1
|
Genedy RM, Owais M, El Sayed NM. Propranolol: A Promising Therapeutic Avenue for Classic Kaposi Sarcoma. Dermatol Pract Concept 2025; 15:dpc.1501a4737. [PMID: 40117620 PMCID: PMC11928098 DOI: 10.5826/dpc.1501a4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 03/23/2025] Open
Abstract
INTRODUCTION Kaposi sarcoma (KS) is a low grade angio-proliferative tumor of endothelial origin. Human herpesvirus 8 (HHV8) plays a major role in the pathogenesis of KS. Classic Kaposi sarcoma is commonly seen among elderly of Mediterranean origin. It is usually slowly progressive and is rarely fatal. There is no definitive cure for KS. Beta blockers were used with great success in the treatment of infantile hemangioma. Because of some similarity between infantile hemangioma and KS, topical beta blockers were tried with variable success rate. OBJECTIVES We aimed to assess the efficacy and safety of oral propranolol in the treatment of classic KS. METHODS Fifteen patients diagnosed with classic KS were prospectively enrolled in the study. Detailed history and full clinical examination were conducted. Histopathological diagnosis with confirmatory immune staining was done for all patients. Oral propranolol in a dose of 60 mg was given per day for 6 months. The patients assessed clinically as complete responders, partial responders, and non-responders. RESULTS Nine patients (60%) were partial responders; showed 50% reduction in the number of the existing lesions, and 6 patients (40%) were considered non-responders; 3 with stable disease and 3 with progressive disease. Lymphedema partially improved in 1 patient. CONCLUSIONS Oral propranolol is a safe and good option for treatment of patients with non-complicated classic KS, especially elderly with multiple comorbidities.
Collapse
Affiliation(s)
- Rasha Mahmoud Genedy
- Dermatology, Venereology, and Andrology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Owais
- Dermatology, Venereology, and Andrology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Naglaa Mohamed El Sayed
- Dermatology, Venereology, and Andrology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Goel N, Hernandez A, Cole S. Social Genomic Determinants of Health: Understanding the Molecular Pathways by Which Neighborhood Disadvantage Affects Cancer Outcomes. J Clin Oncol 2024; 42:3618-3627. [PMID: 39178356 PMCID: PMC12045328 DOI: 10.1200/jco.23.02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE Neighborhoods represent complex environments with unique social, cultural, physical, and economic attributes that have major impacts on disparities in health, disease, and survival. Neighborhood disadvantage is associated with shorter breast cancer recurrence-free survival (RFS) independent of individual-level (race, ethnicity, socioeconomic status, insurance, tumor characteristics) and health system-level determinants of health (receipt of guideline-concordant treatment). This persistent disparity in RFS suggests unaccounted mechanisms such as more aggressive tumor biology among women living in disadvantaged neighborhoods compared with advantaged neighborhoods. The objective of this article was to provide a clear framework and biological mechanistic explanation for how neighborhood disadvantage affects cancer survival. METHODS Development of a translational epidemiological framework that takes a translational disparities approach to study cancer outcome disparities through the lens of social genomics and social epigenomics. RESULTS The social genomic determinants of health, defined as the physiological gene regulatory pathways (ie, neural/endocrine control of gene expression and epigenetic processes) through which contextual factors, particularly one's neighborhood, can affect activity of the cancer genome and the surrounding tumor microenvironment to alter disease progression and treatment outcomes. CONCLUSION We propose a novel, multilevel determinants of health model that takes a translational epidemiological approach to evaluate the interplay between political, health system, social, psychosocial, individual, and social genomic determinants of health to understand social disparities in oncologic outcomes. In doing so, we provide a concrete biological pathway through which the effects of social processes and social epidemiology come to affect the basic biology of cancer and ultimately clinical outcomes and survival.
Collapse
Affiliation(s)
- Neha Goel
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Alexandra Hernandez
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Steve Cole
- Department of Psychiatry/ Biobehavioral Sciences and Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Ren J, Zhou X, Guo W, Feng K, Huang T, Cai YD. Identification of Methylation Signatures and Rules for Sarcoma Subtypes by Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5297235. [PMID: 36619306 PMCID: PMC9812612 DOI: 10.1155/2022/5297235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Sarcoma, the second common type of solid tumor in children and adolescents, has a wide variety of subtypes that are often not properly diagnosed at an early stage, leading to late metastases and causing serious loss of life and property to patients and families. It exhibits a high degree of heterogeneity at the cellular, molecular, and epigenetic levels, where DNA methylation has been proposed to play a role in the diagnosis of sarcoma subtypes. Thus, this study is aimed at finding potential biomarkers at the DNA methylation level to distinguish different sarcoma subtypes. A machine learning process was designed to analyse sarcoma samples, each of which was represented by lots of methylation sites. Irrelevant sites were removed using the Boruta method, and remaining sites related to the target variables were kept for further analyses. Afterward, three feature ranking methods (LASSO, LightGBM, and MCFS) were adopted to rank these features, and six classification models were constructed by combining incremental feature selection and two classification algorithms (decision tree and random forest). Among these models, the performance of RF model was higher than that of DT model under all three ranking conditions. The specific expression of genes obtained from the annotation of highly correlated methylation site features, such as PRKAR1B, INPP5A, and GLI3, was proven to be associated with sarcoma by publications. Moreover, the quantitative rules obtained by decision tree algorithm helped us to understand the essential differences between various sarcoma types and classify sarcoma subtypes, providing a new means of clinical identification and determining new therapeutic targets.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Carrico AW, Cherenack EM, Rubin LH, McIntosh R, Ghanooni D, Chavez JV, Klatt NR, Paul RH. Through the Looking-Glass: Psychoneuroimmunology and the Microbiome-Gut-Brain Axis in the Modern Antiretroviral Therapy Era. Psychosom Med 2022; 84:984-994. [PMID: 36044613 PMCID: PMC9553251 DOI: 10.1097/psy.0000000000001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Depression, substance use disorders, and other neuropsychiatric comorbidities are common in people with HIV (PWH), but the underlying mechanisms are not sufficiently understood. HIV-induced damage to the gastrointestinal tract potentiates residual immune dysregulation in PWH receiving effective antiretroviral therapy. However, few studies among PWH have examined the relevance of microbiome-gut-brain axis: bidirectional crosstalk between the gastrointestinal tract, immune system, and central nervous system. METHODS A narrative review was conducted to integrate findings from 159 articles relevant to psychoneuroimmunology (PNI) and microbiome-gut-brain axis research in PWH. RESULTS Early PNI studies demonstrated that neuroendocrine signaling via the hypothalamic-pituitary-adrenal axis and autonomic nervous system could partially account for the associations of psychological factors with clinical HIV progression. This review highlights the need for PNI studies examining the mechanistic relevance of the gut microbiota for residual immune dysregulation, tryptophan catabolism, and oxytocin release as key biological determinants of neuropsychiatric comorbidities in PWH (i.e., body-to-mind pathways). It also underscores the continued relevance of neuroendocrine signaling via the hypothalamic-pituitary-adrenal axis, autonomic nervous system, and oxytocin release in modifying microbiome-gut-brain axis functioning (i.e., mind-to-body pathways). CONCLUSIONS Advancing our understanding of PNI and microbiome-gut-brain axis pathways relevant to depression, substance use disorders, and other neuropsychiatric comorbidities in PWH can guide the development of novel biobehavioral interventions to optimize health outcomes. Recommendations are provided for biobehavioral and neurobehavioral research investigating bidirectional PNI and microbiome-gut-brain axis pathways among PWH in the modern antiretroviral therapy era.
