 in vitro. In this study, we have evaluated the safety of INA-inactivated V3000 and V3526 and the protective efficacy of INA-inactivated V3000. INA-inactivated V3000 and V3526 did not cause disease in suckling mice. RNA isolated from the INA-inactivated V3000 and V3526 was also not infectious. Immunization of adult mice with INA-inactivated V3000 induced an anti-VEEV antibody response and protected mice from virulent VEEV challenge. The protective efficacy of INA-inactivated V3000 increased with the use of adjuvants. Results suggest that inactivation of enveloped viruses by INA may occur by two independent mechanisms and the INA-inactivated VEEV elicit a protective antibody response in mice.
Collapse
Affiliation(s)
- Anuj Sharma
- Centre for Combat Casualty and Life Sustainment Research, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
20
|
Viard M, Garg H, Blumenthal R, Raviv Y. Photo-activation of the hydrophobic probe iodonaphthylazide in cells alters membrane protein function leading to cell death. BMC Cell Biol 2009; 10:21. [PMID: 19323821 PMCID: PMC2666636 DOI: 10.1186/1471-2121-10-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/26/2009] [Indexed: 11/24/2022] Open
Abstract
Background Photo-activation of the hydrophobic membrane probe 1, 5 iodonaphthylazide (INA) by irradiation with UV light (310–380 nm) results in the covalent modification of transmembrane anchors of membrane proteins. This unique selectivity of INA towards the transmembrane anchor has been exploited to specifically label proteins inserted in membranes. Previously, we have demonstrated that photo-activation of INA in enveloped viruses resulted in the inhibition of viral membrane protein-induced membrane fusion and viral entry into cells. In this study we show that photo-activation of INA in various cell lines, including those over-expressing the multi-drug resistance transporters MRP1 or Pgp, leads to cell death. We analyzed mechanisms of cell killing by INA-UV treatment. The effects of INA-UV treatment on signaling via various cell surface receptors, on the activity of the multi-drug resistance transporter MRP1 and on membrane protein lateral mobility were also investigated. Results INA treatment of various cell lines followed by irradiation with UV light (310–380 nm) resulted in loss of cell viability in a dose dependent manner. The mechanism of cell death appeared to be apoptosis as indicated by phosphatidylserine exposure, mitochondrial depolarization and DNA fragmentation. Inhibition by pan-caspase inhibitors and cleavage of caspase specific substrates indicated that at low concentrations of INA apoptosis was caspase dependent. The INA-UV treatment showed similar cell killing efficacy in cells over-expressing MRP1 function as control cells. Efflux of an MRP1 substrate was blocked by INA-UV treatment of the MRP1-overexpressing cells. Although INA-UV treatment resulted in inhibition of calcium mobilization triggered by chemokine receptor signaling, Akt phosphorylation triggered by IGF1 receptor signaling was enhanced. Furthermore, fluorescence recovery after photobleaching experiments indicated that INA-UV treatment resulted in reduced lateral mobility of a seven transmembrane G protein-coupled receptor. Conclusion INA is a photo-activable agent that induces apoptosis in various cancer cell lines. It reacts with membrane proteins to alter the normal physiological function resulting in apoptosis. This activity of INA maybe exploited for use as an anti-cancer agent.
Collapse
Affiliation(s)
- Mathias Viard
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| | | | | | | |
Collapse
|
21
|
Hydrophobic inactivation of influenza viruses confers preservation of viral structure with enhanced immunogenicity. J Virol 2008; 82:4612-9. [PMID: 18305038 DOI: 10.1128/jvi.02233-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of inactivated influenza virus for the development of vaccines with broad heterosubtypic protection requires selective inactivation techniques that eliminate viral infectivity while preserving structural integrity. Here we tested if a hydrophobic inactivation approach reported for retroviruses could be applied to the influenza virus. By this approach, the transmembrane domains of viral envelope proteins are selectively targeted by the hydrophobic photoactivatable compound 1,5-iodonaphthyl-azide (INA). This probe partitions into the lipid bilayer of the viral envelope and upon far UV irradiation reacts selectively with membrane-embedded domains of proteins and lipids while the protein domains that localize outside the bilayer remain unaffected. INA treatment of influenza virus blocked infection in a dose-dependent manner without disrupting the virion or affecting neuraminidase activity. Moreover, the virus maintained the full activity in inducing pH-dependent lipid mixing, but pH-dependent redistribution of viral envelope proteins into the target cell membrane was completely blocked. These results indicate that INA selectively blocks fusion of the virus with the target cell membrane at the pore formation and expansion step. Using a murine model of influenza virus infection, INA-inactivated influenza virus induced potent anti-influenza virus serum antibody and T-cell responses, similar to live virus immunization, and protected against heterosubtypic challenge. INA treatment of influenza A virus produced a virus that is noninfectious, intact, and fully maintains the functional activity associated with the ectodomains of its two major envelope proteins, neuraminidase and hemagglutinin. When used as a vaccine given intranasally (i.n.), INA-inactivated influenza virus induced immune responses similar to live virus infection.