Collapse
Affiliation(s)
- Adam W Carrico
- From the Department of Public Health Sciences (Carrico, Cherenack, Ghanooni, Chavez), University of Miami Miller School of Medicine, Miami, Florida; Departments of Neurology (Rubin) and Psychiatry and Behavioral Sciences (Rubin), Johns Hopkins University School of Medicine; Department of Epidemiology (Rubin), Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of Psychology (McIntosh), University of Miami College of Arts and Sciences, Coral Gables, Florida; Department of Surgery (Klatt), University of Minnesota School of Medicine, Minneapolis, Minnesota; and Department of Psychological Sciences (Paul), University of Missouri St. Louis, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, Yang L, Li H. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis 2022; 8:131. [PMID: 35338118 PMCID: PMC8956600 DOI: 10.1038/s41420-022-00930-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
Abstract
A high intratumoral nerve density is correlated with poor survival, high metastasis, and high recurrence across multiple solid tumor types. Recent research has revealed that cancer cells release diverse neurotrophic factors and exosomes to promote tumor innervation, in addition, infiltrating nerves can also mediate multiple tumor biological processes via exosomes and neurotransmitters. In this review, through seminal studies establishing tumor innervation, we discuss the communication between peripheral nerves and tumor cells in the tumor microenvironment (TME), and revealed the nerve-tumor regulation mechanisms on oncogenic process, angiogenesis, lymphangiogenesis, and immunity. Finally, we discussed the promising directions of ‘old drugs newly used’ to target TME communication and clarified a new line to prevent tumor malignant capacity.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
6
|
Kang SK, Lee MJ, Ryu HH, Lee J, Lee MS. Dimethyl Sulfoxide Enhances Kaposi’s Sarcoma-Associated Herpesvirus Production During Lytic Replication. Front Microbiol 2021; 12:778525. [PMID: 34975802 PMCID: PMC8716793 DOI: 10.3389/fmicb.2021.778525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an etiologic agent of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman disease. In studies of KSHV, efficient virus production and isolation are essential. Reactivation of KSHV can be initiated by treating latently infected cells with chemicals, such as 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate. These chemicals have been used as tools to induce lytic replication and viral production in KSHV-producing cell lines. Dimethyl sulfoxide (DMSO) is an organosulfur compound that is frequently used as an aprotic solvent similar to water. In experiments exploring signaling pathways in KSHV-infected cells, DMSO treatment alone as a vehicle affected the lytic gene expression of KSHV. However, to the best of our knowledge, the effects of DMSO on KSHV-producing cells have not yet been reported. Therefore, in this study, we investigated whether DMSO could be used as a reagent to enhance viral production during lytic replication in KSHV-producing cells and assessed the underlying mechanisms. The effects of DMSO on KSHV production were analyzed in iSLK BAC16 cells, which have been widely used for recombinant KSHV production. We found that the production of KSHV virions was significantly increased by treatment with DMSO during the induction of lytic replication. Mechanistically, lytic genes of KSHV were enhanced by DMSO treatment, which was correlated with virion production. Additionally, DMSO induced the phosphorylation of JNK during lytic replication, and inhibition of JNK abolished the effects of DMSO on lytic replication and virion production. Our findings showed that additional treatment with DMSO during the induction of lytic replication significantly improved the yield of KSHV production.
Collapse
Affiliation(s)
- Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Ho-Hyun Ryu
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
- *Correspondence: Myung-Shin Lee,
| |
Collapse
|
7
|
The Adrenergic Nerve Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:271-294. [PMID: 34664245 DOI: 10.1007/978-3-030-73119-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The central and autonomic nervous systems interact and converge to build up an adrenergic nerve network capable of promoting cancer. While a local adrenergic sympathetic innervation in peripheral solid tumors influences cancer and stromal cell behavior, the brain can participate to the development of cancer through an intermixed dysregulation of the sympathoadrenal system, adrenergic neurons, and the hypothalamo-pituitary-adrenal axis. A deeper understanding of the adrenergic nerve circuitry within the brain and tumors and its interactions with the microenvironment should enable elucidation of original mechanisms of cancer and novel therapeutic strategies.
Collapse
|
8
|
Viral Micro-RNAs Are Detected in the Early Systemic Response to Injury and Are Associated With Outcomes in Polytrauma Patients. Crit Care Med 2021; 50:296-306. [PMID: 34259445 DOI: 10.1097/ccm.0000000000005181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate early activation of latent viruses in polytrauma patients and consider prognostic value of viral micro-RNAs in these patients. DESIGN This was a subset analysis from a prospectively collected multicenter trauma database. Blood samples were obtained upon admission to the trauma bay (T0), and trauma metrics and recovery data were collected. SETTING Two civilian Level 1 Trauma Centers and one Military Treatment Facility. PATIENTS Adult polytrauma patients with Injury Severity Scores greater than or equal to 16 and available T0 plasma samples were included in this study. Patients with ICU admission greater than 14 days, mechanical ventilation greater than 7 days, or mortality within 28 days were considered to have a complicated recovery. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Polytrauma patients (n = 180) were identified, and complicated recovery was noted in 33%. Plasma samples from T0 underwent reverse transcriptase-quantitative polymerase chain reaction analysis for Kaposi's sarcoma-associated herpesvirus micro-RNAs (miR-K12_10b and miRK-12-12) and Epstein-Barr virus-associated micro-RNA (miR-BHRF-1), as well as Luminex multiplex array analysis for established mediators of inflammation. Ninety-eight percent of polytrauma patients were found to have detectable Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus micro-RNAs at T0, whereas healthy controls demonstrated 0% and 100% detection rate for Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, respectively. Univariate analysis revealed associations between viral micro-RNAs and polytrauma patients' age, race, and postinjury complications. Multivariate least absolute shrinkage and selection operator analysis of clinical variables and systemic biomarkers at T0 revealed that interleukin-10 was the strongest predictor of all viral micro-RNAs. Multivariate least absolute shrinkage and selection operator analysis of systemic biomarkers as predictors of complicated recovery at T0 demonstrated that miR-BHRF-1, miR-K12-12, monocyte chemoattractant protein-1, and hepatocyte growth factor were independent predictors of complicated recovery with a model complicated recovery prediction area under the curve of 0.81. CONCLUSIONS Viral micro-RNAs were detected within hours of injury and correlated with poor outcomes in polytrauma patients. Our findings suggest that transcription of viral micro-RNAs occurs early in the response to trauma and may be associated with the biological processes involved in polytrauma-induced complicated recovery.
Collapse
|
9
|
Giorgio CMR, Licata G, Briatico G, Babino G, Fulgione E, Gambardella A, Alfano R, Argenziano G. Comparison between propranolol 2% cream versus timolol 0.5% gel for the treatment of Kaposi sarcoma. Int J Dermatol 2021; 60:631-633. [PMID: 33410502 DOI: 10.1111/ijd.15407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - Gaetano Licata
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giulia Briatico
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Graziella Babino
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Roberto Alfano
- Department of Anesthesiology, Surgery and Emergency, University of Campania Luigi Vanvitelli, Naples, Italy
| | | |
Collapse
|
10
|
Chen J, Dai L, Goldstein A, Zhang H, Tang W, Forrest JC, Post SR, Chen X, Qin Z. Identification of new antiviral agents against Kaposi's sarcoma-associated herpesvirus (KSHV) by high-throughput drug screening reveals the role of histamine-related signaling in promoting viral lytic reactivation. PLoS Pathog 2019; 15:e1008156. [PMID: 31790497 PMCID: PMC6907871 DOI: 10.1371/journal.ppat.1008156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/12/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human cancers, such as Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). Current treatment options for KSHV infection and virus associated diseases are sometimes ineffective, therefore, more effectively antiviral agents are urgently needed. As a herpesvirus, lytic replication is critical for KSHV pathogenesis and oncogenesis. In this study, we have established a high-throughput screening assay by using an inducible KSHV+ cell-line, iSLK.219. After screening a compound library that consisted of 1280 Food and Drug Administration (FDA)-approved drugs, 15 hit compounds that effectively inhibited KSHV virion production were identified, most of which have never been reported with anti-KSHV activities. Interestingly, 3 of these drugs target histamine receptors or signaling. Our data further confirmed that antagonists targeting different histamine receptors (HxRs) displayed excellent inhibitory effects on KSHV lytic replication from induced iSLK.219 or BCBL-1 cells. In contrast, histamine and specific agonists of HxRs promoted viral lytic replication from induced iSLK.219 or KSHV-infected primary cells. Mechanistic studies indicated that downstream MAPK and PI3K/Akt signaling pathways were required for histamine/receptors mediated promotion of KSHV lytic replication. Direct knockdown of HxRs in iSLK.219 cells effectively blocked viral lytic gene expression during induction. Using samples from a cohort of HIV+ patients, we found that the KSHV+ group has much higher levels of histamine in their plasma and saliva than the KSHV- group. Taken together, our data have identified new anti-KSHV agents and provided novel insights into the molecular bases of host factors that contribute to lytic replication and reactivation of this oncogenic herpesvirus.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Alana Goldstein
- Departments of Diagnostic Sciences, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - J. Craig Forrest
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Steven R. Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (XC); (ZQ)
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (XC); (ZQ)
| |
Collapse
|
11
|
Flentje A, Kober KM, Carrico AW, Neilands TB, Flowers E, Heck NC, Aouizerat BE. Minority stress and leukocyte gene expression in sexual minority men living with treated HIV infection. Brain Behav Immun 2018; 70:335-345. [PMID: 29548994 PMCID: PMC5953835 DOI: 10.1016/j.bbi.2018.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Sexual minority (i.e., non-heterosexual) individuals experience poorer mental and physical health, accounted for in part by the additional burden of sexual minority stress occurring from being situated in a culture favoring heteronormativity. Informed by previous research, the purpose of this study was to identify the relationship between sexual minority stress and leukocyte gene expression related to inflammation, cancer, immune function, and cardiovascular function. Sexual minority men living with HIV who were on anti-retroviral medication, had viral load < 200 copies/mL, and had biologically confirmed, recent methamphetamine use completed minority stress measures and submitted blood samples for RNA sequencing on leukocytes. Differential gene expression and pathway analyses were conducted comparing those with clinically elevated minority stress (n = 18) and those who did not meet the clinical cutoff (n = 20), covarying reactive urine toxicology results for very recent stimulant use. In total, 90 differentially expressed genes and 138 gene set pathways evidencing 2-directional perturbation were observed at false discovery rate (FDR) < 0.10. Of these, 41 of the differentially expressed genes and 35 of the 2-directionally perturbed pathways were identified as functionally related to hypothesized mechanisms of inflammation, cancer, immune function, and cardiovascular function. The neuroactive-ligand receptor pathway (implicated in cancer development) was identified using signaling pathway impact analysis. Our results suggest several potential biological pathways for future work investigating the relationship between sexual minority stress and health.
Collapse
Affiliation(s)
- Annesa Flentje
- Community Health Systems, School of Nursing, University of California, San Francisco, United States.
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Computational Health Sciences, University of California, San Francisco, United States
| | | | - Torsten B Neilands
- Center for AIDS Prevention Studies, Department of Medicine, University of California, San Francisco, United States
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States
| | - Nicholas C Heck
- Department of Psychology, Marquette University, United States
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| |
Collapse
|
12
|
1, 25(OH)2 D3 Induces Reactivation and Death of Kaposi's Sarcoma-Associated Herpesvirus of Primary Effusion Lymphoma cells. Sci Rep 2017; 7:12438. [PMID: 28963501 PMCID: PMC5622028 DOI: 10.1038/s41598-017-12676-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) a gammaherpesvirus establishes perennial latency in the host with periodic reactivation. Occasionally change in the physiological condition like hypoxia, host cell differentiation can trigger the lytic switch and reactivation of the virus. The biologically active form of 1, 25(OH)2 D3 plays a critical role in the regulation of various physiological processes (e.g. regulation of mineral homeostasis and control of bone metabolism). Apart from its role in host physiology, 1, 25(OH)2 D3 has been implicated as a potential agent for the prevention and/or treatment of many a tumors. Here we show that 1, 25(OH)2 D3 induces both death of Kaposi sarcoma associated herpesvirus infected PEL cells and KSHV replication. 1, 25(OH)2 D3 mediated inhibition of proliferation was associated with apoptosis of the PEL cells, and virus reactivation. In addition, p38 signalling is required for KSHV reactivation. Furthermore, treatment of PEL cells with p38 inhibitor abrogated the expression of ORF57, thus blocking lytic switch. Furthermore, silencing of VDR resulted in reduced ORF57 expression compared to the control cells, signifying the potential role of 1, 25(OH)2 D3 in KSHV reactivation. Thus, our studies have revealed a novel role of 1, 25(OH)2 D3 in the regulation of KSHV reactivation and PEL cell death.
Collapse
|
13
|
Chap S, Vu M, Robinson AJ, Braue A, Varigos GA, Scardamaglia L. Treatment of cutaneous iatrogenic Kaposi sarcoma with topical timolol. Australas J Dermatol 2017; 58:242-243. [DOI: 10.1111/ajd.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sonet Chap
- Department of Dermatology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Mi Vu
- Department of Dermatology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Aaron J Robinson
- Department of Dermatology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Anna Braue
- Department of Dermatology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - George A Varigos
- Department of Dermatology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Laura Scardamaglia
- Department of Dermatology; Royal Melbourne Hospital; Melbourne Victoria Australia
| |
Collapse
|
14
|
In Vitro Replication of Chelonid Herpesvirus 5 in Organotypic Skin Cultures from Hawaiian Green Turtles (Chelonia mydas). J Virol 2017; 91:JVI.00404-17. [PMID: 28615209 DOI: 10.1128/jvi.00404-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture.IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of endangered marine turtles. Pathological examination shows that ChHV5 is shed in skin. Here we show that ChHV5 will grow in vitro if we replicate the complex three-dimensional structure of turtle skin. Moreover, lytic virus growth requires a close interplay between fibroblasts and keratinocytes. Finally, the morphogenesis of herpesviral growth in three-dimensional cultures reveals a far richer, and likely more realistic, array of capsid morphologies than that encountered in traditional monolayer cell cultures. Our findings have applications to other viruses, including those of humans.