Collapse
|
22
|
Warfield KL, Swenson DL, Olinger GG, Kalina WV, Viard M, Aitichou M, Chi X, Ibrahim S, Blumenthal R, Raviv Y, Bavari S, Aman MJ. Ebola virus inactivation with preservation of antigenic and structural integrity by a photoinducible alkylating agent. J Infect Dis 2008; 196 Suppl 2:S276-83. [PMID: 17940961 DOI: 10.1086/520605] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Current methods for inactivating filoviruses are limited to high doses of irradiation or formalin treatment, which may cause structural perturbations that are reflected by poor immunogenicity. In this report, we describe a novel inactivation technique for Zaire Ebola virus (ZEBOV) that uses the photoinduced alkylating probe 1,5-iodonaphthylazide (INA). INA is incorporated into lipid bilayers and, when activated by ultraviolet irradiation, alkylates the proteins therein. INA treatment of ZEBOV resulted in the complete loss of infectivity in cells. Results of electron microscopy and virus-capture assays suggested the preservation of conformational surface epitopes. Challenge with 50,000 pfu of INA-inactivated, mouse-adapted ZEBOV did not cause disease or death in mice. A single vaccination with INA-inactivated ZEBOV (equivalent to 5 x 10(4) pfu) protected mice against lethal challenge with 1000 pfu of ZEBOV. INA-inactivated virus induced a protective response in 100% of mice when administered 3 days before challenge. Thus, INA may have significant potential for the development of vaccines and immunotherapeutics for filoviruses and other enveloped viruses.
Collapse
Affiliation(s)
- Kelly L Warfield
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jacobs A, Garg H, Viard M, Raviv Y, Puri A, Blumenthal R. HIV-1 envelope glycoprotein-mediated fusion and pathogenesis: implications for therapy and vaccine development. Vaccine 2008; 26:3026-35. [PMID: 18242797 DOI: 10.1016/j.vaccine.2007.12.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/25/2022]
Abstract
Our overall goal is to understand how viral envelope proteins mediate membrane fusion and pathogenesis. Membrane fusion is a crucial step in the delivery of the viral genome into the cell resulting in infection. On the other hand, fusion activity of viral envelope glycoproteins expressed in infected cells may cause the demise of uninfected bystander cells by apoptosis. Our general approach is to kinetically resolve steps in the pathway of viral envelope glycoprotein-mediated membrane fusion and to uncover physical parameters underlying those steps using a variety of biochemical, biophysical, virological, and molecular and cell biological techniques. Since HIV fusion involves a complex cascade of interactions of the envelope glycoprotein with two receptors, membrane organization plays an important role and interfering with it may modulate entry. To study this phenomenon, we have either examined cell lines with differential expression of sphingolipids (such as GM3), or altered membrane organization by modifying levels of cholesterol, ceramides, or glycosphingolipids. We show that the localized plasma membrane lipid microenvironment (and not the specific membrane lipids) in the vicinity of CD4 controls receptor mobility and HIV-1 fusion. The complex cascade of conformational changes that must occur to allow virus entry is also a very important target for therapy and vaccine development. We have recently designed and tested peptide analogs composed of chemical spacers and reactive moieties positioned strategically to promote permanent attachment. Using a temperature-arrested state in vitro assay we show evidence for the trapping of a pre-six-helix bundle fusion intermediate by a covalent reaction with the inhibitory reactive peptide. Also, using photo-reactive hydrophobic probes we have found ways to inactivate viral envelope glycoproteins while leaving their overall structures intact. Finally, in order to study the envelope glycoprotein effects on pathogenesis, we have used an in vitro model of co-culture of envelope-expressing cells as effectors and CD4+ T cells as targets. We delineated that apoptosis mediated by envelope glycoprotein in bystander cells correlates with transmembrane subunit (gp41)-induced hemifusion. The apoptotic pathway initiated by this interaction involves caspase-3-dependent mitochondrial depolarization and reactive oxygen species production, which depends on the phenotype of the envelope glycoprotein associated with the virus. Taken as a whole, our studies have many different important implications for antiviral therapies and vaccine development.