Collapse
|
15
|
Buric I, Farias M, Jong J, Mee C, Brazil IA. What Is the Molecular Signature of Mind-Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices. Front Immunol 2017; 8:670. [PMID: 28670311 PMCID: PMC5472657 DOI: 10.3389/fimmu.2017.00670] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
There is considerable evidence for the effectiveness of mind–body interventions (MBIs) in improving mental and physical health, but the molecular mechanisms of these benefits remain poorly understood. One hypothesis is that MBIs reverse expression of genes involved in inflammatory reactions that are induced by stress. This systematic review was conducted to examine changes in gene expression that occur after MBIs and to explore how these molecular changes are related to health. We searched PubMed throughout September 2016 to look for studies that have used gene expression analysis in MBIs (i.e., mindfulness, yoga, Tai Chi, Qigong, relaxation response, and breath regulation). Due to the limited quantity of studies, we included both clinical and non-clinical samples with any type of research design. Eighteen relevant studies were retrieved and analyzed. Overall, the studies indicate that these practices are associated with a downregulation of nuclear factor kappa B pathway; this is the opposite of the effects of chronic stress on gene expression and suggests that MBI practices may lead to a reduced risk of inflammation-related diseases. However, it is unclear how the effects of MBIs compare to other healthy interventions such as exercise or nutrition due to the small number of available studies. More research is required to be able to understand the effects of MBIs at the molecular level.
Collapse
Affiliation(s)
- Ivana Buric
- Brain, Belief, and Behaviour Lab, Centre for Psychology, Behaviour, and Achievement, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Miguel Farias
- Brain, Belief, and Behaviour Lab, Centre for Psychology, Behaviour, and Achievement, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Jonathan Jong
- Brain, Belief, and Behaviour Lab, Centre for Psychology, Behaviour, and Achievement, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Christopher Mee
- Centre for Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Inti A Brazil
- Brain, Belief, and Behaviour Lab, Centre for Psychology, Behaviour, and Achievement, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Forensic Psychiatric Centre Pompestichting, Nijmegen, Netherlands.,Collaborative Antwerp Psychiatric Research Institute, Antwerp University, Antwerp, Belgium
| |
Collapse
|
16
|
Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017; 8:613. [PMID: 28473805 PMCID: PMC5397509 DOI: 10.3389/fmicb.2017.00613] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed a sophisticated regulation network that controls the important events in KSHV life cycle.
Collapse
Affiliation(s)
- Kawalpreet K Aneja
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| | - Yan Yuan
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| |
Collapse
|
17
|
Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015; 15:563-72. [PMID: 26299593 PMCID: PMC4828959 DOI: 10.1038/nrc3978] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The peripheral autonomic nervous system (ANS) is known to regulate gene expression in primary tumours and their surrounding microenvironment. Activation of the sympathetic division of the ANS in particular modulates gene expression programmes that promote metastasis of solid tumours by stimulating macrophage infiltration, inflammation, angiogenesis, epithelial-mesenchymal transition and tumour invasion, and by inhibiting cellular immune responses and programmed cell death. Haematological cancers are modulated by sympathetic nervous system (SNS) regulation of stem cell biology and haematopoietic differentiation programmes. In addition to identifying a molecular basis for physiologic stress effects on cancer, these findings have also identified new pharmacological strategies to inhibit cancer progression in vivo.
Collapse
Affiliation(s)
- Steven W. Cole
- Department of Medicine, Division of Hematology-Oncology, Geffen School of Medicine, UCLA Molecular Biology Institute, Norman Cousins Center, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles
| | - Archana S. Nagaraja
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas M. D. Anderson Comprehensive Cancer Center
| | - Susan K. Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, Urology, and Holden Comprehensive Cancer Center, University of Iowa
| | - Paige A. Green
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, United States National Cancer Institute
| | - Anil K. Sood
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas M. D. Anderson Comprehensive Cancer Center
| |
Collapse
|
18
|
Screening of the Human Kinome Identifies MSK1/2-CREB1 as an Essential Pathway Mediating Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication during Primary Infection. J Virol 2015; 89:9262-80. [PMID: 26109721 DOI: 10.1128/jvi.01098-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Viruses often hijack cellular pathways to facilitate infection and replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus etiologically associated with Kaposi's sarcoma, a vascular tumor of endothelial cells. Despite intensive studies, cellular pathways mediating KSHV infection and replication are still not well defined. Using an antibody array approach, we examined cellular proteins phosphorylated during primary KSHV infection of primary human umbilical vein endothelial cells. Enrichment analysis identified integrin/mitogen-activated protein kinase (integrin/MAPK), insulin/epidermal growth factor receptor (insulin/EGFR), and JAK/STAT as the activated networks during primary KSHV infection. The transcriptional factor CREB1 (cyclic AMP [cAMP]-responsive element-binding protein 1) had the strongest increase in phosphorylation. While knockdown of CREB1 had no effect on KSHV entry and trafficking, it drastically reduced the expression of lytic transcripts and proteins and the production of infectious virions. Chemical activation of CREB1 significantly enhanced viral lytic replication. In contrast, CREB1 neither influenced the expression of the latent gene LANA nor affected KSHV infectivity. Mechanistically, CREB1 was not activated through the classic cAMP/protein kinase A (cAMP/PKA) pathway or via the AKT, MK2, and RSK pathways. Rather, CREB1 was activated by the mitogen- and stress-activated protein kinases 1 and 2 (MSK1/2). Consequently, chemical inhibition or knockdown of MSKs significantly inhibited the KSHV lytic replication program; however, it had a minimal effect on LANA expression and KSHV infectivity. Together, these results identify the MSK1/2-CREB1 proteins as novel essential effectors of KSHV lytic replication during primary infection. The differential effect of the MSK1/2-CREB1 pathway on the expression of viral latent and lytic genes might control the robustness of viral lytic replication, and therefore the KSHV replication program, during primary infection. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus associated with several cancers. Through genome-wide kinase screening, we found that KSHV activates the MSK1/2-CREB1 pathway during primary infection and that it depends on this pathway for viral lytic replication. Inhibition of this pathway blocks KSHV lytic replication. These results illustrate a mechanism by which KSHV hijacks a cellular pathway for its replication, and they identify a potential therapeutic target.
Collapse
|
19
|
KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 2015; 7:72-109. [PMID: 25588053 PMCID: PMC4306829 DOI: 10.3390/v7010072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022] Open
Abstract
In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline‑directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function. We propose that Pin1 is a molecular timer that can regulate the balance between viral lytic gene expression and host cell lysis. Intriguing scenarios for Pin1’s underlying activities, and the potential broader significance for isomerization of Rta and reactivation, are highlighted.
Collapse
|
20
|
Cole SW. Social regulation of human gene expression: mechanisms and implications for public health. Am J Public Health 2013; 103 Suppl 1:S84-92. [PMID: 23927506 DOI: 10.2105/ajph.2012.301183] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific "social programs" to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health.
Collapse
Affiliation(s)
- Steven W Cole
- Steven W. Cole is with the Division of Hematology-Oncology, School of Medicine, University of California, Los Angeles
| |
Collapse
|
21
|
Chang PJ, Wang SS, Chen LY, Hung CH, Huang HY, Shih YJ, Yen JB, Liou JY, Chen LW. ORF50-dependent and ORF50-independent activation of the ORF45 gene of Kaposi's sarcoma-associated herpesvirus. Virology 2013; 442:38-50. [PMID: 23601787 DOI: 10.1016/j.virol.2013.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
The ORF45 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a multifunctional tegument protein. Here, we characterize the transcriptional control of the ORF45 gene and show that its promoter can be activated by ORF50 protein, a latent-lytic switch transactivator. The ORF45 promoter can also be induced by sodium butyrate (SB), a histone deacetylase inhibitor, in the absence of ORF50 protein. Although SB induces the ORF45 gene independently of ORF50, its full activation may require the presence of ORF50. Deletion and point mutation analyses revealed that two RBP-Jκ-binding sites in the ORF45 promoter confer the ORF50 responsiveness, whereas NF-Y and Sp1-binding sites mediate the response to SB. Direct binding of NF-Y, Sp1, or RBP-Jκ protein to the ORF45 promoter is required for the promoter activation induced by SB or by ORF50. In conclusion, our study demonstrates both ORF50-dependent and ORF50-independent transcriptional mechanisms operated on the activation of the ORF45 gene.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Genomics-based analyses have provided deep insight into the basic biology of cancer and are now clarifying the molecular pathways by which psychological and social factors can regulate tumor cell gene expression and genome evolution. This review summarizes basic and clinical research on neural and endocrine regulation of the cancer genome and its interactions with the surrounding tumor microenvironment, including the specific types of genes subject to neural and endocrine regulation, the signal transduction pathways that mediate such effects, and therapeutic approaches that might be deployed to mitigate their impact. Beta-adrenergic signaling from the sympathetic nervous system has been found to up-regulated a diverse array of genes that contribute to tumor progression and metastasis, whereas glucocorticoid-regulated genes can inhibit DNA repair and promote cancer cell survival and resistance to chemotherapy. Relationships between socio-environmental risk factors, neural and endocrine signaling to the tumor microenvironment, and transcriptional responses by cancer cells and surrounding stromal cells are providing new mechanistic insights into the social epidemiology of cancer, new therapeutic approaches for protecting the health of cancer patients, and new molecular biomarkers for assessing the impact of behavioral and pharmacologic interventions.
Collapse
Affiliation(s)
- Steven W. Cole
- Corresponding author: Steven Cole, Ph.D., 11-934 Factor Building, UCLA School of Medicine, Los Angeles CA 90095-1678, 310 267-4243,
| |
Collapse
|
23
|
Armaiz-Pena GN, Cole SW, Lutgendorf SK, Sood AK. Neuroendocrine influences on cancer progression. Brain Behav Immun 2013; 30 Suppl:S19-25. [PMID: 22728325 PMCID: PMC3467346 DOI: 10.1016/j.bbi.2012.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/14/2012] [Accepted: 06/14/2012] [Indexed: 01/11/2023] Open
Abstract
During the past decade, new studies have continued to shed light on the role of neuroendocrine regulation of downstream physiological and biological pathways relevant to cancer growth and progression. More specifically, our knowledge of the effects of the sympathetic nervous system (SNS) on cancer biology has been greatly expanded by new data demonstrating how the cellular immune response, inflammatory processes, tumor-associated angiogenesis, and tumor cell invasion and survival converge to promote tumor growth. This review will summarize these studies, while synthesizing clinical, cellular and molecular research that has continued to unearth the biological events mediating the interplay between SNS-related processes and cancer progression.
Collapse
Affiliation(s)
- Guillermo N. Armaiz-Pena
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston Texas
| | - Steve W. Cole
- Department of Medicine, Division of Hematology–Oncology, UCLA School of Medicine, Los Angeles, California
| | - Susan K. Lutgendorf
- Departments of Psychology, Urology, Obstetrics and Gynecology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Anil K. Sood
- Departments of Gynecologic Oncology, Cancer Biology and Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Abstract
Beta-adrenergic signaling has been found to regulate multiple cellular processes that contribute to the initiation and progression of cancer, including inflammation, angiogenesis, apoptosis/anoikis, cell motility and trafficking, activation of tumor-associated viruses, DNA damage repair, cellular immune response, and epithelial-mesenchymal transition. In several experimental cancer models, activation of the sympathetic nervous system promotes the metastasis of solid epithelial tumors and the dissemination of hematopoietic malignancies via β-adrenoreceptor-mediated activation of protein kinase A and exchange protein activated by adenylyl cyclase signaling pathways. Within the tumor microenvironment, β-adrenergic receptors on tumor and stromal cells are activated by catecholamines from local sympathetic nerve fibers (norepinephrine) and circulating blood (epinephrine). Tumor-associated macrophages are emerging as key targets of β-adrenergic regulation in several cancer contexts. Sympathetic nervous system regulation of cancer cell biology and the tumor microenvironment has clarified the molecular basis for long-suspected relationships between stress and cancer progression, and now suggests a highly leveraged target for therapeutic intervention. Epidemiologic studies have linked the use of β-blockers to reduced rates of progression for several solid tumors, and preclinical pharmacologic and biomarker studies are now laying the groundwork for translation of β-blockade as a novel adjuvant to existing therapeutic strategies in clinical oncology.
Collapse
Affiliation(s)
- Steven W Cole
- Division of Hematology-Oncology, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1678, USA.
| | | |
Collapse
|
25
|
Yu F, Al-Shyoukh I, Feng J, Li X, Liao CW, Ho CM, Shamma JS, Sun R. Control of Kaposi's sarcoma-associated herpesvirus reactivation induced by multiple signals. PLoS One 2011; 6:e20998. [PMID: 21904595 PMCID: PMC3125160 DOI: 10.1371/journal.pone.0020998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
The ability to control cellular functions can bring about many developments in basic biological research and its applications. The presence of multiple signals, internal as well as externally imposed, introduces several challenges for controlling cellular functions. Additionally the lack of clear understanding of the cellular signaling network limits our ability to infer the responses to a number of signals. This work investigates the control of Kaposi's sarcoma-associated herpesvirus reactivation upon treatment with a combination of multiple signals. We utilize mathematical model-based as well as experiment-based approaches to achieve the desired goals of maximizing virus reactivation. The results show that appropriately selected control signals can induce virus lytic gene expression about ten folds higher than a single drug; these results were validated by comparing the results of the two approaches, and experimentally using multiple assays. Additionally, we have quantitatively analyzed potential interactions between the used combinations of drugs. Some of these interactions were consistent with existing literature, and new interactions emerged and warrant further studies. The work presents a general method that can be used to quantitatively and systematically study multi-signal induced responses. It enables optimization of combinations to achieve desired responses. It also allows identifying critical nodes mediating the multi-signal induced responses. The concept and the approach used in this work will be directly applicable to other diseases such as AIDS and cancer.
Collapse
Affiliation(s)
- Fuqu Yu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ibrahim Al-Shyoukh
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jiaying Feng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xudong Li
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chia Wei Liao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chih-Ming Ho
- Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jeff S. Shamma
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
The lytic activation of KSHV during keratinocyte differentiation is dependent upon a suprabasal position, the loss of integrin engagement, and calcium, but not the interaction of cadherins. Virology 2010; 410:17-29. [PMID: 21084105 DOI: 10.1016/j.virol.2010.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/04/2010] [Accepted: 10/13/2010] [Indexed: 12/15/2022]
Abstract
We previously found that KSHV (HHV-8) lytic activation occurs during differentiation of oral keratinocytes in organotypic raft cultures. To further investigate the spatial and temporal aspects of KSHV lytic activation and the roles of integrins, cadherins, and calcium, we used rKSHV.219-infected primary oral keratinocytes in submerged, suspension, and direct suprabasal plating, models of differentiation. We found that early keratinocyte differentiation did not activate lytic KSHV in cells attached to a substratum, with activation only occurring in suprabasal cells. Temporally, KSHV lytic expression occurred between the expression of early and late differentiation markers. Keratinocytes differentiated in suspension culture, which mimics substratum loss that occurs with stratification, activated lytic KSHV. This lytic activation was inhibited by integrin engagement, showing that integrins are a control point for KSHV reactivation. A role for cadherins was not found. Elevated extracellular calcium was necessary, but not sufficient, for lytic activation.