Collapse
Affiliation(s)
- Amy Jacobs
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
24
|
Application of methods for viral clearance in stem cell production. In Vitro Cell Dev Biol Anim 2007; 43:371-8. [PMID: 17934782 DOI: 10.1007/s11626-007-9059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
Regenerative medicine therapies will allow in the future the transplant of cells of human origin in some diseases that until now have been incurable. The assurance of the safety and quality, especially from a microbiological point of view, is very important for these therapeutic products. Depending on the starting material, there are several sources of pathogen presence, mainly human viruses. Also, the use of feeders of animal origin as layers in which the stem cells can grow may permit the transmission of animal pathogens to these cells. However, cell sources are limited due to the low availability of spare in vitro fecundation human embryos and the low rate of success in the derivation of human stem cell lines. Thus, in several cases, it will be necessary to evaluate the possibility of removing or inactivating these microorganisms. In this paper, we summarize the main methods of viral clearance and we have provided an overview of the main features taking into account in the viral clearance techniques.
Collapse
|
25
|
Marcelino I, Vachiéry N, Amaral AI, Roldão A, Lefrançois T, Carrondo MJT, Alves PM, Martinez D. Effect of the purification process and the storage conditions on the efficacy of an inactivated vaccine against heartwater. Vaccine 2007; 25:4903-13. [PMID: 17531356 DOI: 10.1016/j.vaccine.2007.04.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/05/2007] [Accepted: 04/07/2007] [Indexed: 11/20/2022]
Abstract
This work evaluates the effect of purification process and storage conditions (buffer formulation and temperature) on the efficacy of Ehrlichia ruminantium (ER) elementary bodies to be used as an inactivated vaccine candidate against heartwater. In vitro assays revealed that, to avoid major losses in ER integrity and corresponding antigenic properties, a buffer with pH between 5.6 and 8 and an osmolality above 100 mOsmol/kg H(2)O is recommended. Amongst the tested formulations, both PBS and NaCl have shown to stabilize ER antigens at -20 degrees C. To assess the protective properties of the different vaccine formulations, in vivo experiments were performed using a goat model. The results obtained showed that the preparation of ER antigens using a novel membrane-based purification strategy and a simple vaccine formulation (NaCl, -20 degrees C) induced equivalent protection to the conventional vaccine based on ER antigens prepared by a multistep centrifugation methodology and stored at -20 degrees C in PBS buffer.
Collapse
|
26
|
Sharma A, Raviv Y, Puri A, Viard M, Blumenthal R, Maheshwari RK. Complete inactivation of Venezuelan equine encephalitis virus by 1,5-iodonaphthylazide. Biochem Biophys Res Commun 2007; 358:392-8. [PMID: 17493582 DOI: 10.1016/j.bbrc.2007.04.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/16/2007] [Indexed: 11/16/2022]
Abstract
Hydrophobic alkylating compounds like 1,5-iodonaphthylazide (INA) partitions into biological membranes and accumulates selectively into the hydrophobic domain of the lipid bilayer. Upon irradiation with far UV light, INA binds selectively to transmembrane proteins in the viral envelope and renders them inactive. Such inactivation does not alter the ectodomains of the membrane proteins thus preserving the structural and conformational integrity of immunogens on the surface of the virus. In this study, we have used INA to inactivate Venezuelan equine encephalitis virus (VEEV). Treatment of VEEV with INA followed by irradiation with UV light resulted in complete inactivation of the virus. Immuno-fluorescence for VEEV and virus titration showed no virus replication in-vitro. Complete loss of infectivity was also achieved in mice infected with INA treated plus irradiated preparations of VEEV. No change in the structural integrity of VEEV particles were observed after treatment with INA plus irradiation as assessed by electron microscopy. This data suggest that such inactivation strategies can be used for developing vaccine candidates for VEEV and other enveloped viruses.
Collapse
Affiliation(s)
- Anuj Sharma
- Centre for Combat Casualty and Life Sustainment Research, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|