Collapse
|
27
|
Abstract
Latency is a state of cryptic viral infection associated with genomic persistence and highly restricted gene expression. Its hallmark is reversibility: under appropriate circumstances, expression of the entire viral genome can be induced, resulting in the production of infectious progeny. Among the small number of virus families capable of authentic latency, the herpesviruses stand out for their ability to produce such infections in every infected individual and for being completely dependent upon latency as a mode of persistence. Here, we review the molecular basis of latency, with special attention to the gamma-herpesviruses, in which the understanding of this process is most advanced.
Collapse
Affiliation(s)
- Samuel H Speck
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
28
|
Brown HJ, Peng L, Harada JN, Walker JR, Cole S, Lin SF, Zack JA, Chanda SK, Sun R. Gene expression and transcription factor profiling reveal inhibition of transcription factor cAMP-response element-binding protein by gamma-herpesvirus replication and transcription activator. J Biol Chem 2010; 285:25139-53. [PMID: 20516076 DOI: 10.1074/jbc.m110.137737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpesvirus replication involves the expression of over 80 viral genes in a well ordered sequence, leading to the production of new virions. Viral genes expressed during the earliest phases of replication often regulate both viral and cellular genes. Therefore, they have the potential to bring about dramatic functional changes within the cell. Replication and transcription activator (RTA) is a potent immediate early transcription activator of the gamma-herpesvirus family. This family includes Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, human pathogens associated with malignancy. Here we combine gene array technology with transcription factor profiling to identify the earliest DNA promoter and cellular transcription factor targets of RTA in the cellular genome. We find that expression of RTA leads to both activation and inhibition of distinct groups of cellular genes. The identity of the target genes suggests that RTA rapidly changes the cellular environment to counteract cell death pathways, support growth factor signaling, and also promote immune evasion of the infected cell. Transcription factor profiling of the target gene promoters highlighted distinct pathways involved in gene activation at specific time points. Most notable throughout was the high level of cAMP-response element-binding protein (CREB)-response elements in RTA target genes. We find that RTA can function as either an activator or an inhibitor of CREB-response genes, depending on the promoter context. The association with CREB also highlights a novel connection and coordination between viral and cellular "immediate early" responses.
Collapse
Affiliation(s)
- Helen J Brown
- Department of Microbiology, Division of Hematology-Oncology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Enhancement of autophagy during lytic replication by the Kaposi's sarcoma-associated herpesvirus replication and transcription activator. J Virol 2010; 84:7448-58. [PMID: 20484505 DOI: 10.1128/jvi.00024-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is one of two major degradation systems in eukaryotic cells. The degradation mechanism of autophagy is required to maintain the balance between the biosynthetic and catabolic processes and also contributes to defense against invading pathogens. Recent studies suggest that a number of viruses can evade or subvert the host cell autophagic pathway to enhance their own replication. Here, we investigated the effect of autophagy on the KSHV (Kaposi's sarcoma-associated herpesvirus) life cycle. We found that the inhibition of autophagy reduces KSHV lytic reactivation from latency, and an enhancement of autophagy can be detected during KSHV lytic replication. In addition, RTA (replication and transcription activator), an essential viral protein for KSHV lytic reactivation, is able to enhance the autophagic process, leading to an increase in the number of autophagic vacuoles, an increase in the level of the lipidated LC3 protein, and the formation of autolysosomes. Moreover, the inhibition of autophagy affects RTA-mediated lytic gene expression and viral DNA replication. These results suggest that RTA increases autophagy activation to facilitate KSHV lytic replication. This is the first report demonstrating that autophagy is involved in the lytic reactivation of KSHV.
Collapse
|
30
|
|
31
|
Work TM, Dagenais J, Balazs GH, Schumacher J, Lewis TD, Leong JAC, Casey RN, Casey JW. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian green turtles (Chelonia mydas). J Gen Virol 2009; 90:1943-1950. [PMID: 19386781 DOI: 10.1099/vir.0.011650-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.
Collapse
Affiliation(s)
- Thierry M. Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50167, Honolulu, HI 96850, USA
| | - Julie Dagenais
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50167, Honolulu, HI 96850, USA
| | - George H. Balazs
- NOAA-National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2570 Dole Street, Honolulu, HI 96822, USA
| | - Joanne Schumacher
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50167, Honolulu, HI 96850, USA
| | - Teresa D. Lewis
- Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, PO Box 1346, Kaneohe, HI 96744, USA
| | - Jo-Ann C. Leong
- Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, PO Box 1346, Kaneohe, HI 96744, USA
| | - Rufina N. Casey
- College of Veterinary Medicine, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853-6401, USA
| | - James W. Casey
- College of Veterinary Medicine, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853-6401, USA
| |
Collapse
|
32
|
Kaposi sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: a potential positive feedback loop for sustained ORF50 gene expression. Virology 2009; 392:34-51. [PMID: 19640558 DOI: 10.1016/j.virol.2009.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/15/2009] [Accepted: 07/03/2009] [Indexed: 11/23/2022]
Abstract
KSHV vGPCR, a lytic cycle associated protein, induces several signaling pathways leading to the activation of various transcription factors and consequently the expression of cellular and viral genes. Though the role of vGPCR in KSHV tumorigenicity has been well studied, its function related to the viral life cycle is poorly understood. Reduction in vGPCR by RNA interference also resulted in the reduction in KSHV lytic switch ORF50 gene and protein expression. Induction of vGPCR by doxycycline in BC3.14 cells also resulted in more KSHV production. When this was explored, induction of the ORF50 promoter by vGPCR expression was observed. Further examination of the molecular mechanisms by which vGPCR regulates the ORF50 promoter, using various ORF50 promoter constructs, revealed that induction of ORF50 promoter by vGPCR did not involve AP1 but was dependent on Sp1 and Sp3 transcription factors. vGPCR signaling led to an increase in Sp1 and Sp3 DNA binding activity and a decrease in histone deacetylase (HDAC) activity. These activities were pertussis toxin independent, did not involve Rho and Rac-GTPases and involved the heterotrimeric G protein subunits Galpha12 and Galphaq. Studies using pharmacologic inhibitors and dominant-negative proteins identified phospholipase C, the novel protein kinase C (novel PKC) family and protein kinase D (PKD) as part of the signaling initiated by vGPCR leading to ORF50 promoter activation. Taken together, this study suggests a role for vGPCR in the sustained expression of ORF50 which could lead to a continued activation of lytic cycle genes and ultimately to successful viral progeny formation.
Collapse
|
33
|
Qin Y, Liu Z, Zhang T, Wang Y, Li X, Wang J. Generation and application of polyclonal antibody against replication and transcription activator of Kaposi's sarcoma-associated herpesvirus. Appl Biochem Biotechnol 2009; 160:1217-26. [PMID: 19333559 DOI: 10.1007/s12010-009-8604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, the most common neoplasm in untreated HIV-1-infected individuals, and several B cell disorders. KSHV infection goes through lytic and latent phases, and the switch from latency to lytic replication is governed by viral replication and transcription activator (RTA). RTA consists of 691 amino acids, containing an N-terminal DNA-binding and a C-terminal activation domain. In the present study, polyclonal antibody against RTA was generated and evaluated. The C-terminal region of RTA (E482 approximately D691) was expressed in Escherichia coli, purified by affinity chromatography, and utilized to raise polyclonal antibody in BALB/c mice. High-affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:13,500 for ELISA and 1:20,000 for Western blot analysis. The antibody can specifically recognize full-length RTA expressed in both E. coli and mammalian cells. Furthermore, endogenous RTA can be detected with the antibody in TPA-induced BCBL-1 cells under various conditions. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of RTA.
Collapse
Affiliation(s)
- Yu Qin
- College of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
NF-kappaB serves as a cellular sensor of Kaposi's sarcoma-associated herpesvirus latency and negatively regulates K-Rta by antagonizing the RBP-Jkappa coactivator. J Virol 2009; 83:4435-46. [PMID: 19244329 DOI: 10.1128/jvi.01999-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful viral replication is dependent on a conducive cellular environment; thus, viruses must be sensitive to the state of their host cells. We examined the idea that an interplay between viral and cellular regulatory factors determines the switch from Kaposi's sarcoma-associated herpesvirus (KSHV) latency to lytic replication. The immediate-early gene product K-Rta is the first viral protein expressed and an essential factor in reactivation; accordingly, this viral protein is in a key position to serve as a viral sensor of cellular physiology. Our approach aimed to define a host transcription factor, i.e., host sensor, which modulates K-Rta activity on viral promoters. To this end, we developed a panel of reporter plasmids containing all 83 putative viral promoters for a comprehensive survey of the response to both K-Rta and cellular transcription factors. Interestingly, members of the NF-kappaB family were shown to be strong negative regulators of K-Rta transactivation for all but two viral promoters (Ori-RNA and K12). Recruitment of K-Rta to the ORF57 and K-bZIP promoters, but not the K12 promoter, was significantly impaired when NF-kappaB expression was induced. Many K-Rta-responsive promoters modulated by NF-kappaB contain the sequence of the RBP-Jkappa binding site, a major coactivator which anchors K-Rta to target promoters via consensus motifs which overlap with that of NF-kappaB. Gel shift assays demonstrated that NF-kappaB inhibits the binding of RBP-Jkappa and forms a complex with RBP-Jkappa. Our results support a model in which a balance between K-Rta/RBP-Jkappa and NF-kappaB activities determines KSHV reactivation. An important feature of this model is that the interplay between RBP-Jkappa and NF-kappaB on viral promoters controls viral gene expression mediated by K-Rta.
Collapse
|
35
|
High-resolution functional profiling of a gammaherpesvirus RTA locus in the context of the viral genome. J Virol 2008; 83:1811-22. [PMID: 19073723 DOI: 10.1128/jvi.02302-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus are associated with multiple human cancers. Our goal was to develop a quantitative, high-throughput functional profiling system to identify viral cis-elements and protein subdomains critical for virus replication in the context of the herpesvirus genome. In gamma-2 herpesviruses, the transactivating factor RTA is essential for initiation of lytic gene expression and viral reactivation. We used the RTA locus as a model to develop the functional profiling approach. The mutant murine gammaherpesvirus 68 viral library, containing 15-bp random insertions in the RTA locus, was passaged in murine fibroblast cells for multiple rounds of selection. The effect of each 15-bp insertion was characterized using fluorescent-PCR profiling. We identified 1,229 insertions in the 3,845-bp RTA locus, of which 393, 282, and 554 were critically impaired, attenuated, and tolerated, respectively, for viral growth. The functional profiling phenotypes were verified by examining several individual RTA mutant clones for transactivating function of the RTA promoter and transcomplementing function of the RTA-null virus. Thus, the profiling approach enabled us to identify several novel functional domains in the RTA locus in the context of the herpesvirus genome. Importantly, our study has demonstrated a novel system to conduct high-density functional genetic mapping. The genome-scale expansion of the genetic profiling approach will expedite the functional genomics research on herpesvirus.
Collapse
|
36
|
Regulation of Kaposi's sarcoma-associated herpesvirus reactivation by dopamine receptor-mediated signaling pathways. J Acquir Immune Defic Syndr 2008; 48:531-40. [PMID: 18645521 DOI: 10.1097/qai.0b013e31817fbdcf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) possesses two distinct life cycles, lytic replication and latency. An immediate early viral protein, Replication and transcription activator (RTA), is responsible for the virus switch from latency to active replication. METHODS To identify cellular pathways that reactivate KSHV replication, an RTA-responsive viral early promoter, PAN, coupled with an enhanced green fluorescent protein (EGFP) reporter was delivered into a KSHV latently infected B cell line. Five different chemical libraries with defined cellular targets were screened for their ability to induce the PAN promoter as an indication of lytic replication. RESULTS We identified seven chemicals that disrupted latency in KSHV latently infected B cells, five being N-acyl-dopamine derivatives. We showed that these chemicals reactivate KSHV through interacting with dopamine receptors, and that KSHV utilizes dopamine receptors and the associated PKA and MAP kinase pathways to detect and transmit stress signals for reactivation. CONCLUSION Our study identified two cellular signaling pathways that mediate KSHV reactivation and provided a chemical genetics approach to identify new endogenous activators with therapeutic potential against herpesvirus associated malignancies.
Collapse
|
37
|
Sloan EK, Nguyen CT, Cox BF, Tarara RP, Capitanio JP, Cole SW. SIV infection decreases sympathetic innervation of primate lymph nodes: the role of neurotrophins. Brain Behav Immun 2008; 22:185-94. [PMID: 17870298 PMCID: PMC2254209 DOI: 10.1016/j.bbi.2007.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 12/30/2022] Open
Abstract
The sympathetic nervous system regulates immune responses in part through direct innervation of lymphoid organs. Recent data indicate that viral infections can alter the structure of lymph node innervation. To determine the molecular mechanisms underlying sympathetic denervation during Simian Immunodeficiency Virus (SIV) infection, we assessed the expression of neurotrophic factors and neuromodulatory cytokines within lymph nodes from experimentally infected rhesus macaques. Transcription of nerve growth factor (NGF), brain-derived neurotropic factor (BDNF) and neurotrophin-4 (NT4) decreased significantly in vivo during chronic SIV infection, whereas expression of the neuro-inhibitory cytokine interferon-gamma (IFN gamma) was up-regulated. Acute SIV infection of macaque leukocytes in vitro induced similar changes in the expression of neurotrophic and neuro-inhibitory factors, indicative of an innate immune response. Statistical mediation analyses of data from in vivo lymph node gene expression suggested that coordinated changes in expression of multiple neuromodulatory factors may contribute to SIV-induced depletion of catecholaminergic varicosities within lymphoid tissue. Given previous evidence that lymph node catecholaminergic varicosities can enhance SIV replication in vivo, these results are consistent with the hypothesis that reduced expression of neurotrophic factors during infection could constitute a neurobiological component of the innate immune response to viral infection.
Collapse
Affiliation(s)
- Erica K Sloan
- University of California Los Angeles, Department of Medicine, Division of Hematology-Oncology, UCLA School of Medicine, CA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 2007; 371:139-54. [PMID: 17964626 DOI: 10.1016/j.virol.2007.09.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/17/2007] [Accepted: 09/27/2007] [Indexed: 12/22/2022]
Abstract
Lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) promotes the progression of Kaposi's sarcoma (KS), a dominant malignancy in patients with AIDS. While 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced KSHV reactivation from latency is mediated by the protein kinase C delta and MEK/ERK mitogen-activated protein kinase (MAPK) pathways, we have recently shown that the MEK/ERK, JNK and p38 MAPK pathways modulate KSHV lytic replication during productive primary infection of human umbilical vein endothelial cells [Pan, H., Xie, J., Ye, F., Gao, S.J., 2006. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80 (11), 5371-5382]. Here, we report that, besides the MEK/ERK pathway, the JNK and p38 MAPK pathways also mediate TPA-induced KSHV reactivation from latency. The MEK/ERK, JNK and p38 MAPK pathways were constitutively activated in latent KSHV-infected BCBL-1 cells. TPA treatment enhanced the levels of activated ERK and p38 but not those of activated JNK. Inhibitors of all three MAPK pathways reduced TPA-induced production of KSHV infectious virions in BCBL-1 cells in a dose-dependent fashion. The inhibitors blocked KSHV lytic replication at the early stage(s) of reactivation, and reduced the expression of viral lytic genes including RTA, a key immediate-early transactivator of viral lytic replication. Activation of MAPK pathways was necessary and sufficient for activating the promoter of RTA. Furthermore, we showed that the activation of RTA promoter by MAPK pathways was mediated by their downstream target AP-1. Together, these findings suggest that MAPK pathways might have general roles in regulating the life cycle of KSHV by mediating both viral infection and switch from viral latency to lytic replication.
Collapse
Affiliation(s)
- Jianping Xie
- Tumor Virology Program, Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
39
|
Barzon L, Trevisan M, Masi G, Pacenti M, Sinigaglia A, Macchi V, Porzionato A, De Caro R, Favia G, Iacobone M, Palù G. Detection of polyomaviruses and herpesviruses in human adrenal tumors. Oncogene 2007; 27:857-64. [PMID: 17684484 DOI: 10.1038/sj.onc.1210699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The presence of polyomaviruses and herpesviruses in adrenal tumors and their role in adrenal tumorigenesis has never been investigated, even though the adrenal gland seems to be a preferential site of infection by these viruses and adrenal steroid hormones have been shown to activate their replication. We examined in a large series of normal adrenal gland tissues (n=20) and adrenal tumors (n=107) the presence of herpesviruses and polyomaviruses sequences and gene expression, which were detected in a high proportion of both normal and neoplastic adrenal samples (overall, viruses were found in 15% normal adrenals, 27.8% benign adrenal tumors and 35.3% malignant tumors). The polyomaviruses SV40 and BK virus were more frequently found in malignant adrenal tumors, whereas herpesviruses, especially Epstein-Barr virus and human cytomegalovirus, were more frequently detected in functioning benign adrenocortical tumors, often as coinfection. Moreover, tumors from patients with severe hypercortisolism frequently showed herpesvirus coinfections at high viral genome copy number. Our study suggests that the adrenal gland could be a reservoir of infection for these viruses and that hormone overproduction by the adrenal gland could represent a trigger for virus reactivation. On the other hand, these viruses could also contribute to adrenal cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- L Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu F, Harada JN, Brown HJ, Deng H, Song MJ, Wu TT, Kato-Stankiewicz J, Nelson CG, Vieira J, Tamanoi F, Chanda SK, Sun R. Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus. PLoS Pathog 2007; 3:e44. [PMID: 17397260 PMCID: PMC1839163 DOI: 10.1371/journal.ppat.0030044] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 02/08/2007] [Indexed: 11/18/2022] Open
Abstract
The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma-associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma-derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Fuqu Yu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine N Harada
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Helen J Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hongyu Deng
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Moon Jung Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Juran Kato-Stankiewicz
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christian G Nelson
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeffrey Vieira
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sumit K Chanda
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Di Paolo S, Teutonico A, Ranieri E, Gesualdo L, Schena PF. Monitoring Antitumor Efficacy of Rapamycin in Kaposi Sarcoma. Am J Kidney Dis 2007; 49:462-70. [PMID: 17336708 DOI: 10.1053/j.ajkd.2006.11.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 11/14/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND The clinical challenge for the application of rapamycin and its derivatives as anticancer drugs is the ability to prospectively identify which tumors will be sensitive to mammalian target of rapamycin (mTOR) inhibition. The present study is designed to explore mTOR signaling in peripheral-blood mononuclear cells (PBMCs) from renal transplant recipients with Kaposi sarcoma and ascertain whether it would reflect deregulation of the AKT-mTOR pathway in skin cancer tissue and might help identify which patients would benefit from rapamycin treatment, as well as to monitor their clinical response. METHODS We measured basal and in vivo stimulated AKT and P70 S6 kinase (P70(S6K)) phosphorylation in PBMCs from 37 cyclosporine A-treated patients, 10 of whom had Kaposi sarcoma, before and 6 months after conversion to rapamycin therapy. RESULTS Patients with Kaposi sarcoma showed markedly increased basal P70(S6K) activation and depressed phosphorylation of AKT. Long-term treatment with rapamycin was associated with marked inhibition of basal and stimulated phosphorylation of both AKT and P70(S6K), in parallel with regression of the dermal neoplasm. CONCLUSION Overactivation of basal P70(S6K) in PBMCs from renal transplant recipients appears to be associated with the presence of Kaposi sarcoma dermal lesions; conversely, kinase inhibition is linked to regression of skin cancer lesions. Thus, monitoring P70(S6K) phosphorylation can help predict and monitor the biological effectiveness of rapamycin in renal transplant recipients with Kaposi sarcoma and possibly adjust the biologically active doses of the mTOR inhibitor.
Collapse
Affiliation(s)
- Salvatore Di Paolo
- Department of Emergency and Organ Transplants, Division of Nephrology, Dialysis and Transplantation, University of Bari, Policlinico-Piazza Giulio Cesare, 11-70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
42
|
Collado-Hidalgo A, Sung C, Cole S. Adrenergic inhibition of innate anti-viral response: PKA blockade of Type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain Behav Immun 2006; 20:552-63. [PMID: 16504464 DOI: 10.1016/j.bbi.2006.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/06/2006] [Accepted: 01/06/2006] [Indexed: 12/31/2022] Open
Abstract
Type I interferons (IFN-alpha and -beta) play a key role in anti-viral immunity, and we sought to define the molecular mechanisms by which the sympathetic nervous system (SNS) inhibits their effects. In peripheral blood leukocytes and plasmacytoid dendritic cells (pDC2), induction of interferon anti-viral activity by double-stranded RNA (poly-I:C) or CpG DNA was substantially inhibited by norepinephrine and by pharmacologic activation of the cAMP/PKA signaling pathway. This effect was specific to Type I interferons and driven by PKA-mediated repression of IFNA and IFNB gene transcription. Luciferase reporter analyses identified tandem interferon response factor-binding sites in positive regulatory domains I and III of the IFNB promoter as a key target of PKA inhibition. PKA suppression of Type I interferons was associated with impaired transcription of interferon response genes supporting the "anti-viral state", and was sufficient to account for norepinephrine-induced enhancement of HIV-1 replication. Given the ubiquitous role of Type I interferons in containing viral replication, PKA-mediated inhibition of IFN transcription could explain the stimulatory effects of catecholamines on a broad range of viral pathogens.
Collapse
Affiliation(s)
- Alicia Collado-Hidalgo
- Department of Psychiatry, David E. Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1678, USA
| | | | | |
Collapse
|
43
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
44
|
Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG, Stefanek M, Sood AK. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 2006; 6:240-8. [PMID: 16498446 PMCID: PMC3146042 DOI: 10.1038/nrc1820] [Citation(s) in RCA: 693] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epidemiological studies indicate that stress, chronic depression and lack of social support might serve as risk factors for cancer development and progression. Recent cellular and molecular studies have identified biological processes that could potentially mediate such effects. This review integrates clinical, cellular and molecular studies to provide a mechanistic understanding of the interface between biological and behavioural influences in cancer, and identifies novel behavioural or pharmacological interventions that might help improve cancer outcomes.
Collapse
Affiliation(s)
- Michael H Antoni
- Department of Psychology, Sylvestor Cancer Center, University of Miami, P.O. Box 248185, Coral Gables, Florida 33124, USA
| | | | | | | | | | | | | | | |
Collapse
|